
Proceedings of the
Informatics Education Europe II Conference
IEEII 2007

266

© South-East European Research Center
(SEERC)

Pedagogical Considerations in Courseware
Development: Supporting School “Comeback”
Thanos Hatziapostolou1, Iraklis Paraskakis2
1City College, 13 Tsimiski Str, Thessaloniki, Greece, a.hatziapostolou@city.academic.gr
2SEERC, 17 Mitropoleos Str, Thessaloniki, Greece, iparaskakis@seerc.info

Distance learning has reached a sufficient level of maturity that it has made it
acceptable. Online teaching environments, multimedia educational systems and
numerous forms of technology allow distance learners to engage in the learning
process. However, adult students who are not very familiar with technology and have
been away from school for many years may still experience difficulties especially
during the beginning of their studies. This paper describes the design and
development of courseware for an introductory course for a distance learning
undergraduate computer science program. It discusses the pedagogical strategies
and design decisions for providing sufficient and efficient support as well as
instructional activities that can engage and motivate the novice learner. It proceeds by
presenting the individual components of the courseware and how the design
strategies were incorporated and finally it presents the architecture and technologies
that were used for the development of the learning environment.

Keywords
Adult learning, distance learning, lifelong learning, courseware development

1. Introduction
In today’s knowledge-based economy lifelong learning and continuous update of knowledge
and skills is instrumental. One of the most established methods supporting lifelong learning is
distance learning. Despite the advances in our understanding of distance learning as well as
advances in ICT supporting and facilitating this mode of instruction, certain challenges,
especially at learner’s start-up stage, still pertain. A recent study [1] that has been conducted
at the Hellenic Open University (HOU) concerning student dropout rates and dropout causes
of the distance learning undergraduate Computer Science programme, identified the
following as primary challenges facing adult distance learning start-ups:

1. lack of time devoted to their studies
2. engaging back in the learning process
3. basic skills in using ICT

HOU in its attempt to assist the students’ learning process decided to introduce a self-
learning foundation course called ‘Introduction to Computer Science’ (PLH0). PLH0
comprises of numerous different components that deal with topics that are required by the
HOU distance learning undergraduate CS programme. These topics range from simple use
of ICT tools to essential problem solving skills, as well as, some basic mathematics. HOU
also specified that the courseware material of the PLH0 foundation course had to adhere to
the following requirements:

Proceedings of the
Informatics Education Europe II Conference
IEEII 2007

267

© South-East European Research Center
(SEERC)

• the courseware should execute from a CD-Rom
• simple technologies should be used for the development of the educational material
• interactive elements should be used whenever appropriate
• self-assessment mechanisms should allow students evaluate their understanding
• practical exercises should be provided in order for students to develop skills
• the interface should be easy to learn and use

Within this context the courseware presented in this paper deals with the component of the
PLH0 course that discusses the issues of problem-solving, algorithmic thinking and principles
of structured programming. In particular, this paper discusses how challenges 2 and 3 can be
tackled by presenting the design principles, implementation issues and the pedagogy in
developing a courseware supporting entry level students enrolled for the HOU Computer
Science programme.

2. Pedagogical Foundations
PLH0 is a resource-based, self-paced course without the involvement and support of an
instructor. As a result, the courseware has to provide a rich and creative learner-centred
environment that fosters effective learning by providing the necessary support to the learners
and keeping them engaged and interested. At the same time though, the learning
environment has to be user-friendly enough to keep the learner from becoming overwhelmed
and frustrated in a way that interferes with learning. Since no assumptions can be made
about students’ knowledge, skills, organizational abilities and commitment, a scaffolding
approach should be employed in order to assist learners in interacting with the material at
hand, and thus, facilitating its assimilation and accommodation.

Scaffolding is an instructional strategy that dates back to the mid 1970s. The term was
initially used by Wood, Bruner and Ross [2], as a metaphor to describe the kind of teaching
that recognizes that learning always proceeds from the known to the new and builds on this
connection by providing a scaffold to effectively support the construction of knowledge [3].
Over the years however, the term scaffolding has been widely used to describe effective
learning support [3]. McLoughlin and Marshall in [5] define scaffolding as “a form of
assistance provided to a learner by a more capable teacher or peer that helps the learners
perform a task that would normally not be possible to accomplish by working independently”.
In a distance learning setting scaffolding describes the learning environment’s design
features and support services that the learner needs and several studies [4, 5, 6, 7, 8] have
been conducted for the identification and categorization of distance learning instructional
scaffolds.

Identifying the scaffolding strategies that would address the learner support needs was the
first step for the development of the PLH0 courseware. The diversity of the students’
background knowledge and skills of the HOU CS programme in relation with the
requirements set by the HOU led to the following scaffolding strategies:

• provide content and resources in a variety of ways
• support comprehension through guidance and assistance
• provide and balance learner control and autonomy
• support learners in using available tools and resources
• minimize cognitive overload

Proceedings of the
Informatics Education Europe II Conference
IEEII 2007

268

© South-East European Research Center
(SEERC)

The next step was to determine how these scaffold strategies will best be implemented in
software and how they can be integrated in the learning environment.

3. PLH0: Design and Development Issues
Constructing the PLH0 courseware required designing and developing a range of
components. These components should be able to deliver instruction, facilitate interaction,
enhance the quality of learning, and most of all support the learner. This section presents the
individual components that are included in the PLH0 courseware and describes and how
they integrate and support the identified scaffolding strategies.

3.1 Interactive Learning Activities

Interactivity is defined as the instructional strategy that provides opportunities for the student
to participate actively in the learning activity [9]. Research has shown that learners learn
most effectively when they are actively engaged in learning, as opposed to passively reading
or listening [10]. The PLH0 courseware contains numerous interactive elements that aim to
actively engage students in the learning process and to support deeper and more meaningful
learner-centered learning. These interactive elements include pop-up boxes, multiple-choice
quizzes (explained in section 4.2) and user-controlled animations.

3.1.1 Supporting Comprehension with Pop-up Boxes

Pop-up boxes provide students the ability to view explanatory or complementary pieces of
information which can consist of descriptive text and/or images. While there exist numerous
pop-up boxes throughout the courseware in order to facilitate the interaction with the system
and the presentation of the material, there are two categories of pop-up boxes that are
systematically used: code pop-up boxes and term pop-up boxes.

Code pop-up boxes

Code pop-up boxes support comprehension by providing explanations on any program or
code fragment that is included in the courseware. They are invoked simply by positioning the
mouse pointer over any line within a program’s code and are deactivated when the mouse
pointer is removed. The line or block of lines of code that the explanation pop-up box is
referring to is/are highlighted in order to assist the student in relating the explanation with the
code (figure 1). The purpose of providing detailed explanations for the code is twofold: first,
to assist the learners in better understanding the specific commands used and second, to
present the algorithmic approach of the solution or parts of the solution. The diversity of the
background knowledge of the students though, required to discover a way that facilitates any
type of learner. More specifically, some students may be able to understand a program
without the detailed clarifications provided in the pop-up boxes while some other students
may need line-by-line detailed explanations. If these additional clarifications were included
within the reading material, fast-learners would have to read long, tiring and possibly
uninteresting information. Providing the choice to dynamically invoke the explanations
constitutes the best possible solution for any type of learner.

Proceedings of the
Informatics Education Europe II Conference
IEEII 2007

269

© South-East European Research Center
(SEERC)

Figure 1 A code pop-up box providing explanatory information for the highlighted code.

Term pop-up boxes

Term pop-up boxes include definitions and explanations of important terms and concepts
(e.g. compiler, high-level language, control structure, data structure etc). As the material
progresses and more terms and concepts are introduced building on previous knowledge,
some students may need a quick refresh of previously explained terms. This type of pop-up
boxes (figure 2) provide students with an efficient and very quick method of reviewing the
definition of a term or a concept, simply by positioning the mouse pointer over the name of
the term without having to spent to navigate and find the section that the term was first
explained. Thus, comprehension of studied material is supported by providing assistance
while at the same time operational conflicts and frustration are minimized.

Figure 2 A term pop-up box that provides the definition of a term

3.1.2 Animations

Teaching and learning of algorithmic problem-solving is a difficult task since it is an abstract
activity [11]. The steps of an algorithm that solve a specific problem may include branching
and looping that may impose conceptual difficulties to the students. An instructional method
that can greatly enhance the understanding of these conceptual difficulties is visualization
and more specifically animations. The PLH0 courseware includes very carefully designed
animations that aim to augment the algorithmic thinking approach and support the
comprehension of the concepts that are involved. Each animation (figure 3) includes two
views of an algorithm (pseudocode and flowchart), the contents of the memory, the output of

Proceedings of the
Informatics Education Europe II Conference
IEEII 2007

270

© South-East European Research Center
(SEERC)

the algorithm and textual explanations. Students can control the pace of the animation and
see the execution of the algorithm on a step-by-step basis. More specifically, at each step of
the execution, the student is presented with a clear relationship between the two views of the
algorithm, the changes of the contents of the memory, the output of the specific step and
finally, a detailed explanation.

Figure 3 An animation consisting of four different but related elements.

3.2 Self-Assessment Methods

Assessment, both formal and informal, is an important part in an education system since it
can provide feedback on teaching and learning, and diagnose learner strengths and
weaknesses [12]. Well-designed formative and summative assessment methods, directly
connected with the learning outcomes, with timely and constructive feedback, can improve
student learning and enhance the educational experience [12]. The PLH0 courseware
provides students with the ability to evaluate their understanding of the studied material and
their overall progress through two types of self-assessment: practical exercises and
interactive quizzes.

3.2.1 Practical exercises

Practical exercises are a form of formative self-assessment method. For every important
concept that is examined, there exists at least one related practical exercise that aims to
assist students in realizing their critical understanding of the concept. These continuous
exercises which provide the opportunity for hands-on experimentation are divided into two
types:

• The first type of exercises displays to the learners an algorithm (flowchart or

pseudocode) or a piece of source code and asks them to interpret and explain what is
being carried out.

• The second type of exercises, building on the first type, goes one step further by asking
learners to develop a solution and implement a program that corresponds to a given
problem description.

Proceedings of the
Informatics Education Europe II Conference
IEEII 2007

271

© South-East European Research Center
(SEERC)

Finally, every exercise is accompanied by a model solution and a detailed explanation.
These are included for two important reasons: first, to provide learners with the opportunity to
have immediate feedback by comparing their solution with the model answer and second, to
assist students who encounter difficulties at a certain point of their attempted solution and
wish to overcome it by taking a glimpse of the model answer.

3.2.2 Interactive Quizzes

The second type of self-assessment method of PLH0 is the use of interactive quizzes. They
can be considered as a summative form of assessment since they can be found the end of
each chapter. Each quiz consists of fifteen multiple-choice questions which are gradually
advancing in level of difficulty. These quizzes however, do not have the formal meaning of
the term i.e. they do not provide an assessment mechanism by counting the correct
responses and presenting a score to the students. Rather than this, they are mostly used as
an instruction tool since the answers to a multiple choice question include fine differences of
the concept that is being examined. As a result, the quizzes provide the opportunity to
students to further enhance their understanding of a concept by exploring these fine
differences. Immediate, constructive feedback which pinpoints and explains these fine
differences is provided whenever a wrong answer is selected. Last but not least, while
students are allowed to answer a question more than once, the number of unsuccessful
attempts is recorded. This rationale is conveyed to the students by explicitly visualizing
unsuccessful attempts as depicted in figure 4.

Figure 4 System’s response to a multiple choice question.

3.3 Minimizing Overload through Real-Life Examples

Numerous textbooks that teach programming concepts and algorithmic thinking utilize
mathematical examples. While it is true that mathematics and geometry present endless
possibilities for examples appropriate for developing algorithmic thinking, real-life examples
help to set the stage for easier and more stimulating problem-solving. When concepts are
presented in the context of real-life situations, students become more interested, engage
better in the learning process and thus, acquire and retain information most effectively [13]
Furthermore, the use of practical, everyday scenarios in order to explain concepts allows
adult learners to build from background knowledge and thus avoiding cognitive overload. In
the PLH0 courseware, algorithmic problem-solving concepts such as selection, repetition,
subprograms etc. are explained and demonstrated through examples and case studies
related to everyday activities such as banking transactions, payment of bills, etc. Adult
learners should relate easier to these real-world examples minimizing in this manner a

Proceedings of the
Informatics Education Europe II Conference
IEEII 2007

272

© South-East European Research Center
(SEERC)

possible cognitive overload that would exist if classic examples where used from the areas of
mathematics and geometry.

3.4 Providing Multiple Representations

Learning with multiple representations has been recognised as a potentially powerful way of
facilitating understanding [14]. Learners, for many reasons, have vastly different learning
styles and instructional material must take into consideration different learning styles and the
possibilities offered in and by the multiple representation of concepts [15]. Furthermore,
students learn a complex concept if they experience the information in various formats [16].
As a result, multiple representations can complement each other, resulting in a more
complete representation of an application domain than a single source of information does
[17].

Algorithmic problem-solving structures and programming concepts can be presented and
explained through multiple representations: in textual format, with a diagram (e.g. flowchart),
with pseudocode or with a program. In order to support the learners and to allow them to
produce more complete images of the concept being examined, the PLH0 courseware
includes multiple representations of concepts (figure 5).

Figure 5 Multiple representations of a selection structure.

3.5 Interface Design

An effective interface design sets the stage for meaningful learning to take place and
motivates the learner to stay engaged [18]. The PLH0 courseware was very carefully
designed in order to minimize operational conflicts and reduce cognitive overload. Emphasis
was given to the following three aspects:

Navigation: An intuitive and unambiguous navigational module offers learners with the
freedom of choosing their own path through the content and thus providing control and
autonomy, but also provides a clear and well-defined structure to those learners who need
support.

Content Organization: The material is organized into logical teaching units with clearly
defined aims, learning outcomes and prerequisites, in order for the students to have an

Proceedings of the
Informatics Education Europe II Conference
IEEII 2007

273

© South-East European Research Center
(SEERC)

unambiguous picture of each learning unit in terms of what is included, what is anticipated to
be gained after completion and previous knowledge that is required.

Layout: A hierarchical organization of the teaching unit and a consistent pattern of the layout
which dynamically adapts to the user’s monitor settings, ensure maximum functionality and
legibility.

4. Technologies Used
Many technologies are available for developing interactive educational material, some of
which are very powerful and can produce a highly interactive and visually appealing
environment. However, based on the specifications that were set by the HOU and discussed
in section 1, it was decided that the most appropriate approach was to develop a web-based
environment with HTML documents. The popularity of the Web means that many students
may already know how to use a web browser but even if they don’t, the simple and intuitive
environment of a web browser ensures that the effort involved for understanding the interface
is kept to minimum. Additional technologies that were used for the development of the
courseware include Javascript, a simple, powerful, fast, efficient and yet inexpensive
technology, that adds dynamicity and interactivity to HTML documents, and Cascading Style
Sheets (CSS), a stylesheet language that describes the presentation of the content and
ensures consistency.

5. Conclusions
This paper describes the pedagogical issues and the design strategies for the development
of distance learning courseware. Targeted to adult learners of the HOU distance learning CS
programme, who are deprived of or have very little previous experience in computer use, and
have been away from school for quite a few years, the developed courseware attempts to
facilitate students’ comeback to the educational process. Based on scaffolding strategies, the
paper describes the learning environment and the individual components of the courseware
that address the support needs of the learners. The courseware is currently being deployed
at the HOU and is to be used with students in 2008. We plan to carry out an evaluation study
of the courseware to measure its effectiveness both in terms of pedagogy and skill
development as well as acceptance level by the students.

References
1 M. Xenos, C. Pierrakeas and P. Pintelas, A Survey on Student Dropout Rates and Dropout Causes

Concerning the Students in the Course of Informatics of the Hellenic Open University, Computers
and Education Journal, 39(2002) pp 361-377

2 Wood, D., Bruner, J. S., and Ross, G. (1976). The Role of Tutoring in Problem Solving. Journal of
Child Psychology and Psychiatry, 17, 89 – 100

3 Wilhem, J., Baker, T., Dube, J., Strategic Reading: Guiding Students to Lifelong Literacy,
Heinemann (Division of Reed Elsevier Inc.), New Hampshire, USA, 2001

4 McLoughlin, C., Learner Support in Distance and Networked Learning Environments: Ten
Dimensions for Successful Design, Distance Education, Vol. 23, No. 2, 2002

5 McLoughlin, C., Marshall, L., Scaffolding: A model for learner support in an online teaching
environment, Proceedings of the Teaching and Learning Forum, 2000

6 Ludwig-Hardman, S., Dunlap, J. C., Learner Support Services for Online Students: Scaffolding for
success, International Review of Research in Open and Distance Learning, Volume 4, Number 1,
2003

Proceedings of the
Informatics Education Europe II Conference
IEEII 2007

274

© South-East European Research Center
(SEERC)

7 Oliver, R., Exploring Strategies for Online Teaching and Learning, Distance Education, 20(2), pp.
240-254, 1999

8 Kao, M., Lehman, J., Cennamo, K., Scaffolding in Hypermedia Assisted Instruction: An example of
integration, Paper presented at the convention of the Association for Educational Communications
and Technology, ERIC, 1996

9 Hannafin, M., Hill, J. R., Oliver, K., Glazer, E., Sharma, P., Cognitive and Learning Factors in Web-
Based Distance Learning Environments, Handbook of Distance Education, pp.245-272, IEA
Publishers, 2003

10 Brooks, D. W., Web-teaching: A guide to designing interactive teaching for the World Wide Web,
Plenum Press, New York, 1997

11 Pareja-Flores, C., Velázquez-Iturbide, J. Á., Program Execution and Visualization on the Web,
Web-based Education: Learning from Experience, pp. 165-188, Information Science Publishing,
2003

12 Born, A. D., Web-Based Student Assessment, Web-based Education: Learning from Experience,
pp. 165-188, Information Science Publishing, 2003

13 Willoughby, J., Finding Science in the Real World, Glencoe/McGraw-Hill, New York, 2000

14 Ainsworth, S., Van Labeke, N., Using a Multi-Representational Design Framework to Develop and

Evaluate a Dynamic Simulation Environment, Proceedings of the International Workshop on
Dynamic Visualizations and Learning. Tübingen, 2002

15 Sankey, M., Multiple Representations in Instructional Material: An Issue of Literacy, Proceedings of
Educause, Australia, 2003

16 Jacobson, M. J., Spiro, R. J., Hypertext learning environments, cognitive flexibility, and the transfer
of complex knowledge: An empirical investigation, Journal of Educational Computing Research, 12,
301–333

17 Bodemer, D., Ploetzner, R., Encouraging the Active Integration of Information During Learning with
Multiple and Interactive Representations’, Proceedings of the International Workshop on Dynamic
Visualizations and Learning, Tübingen, 2002

18 Klassen J., Preproduction Stages in Multimedia Development: Conceptualization and Scriptwriting,
Web-based Education: Learning from Experience, pp. 90-104, Information Science Publishing,
2003

