
Proceedings of the
Informatics Education Europe II Conference
IEEII 2007

136

© South-East European Research Center
(SEERC)

Logic Programming Didactics
Demosthenes Stamatis1, Petros Kefalas2
1 Dept of Informatics, Alexander Technological Educational Institute, P.O Box 141, 57400
Thessaloniki, Greece, demos@it.teithe,gr
2 Dept of Computer Science, City College, Affiliated Institution of the University of Sheffield,
13 Tsimiski Str, 54624 Thessaloniki, Greece, kefalas@city.academic.gr

Logic Programming (LP) courses are part of many Computer Science or Artificial
Intelligence related programmes. In this paper, we present a systematic approach on
teaching an LP course, using Prolog as the main computational paradigm. We argue
that LP is an excellent didactic tool for teaching Intelligent Programming Systems as
well as a vehicle for an in depth understanding of the programming methodology
activity as a whole, both declarative and imperative. A student model is defined which
in turn is used to facilitate the learning outcomes and process. The model is based on
student misconceptions, which were identified using action research derived from our
long experience on teaching LP. We demonstrate that, by lifting these misconceptions
through specifically designed teaching sessions students are led towards a better
understanding of Logic Programming both as a tool for developing intelligent systems
and program construction in general.

Keywords
Logic Programming, AI logics, Mathematical Foundations

1. Introduction: Logic Programming courses in CS Curricula
Computer Science is an engineering discipline, and as such it should integrate a fair amount
of mathematical concepts. CS curricula should be designed such that they include
introductory courses that relate to mathematics specific to the domain, e.g. Discrete
Mathematics including logic, set theory, graph theory etc. [1,2]. Among those, Logic
Programming, although not a core in IEEE/ACM Computing Curricula [1], can be found in
many CS Departments programmes, especially those with an Artificial Intelligence flavour. It
is thought that logic programming, particularly through the use of Prolog as the main
programming paradigm, lead to the development of an improved student model that is more
capable to cope with programming methodology in general, both imperative and declarative,
as well as with Artificial Intelligence techniques, which are normally introduced later in their
studies.
It has been long argued that mere possession of knowledge is not sufficient for students in
higher education, if the student does not learn how to use this knowledge effectively. To do
this, a learner must possess certain intellectual or cognitive processing skills, e.g. the ability
to analyse, synthesize or evaluate. These are clearly identified in Bloom’s taxonomy of
educational objectives, in which the major categories in the cognitive domain are listed, i.e.
knowledge, comprehension, application, analysis, synthesis, and evaluation [3,4]. Logic
programming courses offer the opportunity to develop such skills in the context of program
construction.

Proceedings of the
Informatics Education Europe II Conference
IEEII 2007

137

© South-East European Research Center
(SEERC)

From then on, it is really a matter of choice, which of the following options educators would
follow:

(a) introduce logic programming early or later in the curriculum,
(b) put more or less emphasis to knowledge of Prolog than pure logic,
(c) put more or less emphasis to generic or specific programming skills.

Examples of various approaches exist and all are designed to meet their learning objectives
through appropriate teaching, learning and assessment methods [5,6]. In a straightforward
approach the educators might choose to follow widely accepted and well-written textbooks
(such as [7]), but the outcome would be no more than an average to good knowledge of
Prolog language, as opposed to an in-depth understanding and use of Prolog for intelligent
programming.
In this paper we present a teaching approach to LP, which is based on altering
misconceptions of students, which are connected with their background on imperative
programming languages. Section 2 discusses the student model we deal with, which is built
around a set of misconceptions. In section 3, we present the methodology of identifying and
lifting the misconceptions. In section 4, the misconceptions are classified accompanied with
appropriate representative examples. Finally, we conclude the paper by discussing our
approach compared to the standard approach of teaching Prolog as a logic programming
paradigm.

2. Teaching Logic Programming based on a student model
The Informatics Department at the Technological Educational Institute (TEI) of Thessaloniki,
Greece, has integrated an LP course in its curriculum for the last 15 years. The course is
taught in the 5th semester of the studies. In the 7th semester an Artificial Intelligence course is
taught which has as a prerequisite the LP course.

2.1 Student Model

A number of researchers in computer science education, adopting the constructivist
approach to learning programming language concepts, have identified that the prior
knowledge of the students is the key for further knowledge construction [8,9,10,11,12].
Based on this approach, students often develop some kind of prior knowledge which is
intuitive, based on past experiences and may be either imprecise or even totally mistaken.
This prior knowledge is not considered wrong but is referred to as knowledge based on
misconceptions. These misconceptions and their interrelations form the so called student
model which should be taken as a basis for organising a teaching strategy. The most
important step in such a strategy is that the misconceptions should be lifted in order for the
students to proceed with a more in deep knowledge construction.
The prior knowledge of students in our case is that developed due to their contact with
imperative programming languages. In the first couple of years of their studies, after the
students have been exposed to many imperative language paradigms as well as algorithmic
design and quite heavily engaged in programming with C++ and Java, they have inductively
developed a specific mind-set about programming, which is characterised by the following:
• any variable used in a programme should be declared by type,
• any variable can change its value,
• any function/method has a type, can be part of any expression and returns one (and only

one) value at a time,
• all parameters of functions/methods should have a value when called,
• arithmetic expressions as parameters can be evaluated,

Proceedings of the
Informatics Education Europe II Conference
IEEII 2007

138

© South-East European Research Center
(SEERC)

• recursive data structures are rarely used,
• recursions is not-preferred over iteration, etc.
All the above, in the context of LP form misconceptions that should be lifted in a LP course,
with Prolog as the main programming paradigm.
A similar approach to ours [13] shows how Prolog can be taught based on common
misconceptions of imperative programmers, a study which is focused specifically on teaching
recursion through appropriately designed templates

2.2 Learning Outcomes

In our LP course, we decided not to put emphasis into Prolog knowledge per-se (although
basic elements of the language should be taught), but to focus on all the above aspects. We
believe the students appreciate more the skills acquired through this course, which can be
used to change the mind-set of the programming task as a whole. By the end of the course
should be able to:
• understand the basic principles of logic programming theory and symbolic reasoning,
• demonstrate good knowledge of the basic Prolog language by constructing small

programs,
• make sense of more complicated Prolog programs, predict and describe what they do,
• modify existing code to perform a similar task,
• identify the advantages of declarative programming and evaluate its shortcomings in

comparison with imperative languages,
• comprehend the basic principles of programming languages, like procedural abstraction,

program design and development, parameter passing, recursion, variable binding etc.,
• adapt declarative programming techniques to other programming paradigms.
These learning outcomes are assessed through coursework and final examinations.

3. Methodology
Students enrolling in the LP course and after having covered the basic elements of LP
(normally 4 lectures) are requested to fill-in a questionnaire. The questionnaire contains a
number of simple problem definitions together with example codes in Prolog that represent
alternative solutions to a problem. These fall in three (3) categories.
The first one contains incorrect examples (incorporating characteristics of an imperative
language) which are opposed to correct ones. The following is a typical example of this
category:

Problem: Find the length of a list
lengthA([],0).
lengthA([H|T],L):-
 L is lengthA(T)+1.

lengthB([],0).
lengthB([H|T],L):-
 length(T,R),
 L is R+1.

Students are asked to compare the two codes and answer if one or both of them are correct.
In this case most of the students chose the correct code (lengthB) but a number of them
(25%) find both codes correct, which means that they expect length to be a predicate and an
integer function at the same time.

Proceedings of the
Informatics Education Europe II Conference
IEEII 2007

139

© South-East European Research Center
(SEERC)

In the second category both examples given are syntactically correct but one of them
deviates from problem definition. The following is a typical example of this category:

Problem: Find the sum of the elements of a list containing integers.
sumA([],0).
sumA([H|T],H+R):-
 sumA(T,R).

sumB([],0).
sumB([H|T],S):-
 sumB(T,R),
 S is H+R.

Students are asked to compare the two codes and answer if one or both of them are (a)
syntactically correct and (b) logically correct.
In this case almost all of the students (95%) consider sumB as correct code both from the
syntactic and the logical point of view. This means that although they accept the fact that
Prolog does not evaluate its arguments it is difficult for them to escape from the arithmetic
nature of imperative languages. They are really surprised when they are presented with the
answer:

S = 4+(5+(3+(6+0))) to the query ?- sumA([4,5,3,6], S)
Their surprise is increased when one or more numbers from the above list of integers are
replaced by variables.

In the third category both examples given are syntactically and logically correct but one of
them is based on imperative programming style. The following is a typical example of this
category:

Problem: Concatenation of lists
appendA(X,Y,Z):-
 X=[], Y=L, Z=L.
appendA([X|Y],L,Z):-
 appendA(Y,L,NL),
 Z=[X|NL].

appendB([],L,L).

appendB([X|Y],L,[X|NL]):-
 appendB(Y,L,NL).

Students are asked to compare the two codes and answer if one or both of them are correct.
In the case they find both of them correct they are asked to choose the one which is best
suited to their programming style. In this occasion, most of the students (65%) either chose
appendA as the correct code or the one with the best programming style. The conclusion is
that most of the students are stacked with the way assignment and parameter passing
techniques are used in imperative languages
The outcome of the questionnaire is to identify specific cases of misconceptions. With the
goal of clarifying further their misconceptions students are also interviewed. The result of this
process is also to gather a set of characteristic examples that are going to be used later in
class in order to lift these misconceptions.
During the rest of the semester we split the cohort of students into two groups: students
participate in different laboratory and tutorial classes. In the first group we apply our teaching
methodology as described below, and in the second we follow a standard LP textbook
approach.
At the end of the course, we request students of both groups to answer a final questionnaire.
This questionnaire is similar to the one given at the beginning of the course containing
problem definitions used in intelligent programming systems and relevant Prolog codes. To

Proceedings of the
Informatics Education Europe II Conference
IEEII 2007

140

© South-East European Research Center
(SEERC)

justify their answers students are also asked to give the answers resulting from the execution
of specific queries.

4. Classification of Misconceptions and Teaching Approach
Based on the analysis of the results of the questionnaires and the interviews of the students
we have grouped the misconceptions into five categories, namely:
• Logical variable
• Unification
• Predicates vs functions
• Execution
• Recursion

Table 1: Categorising Misconceptions
Misconception

Category
Description

Student Achievement if
misconception is lifted

The logical Variable
Scope of Variables

Students believe that the scope of a
variable is the whole program, or the set
of predicates having the same name.

Incremental Programming
Top-Down Design

Variable binding Students do not understand that variables
cannot be assigned, but can only be
instantiated and they don’t loose their
value afterwards.

Programming based on a
sound logical approach -
Referential Transparency

Uninitiated Variables Students believe that a variable could not
remain uninitiated during execution.

The ability to deal with
incomplete data - Intelligence

Unification
Parameter Passing 1 Students do not understand the dual role

of variables as parameters.
Intelligent programming
Software reusability

Parameter Passing 2 Students do not understand the possibility
of using parameters with their analytic –
term form.

Intelligent programming

Parameter Evaluation Students do not understand the real
meaning of the fact that parameters are
not evaluated.

Symbolic Processing

Predicates vs functions
 Students do not understand that

predicates are not able to be used as
functions.

Procedure oriented
programming - top down
design

Execution
Automatic backtrack
mechanism

Students do not understand the automatic
generate and test execution mechanism
of LP.

Intelligent programming

Pattern directed
execution

Students do not understand the dynamic
order of predicate definitions in a
program.

Pattern matching -
Procedure oriented
programming

Recursion
Combining Recursion
with backtracking

Students do not list alternative cases
using separate clauses in the body of
recursion.

Abstraction

Recursion as a
methodology

construction of recursive predicates vs
interpretation of recursive predicates.

Abstraction – Declarative style
of programming

Proceedings of the
Informatics Education Europe II Conference
IEEII 2007

141

© South-East European Research Center
(SEERC)

The classification of these categories of misconceptions together with their subcategories is
depicted in Table 1. We give a description of each misconception and for each subcategory
we list student achievements expected if the specific misconception is lifted.
We designed our teaching around the student mode, which is based on the misconceptions
categorisation, described above. We use a number of examples that drive our teaching
classes and lab sessions. We ask the students to devise their solution and compare it with
the one we suggest. Table 2 shows some characteristic examples of Prolog code parts
predicate are not functions.

Table 2 A number of examples for lifting student misconceptions.

Misconceptions Student Solution Prolog solution
Unification:
- concatenation of lists

conc(X,Y,Z):-
 X=[], Y=L, Z=L.
conc([X|Y],L,Z):-
 conc(Y,L,NL),
 Z=[X|NL].

conc([],L,L).
conc([X|Y],L,[X|NL]):-
 conc(Y,L,NL).

Multiple use of predicates:
- splitting a list,
- adding elements to a list

Do not know how
add(X,[],[X]).
add(X,[H|T],[X,H|T]).
add(X,[H|T],[H|R]):-
 add(X,T,R).

split(L,L1,L2):-
 conc(L1,L2,L).

add(X,L,NL):-
 delete(X,NL,L).

Unification, return value by
predicates:
- length of a list

length([H|T],L):-
 L = length(T)+1.

length([H|T],L):-
 length(T,R),
 L is R+1.

Arithmetic, symbolic
process:
- sum of numbers

sum([H|T],S):-
 sum(T,R),
 S is H+R.

sum([H|T],S):-
 sum(T,R),
 S = H+R.

Terms (not evaluated):
- Evan's analogy

figure(1):-
middle(
triangle,square)).
or
figure(1,middle,
triangle,square).

figure(1,
middle(triangle,square)).

Generate and test:
- zebra problem
- map colouring

Do not know how
(in most cases)

generate_test(L,X,Sol):-
 member(X,L),
 test(X,Sol).

Students also have the opportunity to develop their sense of equivalence in various ways.
For instance, the last part of course is about graphs, but it takes a while for them to realise
that finding a path through a graph is the same program as the one finding the ancestor in a
family tree, something that they have seen in the very first lesson. Numerous practices are
encouraged throughout the 12 lab sessions that exist in the course. These practices include:

• Top Down Design: The Backward Chaining technique used by Prolog in running
mode, can lead students to start designing the structure of the computer program in a
top-down approach. The students will eventually start solving problems by breaking
them into smaller sub problems that are easier to implement and handle. This also
leads towards implementation of more well-structured programs.

• Incremental Programming: Since Prolog does not have (in its pure version)
keywords-commands, the situation that the students get in, is much different than that
of other popular programming languages. At least at the beginning, they believe that
they have to build everything they need from scratch. Although this is true, they

Proceedings of the
Informatics Education Europe II Conference
IEEII 2007

142

© South-East European Research Center
(SEERC)

shortly understand that the extensive reuse of code that they wrote, will make their
task much easier.

• Recursion: Since iteration constructs are not provided in Prolog, recursion should be
used instead. Although recursion is also used in other programming languages, this
technique is heavily used in Prolog and so the student will have to start thinking and
solving problems recursively. A student, who is used in recursion, can apply the same
technique to other programming languages. This will make students more competent
in the way they solve problem and write programs.

• Intelligent Programming - Non-determinism: In the execution of a Prolog program
the non-determinism feature is more apparent. Although the Prolog rule that will
execute is the first one that matches the goal, we can ask for more than on solution.
Using the backtracking mechanism other valid solutions can be found. This
introduces: a) “don’t know non-determinism” implying that all possible ways to find the
solutions will be followed since the execution does not know how to find the solution,
b) “don’t care non-determinism” meaning that we just need one solution and we do
not care which solution is that among the many that exists.

3. Conclusions
We have presented our approach in teaching an LP course based on a student model that
takes into account the mind-set developed through earlier courses on imperative
programming. We classified the misconceptions in several categories and found examples
that are used in teaching in order to facilitate the in-depth understanding of Prolog. The final
questionnaire handed in to students and the answers returned show that Group A (in which
we apply our teaching methodology) outperforms Group B (which is taught through the
standard textbook). The programming skills acquired from students in Group A match our
initial aims for being able to cope with intelligent systems programming, something that is
demonstrated when they enrol in the Artificial Intelligence course later in their studies. There
is a number of students' wrong ideas that proved resistant to our didactic activity since their
presence was also apparent after the whole course of study and the evaluation of the final
questionnaire. These are connected mainly with the referential transparency of the logical
variable and the ability of using predicate parameters in multi I/O format.
Based on the first results there is an experimental confirmation that such teaching approach
is beneficial in helping students learn logic programming. Future work will require long test
beds to formally validate our experimental-empirical results, by gathering data from students
and educators in multiple institutions and bringing these together for analysis.

References
1 Joint ACM/IEEE Task Force, Computing Curricula, 2001
2 P.Kefalas, A.Sotiriadou, Logic & Sets in Computer Science Curriculum, Proceedings of the 2nd

Panhellenic Logic Symposium, 191-196, Delphi, 1999
3 B.S.Bloom., D.Krathwohl. Taxonomy of Educational Objectives: The Classification of Educational

Goals, by a committee of college and university examiners. Handbook I: Cognitive Domain. New
York, Longmans, Green, 1956.

4 N.Jackson, Programme Specifications and its role in promoting an outcomes model of learning,
Active learning in Higher Education, 132-151, 2000

5 P.Szeredi, Teaching Logic Programming at the Budapest University of Technology, First
International Workshop on Teaching Logic Programming – TeachLP, 2004

6 H.Christiansen, Prolog as Description and Implementation Language in Computer Science
Teaching, First International Workshop on Teaching Logic Programming – TeachLP, 2004

7 I.Bratko, Prolog Programming for Artificial Intelligence, Addison-Wesley/Pearson Education, 3rd
edition, 2001

Proceedings of the
Informatics Education Europe II Conference
IEEII 2007

143

© South-East European Research Center
(SEERC)

8 M. Ben-Ari, Constructivism in Computer Science Education, ACM SIGCSE-Bulletin, Vol.30, Issue
1, 257 – 261, 1998

9 J. C. Spohrer, E. Soloway, Novice mistakes: are the folk wisdoms correct?, Communications of
the ACM, Vol. 29, Issue 7, 624-632, 1986

10 C. Holmboe, A Cognitive Framework for Knowledge in Informatics:The Case of Object-Orientation,
Proceedings of the 4th annual SIGCSE/SIGCUE ITiCSE ‘99 (Cracow, Poland), 17-20, ACM Press,
1999

11 M.Hristova, A.Misra, M.Rutter, R.Mercuri, “Identifying and correcting Java programming errors for
introductory computer science students,” Proceedings of the 34th SIGCSE Technical symposium
on Computer science education, Reno, Navada, USA, ACM Press, 2003

12 S. Madison, G. Gifford “Modular Programming: Novice Misconceptions”, Journal of Research on
Technology in Education Vol. 34, No 3, 217-229, 2003.

13 A.N.Kumar, Prolog for imperative programmers, Journal of Computing Sciences in Colleges
archive, Vol. 17, Issue 6, 167–181, 2002

Proceedings of the
Informatics Education Europe II Conference
IEEII 2007

144

© South-East European Research Center
(SEERC)

