Space Complexity in CS1

Ela zur!, Tamar Vilner?, Judith Gal-Ezer®

The Open University of Israel, 108 Ravutzki St., Raanana, Israel, ela@openu.ac.il
*The Open University of Israel, 108 Ravutzki St., Raanana, Israel, tami@openu.ac.il

%The Open University of Israel, 108 Ravutzki St., Raanana, Israel, galezer@openu.ac.il

The importance of introducing efficiency of algorithms in the early stages of an
undergraduate study program in Computer Science is widely acknowledged, as are
the difficulties encountered when introducing the concept. Whenever efficiency is
introduced, the focus is on time efficiency, while space efficiency is only briefly
mentioned. The difficulties that students have with regard to space complexity
motivated our study, which we conducted in two consecutive stages. In the first part
of the research, we found misunderstandings relating to space complexity. Relying on
these findings, we changed our way of teaching space complexity, and later
conducted the second stage of the research to examine the implications of the
change.

Keywords
CS1, Space Complexity, Misconceptions

1. Background

Algorithms are the spirit of computing, and good algorithm design is crucial to the
performance of all software systems, as is the ability to select algorithms appropriate for
specific purposes and to recognize the possibility that sometimes no suitable algorithm
exists. The study of algorithms gives the student insight into the problems involved in
providing techniques for solutions that are independent of programming languages, or other
aspects of implementation. The design of efficient algorithms to solve algorithmic problems is
one of the important areas of research within computer science (CS) and therefore central to
computer science education [4, 5, 6, 7].

Computing Curricula 2001 [8] notes that a large part of the core and elective course material
is devoted to algorithms. Efficiency and complexity are pervasive themes throughout the
study of algorithms. Algorithm complexity is measured in terms of time and space. Time
complexity is measured by the number of elementary actions carried out during the execution
of the algorithm, while space complexity is measured by elements such as the number and
size of the data structures used. In a previous study, we described difficulties we
encountered while teaching time complexity in CS1 at the Open University of Israel (OUI),
and the approach we suggested to help the students [2]. In the current paper, we will relate
to teaching space complexity.

Proceedings of the © South-East European Research Center
Informatics Education Europe Il Conference 126 (SEERC)
IEEIl 2007

The Open University of Israel is a distance learning university, which offers a variety of
undergraduate and graduate programs [13]. The OUI is similar to other universities in its
pursuit of excellence and its commitment to superior scientific and scholastic standards.
However, it differs in that it is open to all those who wish to study a single course or a
number of courses, or to pursue a full program of study towards a Bachelor's degree.
Undergraduate enrolment does not require matriculation or any other certificate from an
educational institution; students' academic achievements are the key to their success.

At the OUI, CS1 is similar to introductory courses given in other universities, and includes the
topics recommended in Computing Curricula 2001: basic logic, algorithms and problem
solving, fundamental data structures, fundamental programming constructs, recursion,
fundamental computing algorithms, basic computability, etc. [8]. We introduce efficiency
relatively early, which encourages students to consider alternative designs of algorithms, to
analyze various algorithms, and to formulate them correctly [5, 6].

However, such early introduction may lead to difficulties: the problems discussed at early
stages of the introductory course are almost always ‘toy’ problems, making it difficult to
convince students that a more efficient algorithm is indeed needed. Also, the analysis of
algorithm efficiency requires mathematics with which students are not always familiar when
they take the introductory course.

Misconceptions were encountered [3, 4]; for instance, students often bring up the myth of the
speed and the growing capacity of the computer, saying that computers are so incredibly fast
that there is no real problem. This belief is, of course, groundless: time and space are crucial
in almost every use of the computer. Many examples can be found to show that whatever the
speed of computers now or in the future, speeding up the execution of algorithms will always
be important (see, for example, [7]). Moreover, an algorithm might simply be too expensive
and thus unacceptable.

As is common in CS1 courses in other universities and in many standard textbooks, we focus
on the time aspect. We first present algorithmic problems with unreasonable algorithmic
solutions, because we believe that this will increase motivation to learn the topic. Students
begin to understand how important it is to be able to analyze the complexity of an algorithm
and to realize that some algorithms are unreasonable even if we have a very fast and big
computer. We then explain how to measure complexity, and how to compare the time
complexity of different algorithms. We explain how critical it is to reduce the running time of
algorithms by an order of magnitude and not only by a constant factor. As to space
complexity, we introduce the concept and discuss it using different examples.

Years of experience with the introductory course showed that students have difficulty
perceiving time complexity. After we felt that we helped students to cope with time complexity
by introducing a new approach [2], we turned to examining the perception of space
complexity. The professional literature devoted to CS education discusses misconceptions
relating to fundamental concepts, mainly in programming [1,9,10,11,12], but we did not find
studies that discuss space complexity. We therefore conducted a study to examine how CS1
students perceive space complexity.

Our study consists of two stages. The first stage was carried out on 247 CS1 students during
the fall semester of 2004. After analyzing the results, we changed our teaching approach,
and conducted the second stage of the study, which included 202 CS1 students in fall 2006.

Proceedings of the © South-East European Research Center
Informatics Education Europe Il Conference 127 (SEERC)
IEEIl 2007

2. The Study - Part One

2.1 Research Questions

We posed two main research questions:

1. To what extent are students successful in analyzing the space complexity of a given
program?
2. What are the difficulties in understanding the concept of space complexity?

2.2 Research Population

Our study was carried out on 247 CS1 students during the fall semester of 2004. Only 116
students (47%) passed the final examination, probably due to the university’s open
admissions policy.

2.3 Research Instruments

The students could take one of two final exam sittings, each of which included a question
relating to space complexity, as detailed below:

Question la (First sitting)
Suppose mat is a given square matrix (2 dimensional array) of length nxn (n is a constant). Each
element of mat is an integer.

We define the value Big-of-Smalls as the largest of the numbers which are the smallest numbers in
their row.

a. Write an efficient function which gets a square matrix mat filled with integers, as a parameter,
and returns the Big-of-Smalls value in the matrix mat.

b. What is the time complexity and what is the space complexity of the function you wrote?
Example:

In this matrix (n = 4)

2 |-8 |4 |18

The value Big-of-Smalls is 3, because it is the biggest among -5, -8, 3 and -1.

Question 1b (Second sitting)
Suppose mat is a given square matrix (2 dimensional array) of length nxn (n is a constant). Each

element of mat is an integer.

We define the matrix to be a Horse-Matrix if one of its squares has the following attribute: taking
a knight's step (like in chess) from a square lands on a square whose value equals that of the
current square.

Proceedings of the © South-East European Research Center

Informatics Education Europe Il Conference 128 (SEERC)
IEEIl 2007

Note that in the matrix mat, the square mat[i][j] has 8 possibilities of knight's step squares:
mat[i£1][j £2], mat[i+ 2] [j 1] (if the indices are legal, i.e., they are bigger than or equal to
0 and smaller than n).

a. Write a function which gets a square matrix mat filled with integers, as a parameter, and

returns 1 if the matrix is a Horse-Matrix and 0 otherwise.
b. What is the time complexity and what is the space complexity of the function you wrote?
Example:

This is a Horse-Matrix (n = 5)

1 2 0 1 |1

Please notice that the gray square mat[1][2] has 6 other squares in a knight's step from it, and the

value in all of them is the same as that of the gray square: 5.

2.4 Findings

119 students took the first sitting of the exam. Of these, 57 passed.

For part a (Question 1a), students gave two solutions:

e The best solution is to find the smallest number in each row, while comparing each of
these smallest numbers to the current highest value. The code for the best solution is
described in Program 1.

77% of the students who passed the exam (44 out of 57) gave this solution.

e The second solution, which was less efficient in its space aspect, was to find the smallest
number in each row, and to place it in an additional one-dimensional array, then to pass
over this array to find the highest value in it. The code for this solution is described in
Program 2.

23% of the students who passed the exam (13 students) gave this solution.

In part b, we asked the students to write the time and space complexity of their solutions. We
found that 56 of 57 students (98%) answered correctly on time complexity - O(n?). We can
see that the students internalized the fact that when they scan over a 2-dimensional array,
the time complexity is O(n?).

Proceedings of the © South-East European Research Center
Informatics Education Europe Il Conference 129 (SEERC)
IEEIl 2007

int bigofSmalls (int mat[n][n])

{
int max = mat[0][O0];
for (int i=0; i<n; i++)
{
int min = mat[i][0];
for (int j=1; j<n; j++)
it (mat[i][j] < min)
min = mat[i][j];
if (min > max)
max = min;
3
return max;
¥

Program 1 The code for the best solution to question 1a.

int bigO0fSmallsWithArray (int mat[n][nl)
{

int minArray [n];

for (int i=0; i<n; i++)
{
int min = mat[i][0];
for (int j=1; j<n; j++)
it (mat[i][j] < min)
min = mat[i]Li]:
minArray[i] = min;

}
int max = minArray[0];

for (i=1; i<n; i++)
if (minArray[i] > max)
max = minArray[i];

return max;

Program 2 The code for the solution to question 1a, which uses an additional array

Pleased with these results, we were disappointed to find a different result on the space
complexity question. 19 of the 44 students who gave the best solution, wrote the correct
answer: that the space complexity is constant - O(1). Of the 13 students who wrote the
solution using the additional array, only 6 gave the correct answer regarding space
complexity for their solution - O(n).

The other 32 students were divided: 16 students did not answer on space complexity at all,
and the other 16 gave an interesting answer - O(n?). It seems they counted the matrix which
holds the numbers.

Figure 1 describes the distribution of the answers to the space complexity question.

Proceedings of the © South-East European Research Center
Informatics Education Europe Il Conference 130 (SEERC)
IEEIl 2007

O correct answer

B quadratic space
complexity

Ono answer

28%

28%

44%

Figure 1 Distribution of the answers to space complexity in question 1a.

The second sitting of the exam was taken by 128 students, 59 of whom passed.

Program 3 describes one of the correct solutions for part a.

int inRange (int row, int col)

return (row >= 0) && (row < n) &&

(col >= 0) && (col < n);

int horseMatrix (int mat[n][n])
{
for (int i=0; i<n; i++)
for (int j=0; j<n; j++)
{
if (inRange(i-2, j-1))

it (mat[i-2]0-1] '= mat[ilD

continue;
it (inRange(i-2, j+1))

if (mat[i-2][j+1] '= mat[i1[i1)

continue;
if (inRange(i-1, j-2))

if (mat[i-11[j-2] '= mat[il1iD)

continue;
if (inRange(i-1, j+2))

if (mat[i-11[j+2] '= mat[i1[i1)

continue;
if (inRange(i+1l, j-2))

it (mat[i+1]1[j-2]1 '= mat[i]101)

continue;
if (inRange(i+l, j+2))

it (mat[i+1][j+2] '= mat[i1[i1)

continue;
if (inRange(i+2, j-1))

if (mat[i+2][J-1] '= mat[i1[i1)

continue;
if (inRange(i+2, j+1))

if (mat[i+2][j+1] '= mat[il[])

continue;
return 1;

}

return O;

}

Program 3 The code for one of the correct solutions to question 1b.

Proceedings of the
Informatics Education Europe Il Conference
IEEIl 2007

131

© South-East European Research Center
(SEERC)

90% of the students who passed the exam (53 students) gave this solution.

In section b, we found that 51 of the 59 students (86%) answered correctly on time
complexity - O(n?). As to space complexity, here we found that 17 of the 59 students gave
the right answer, saying that the space complexity was constant - O(1). 17 students included
the matrix in their space complexity and thus their answer was O(n%). 25 students did not
answer the question.

Figure 2 describes the distribution of the answers to the space complexity.

29%

DOcorrect answer 42%
B quadratic answer

Ono answer

29%

Figure 2 Distribution of the answers to space complexity in question 1b.

2.5 Discussion

We were disappointed to find that so many students have difficulty understanding the nature
of space complexity. We realized that the students find it hard to distinguish between the
amount of memory that is inherent to the problem (i.e., the amount of the space of the data
structure given in the problem) and the additional space needed to solve it. These students
thought that in computing space complexity, one has to add the space of the data structures
that are inherent to the problem.

In the first exam sitting, 28% of the students who passed the exam (16 out of 57), said that
the space complexity was O(n?), since they computed the matrix size as well. The same
happened in the second exam sitting: 29% of the students measured the matrix as a part of
the algorithm’s space complexity, though it is a part of the problem and not of the algorithm.

3. The Study - Part Two

Following these results, we decided to place more emphasis on teaching the concept of
space complexity. One of the examples we used, which we thought would help them
understand the difference between the computer memory used in the algorithm itself and the
memory inherent to the problem, was the binary search algorithm: When measuring the time
of the binary search algorithm, one does not add the time needed for inserting the data into
the array (which takes linear time) or for the sorting of the array (at least O(n log , n)). The
only actions counted are those performed by the binary search algorithm. That is why the
time complexity of the binary search algorithm is logarithmic (O(log, n)). All the other actions
(like inserting the data and sorting the array) are already given and thus are inherent to the
problem. The same happens in calculating the space complexity. The algorithm itself uses

Proceedings of the © South-East European Research Center
Informatics Education Europe Il Conference 132 (SEERC)
IEEIl 2007

only a few variables and its space complexity is fixed (O(1)). One must not add the array
itself (which is linear (O(n)) to this calculation.

We expected that if the students had no difficulty understanding that the time complexity of
the binary search algorithm is logarithmic, and thus did not add the time for inserting the data
into the array or for sorting the array, they should understand that when calculating the space
complexity, they compute only the computer memory used by the algorithm. Unfortunately,
the results of the first stage of our study showed us that this is not the case. It turned out that
the students did not transfer from measuring time complexity to measuring space complexity.
We therefore realized that we could not expect students to make this transfer by themselves,
and that we have to elaborate on this example and explicitly compare it to space complexity.
Thus, we changed our teaching approach and after implementing it, conducted the second
part of the study to find out whether there was any improvement.

3.1 Research Questions
To what extent are students successful in analyzing space complexity, after focusing on the
concept in class?

3.2 Research Population

Our study was carried out on 202 CS1 students during the fall semester of 2006.

3.3 Research Instruments

The students could take one of two final exam sittings, each of which included a question
relating to space complexity. Due to space limitations, we will only present the relevant
guestion from the first exam sitting, question 2, below.

Question 2

Suppose arrl and arr2 are given arrays of length n (n is a constant). Each element of arrl and of arr2
is an integer.

Consider the following method:

boolean what (int arrl[], int arr2[])

{
for (int 1= 0; i<n; i++)
for (int j=0; j<n; j++)
if (arr2[j] < arri[i])
return false;
return true;
}

a. What task does the function perform? Explain briefly what the function does in general terms,
not how it executes the task.

b. What are the time complexity and the space complexity of the function above?

c. Write a function which performs the same task but which is an order-of-magnitude (not a
constant factor) improvement in time complexity. A function with greater (time or space)
complexity will not get full credit.

d. What are the time complexity and the space complexity of the function you wrote?

Proceedings of the © South-East European Research Center
Informatics Education Europe Il Conference 133 (SEERC)
IEEIl 2007

3.4 Findings

112 students participated in the first exam sitting.

The task performed by the function (part a of the question) was to find out whether all of the
elements of arr2 are greater than or equal to all the elements of arr2.

Part b - the time complexity is O(n?), and the space complexity is O(1). 99% of the students
(109 out of 112) answered correctly on the time complexity question, and 75% (83 out of
112) answered correctly on the space complexity.

For part ¢, students gave two solutions:

e The best solution is to find the smallest number in arr2, and to compare it with the
biggest number in arrl. The time complexity of this solution is O(n). The code for the best
solution is described in Program 4.

55% of the students gave this solution.

e The second solution, which was less efficient in its time aspect, was to sort the two
arrays and then to compare the last element in arrl with the first element in arr2. The
time complexity of this solution is O(n log, n).

31% of the students gave this solution.

boolean what (int arrl[], int arr2[])
{
int maxArrl
int minArr2
for (int i=
{
if (arrl[i] > maxArrl)
maxArrl = arri[i];
it (arr2[i] < minArr2)
minArr2 = arr2[i];
}

if (maxArrl > minArr2)
return false;
return true;

arrl[0];
arr2[0];
i<n; i++)

Ll |

Program 4 The code for the best solution to question 2 part c.

As to part d, we asked the students to write the time and space complexity of their solutions.
We found that 91% of the students answered correctly on time complexity, and 72%
answered correctly on space complexity. This is a much better result than the results of the
previous exams (where only about 28 or 29 percent answered correctly on space
complexity). We also found that all of the students who gave the best solution in part c,
answered correctly on time complexity, and 85% of them answered correctly on space
complexity. Even a significant percentage of the students who gave the less efficient
solution, as well as those who gave a wrong solution, knew how to correctly measure the
time and space complexities of their solutions - 82% for the time complexity and 57% for the
space complexity. We found similar results in the second sitting of the exam.

Pleased this time also with the space complexity results, we decided to proceed with the
approach of emphasizing space complexity explicitly, both in face-to-face tutorials and in the
exercises.

Proceedings of the © South-East European Research Center
Informatics Education Europe Il Conference 134 (SEERC)
IEEIl 2007

4. Discussion

Teaching efficiency in CS1 serves as an introduction to a very important topic in computer
science. We believe that time should be dedicated not only to analyzing time complexity but
also to analyzing space complexity. The students must understand that even though
computers are constantly getting smaller, and it seems that the amount of memory needed is
no longer an issue, the reasons for learning about space complexity are very similar to those
for learning about time complexity, and that both time and space are crucial to almost every
use of the computer.

As a result of part one of the study, we changed the way we teach efficiency in our CS1
course. We put more emphasis on space complexity both in face-to-face tutorials and in the
exercises. We examined students’ perceptions of this concept, and we saw that the change
helped them to understand.

One important conclusion we reached was that teachers should not rely on students’ ability
to make a transfer between two similar concepts by themselves. We have to teach them
everything we want them to know.

In future research, we intend to examine students’ perception of the concept of space
complexity in advanced courses, like data structures and algorithms.

References

1 Du Boulay, B. Some difficulties of learning to program. Journal of Educational Computing Research
2 (1); 1986; 57-73.

2 Gal-Ezer, J., Vilner, T. & Zur, E. Teaching algorithm efficiency at CS1 Level: a different approach.
Computer Science Education 14 (3); 2004; 235-248.

3 Gal-Ezer, J. & Zur, E. The concept of 'algorithm efficiency' in the high school CS curriculum. 32"
ASEE/IEEE Frontiers in Education Conference; 2002.

4 Gal-Ezer, J. & Zur, E. The efficiency of algorithms — misconceptions. Computers & Education 42
(3); 2004; 215-226.

5 Ginat, D. Early algorithm efficiency with design patterns. Computer Science Education 11 (2);
2001; 89-109.

6 Ginat, D. Efficiency of algorithms for programming beginners. In Proc of the 27" ACM Computer
Science Education Symposium. New York, ACM Press; 1996; 256-260.

7 Harel, D. Algorithmics: The spirit of computing, 3" ed. Reading, MA, Addison Wesley; 2004.

8 |IEEE Computer Society/ACM Task Force. Computing curricula 2001 (CC-2001).
http://www.computer.org/education/cc200/final .

9 Putman, R. T., Sleeman, D., Baxter, J. A., & Kuspa, L. K. A summary of misconceptions of high
school BASIC programmers. Occasional Report No. 10, Stanford and the Schools Project; 1986.

10 Ragonis, N. & Ben-Ari, M. On understanding the static and dynamics of Object-Oriented Programs.
In Proc of the 36™ ACM Computer Science Education Symposium. ACM Press; 2005; 226-230.

11 Saj-Nicole, A. J., & Soloway, E. But my program runs! Discourse rules for novice programmers.
Journal of Educational Computing Research 2 (1); 1986; 95-125.

12 Stemler, L. Effects of instruction on the misconception about programming in BASIC. Journal of
Research on Computing in Education; 1989; 26-33.

13 The Open University of Israel website: http://www-e.openu.ac.il/.

Proceedings of the © South-East European Research Center
Informatics Education Europe Il Conference 135 (SEERC)
IEEIl 2007

