
Proceedings of the
Informatics Education Europe II Conference
IEEII 2007

370

© South-East European Research Center
(SEERC)

A Framework for the Automated Assessment
of Consistency Between Code and Design
Alan Hayes1, Pete Thomas2 , Neil Smith3, Kevin Waugh4

1University of Wales Newport, Newport NP20 5XR,United Kingdom, alan.hayes@newport.ac.uk
2Open University, Milton Keynes UK MK7, United Kingdom, p.g.thomas@open.a c.uk
3Open University, Milton Keynes UK MK7, United Kingdom, n.smith@open.a c.uk
4Open University, Milton Keynes UK MK7, United Kingdom, k.g.waugh@open.a c.uk

In this paper, we present an investigation into the development of a framework for the
automatic grading (marking) of student submitted course work. We discuss this
framework, its structure and its subsystems. Our context is the consideration of the
case where undergraduate Computing students submit coursework that consists of
two components: a design (using the UML methodology) and implementation (using
the Java programming language). The focus of our framework is upon the consistency
between the implementation and design. We discuss its context and development and
highlight how we can infer structure from the student submission and use this to
inform the assessment process. We define consistency from the viewpoint of a design
and its implementation are two different representations of the same artefact. The
design (in diagrammatic format) is viewed as prescribing the structure and function
contained within the implementation, whilst the implementation (source code) is
viewed as implementing the design whilst adhering to its specified structure and
function. We consider consistency to be important as it enables the student to
demonstrate adherence to the development life-cycle. In making it explicit that we are
grading a submission for consistency we wish to provide feedback that will engender
within the student an engineering approach to the development of a software product.

Keywords
Computer Science Education; Automated Assessment

1. Introduction
In this paper, we present an investigation into the development of a framework for the
automatic grading (marking) of student submitted course work. Our context is the
consideration of the case where the student submission consists of two components: a
design (using the UML methodology) and source code (using the Java programming
language). The focus of our framework is upon the consistency between the student code
and design. We consider consistency to be important as it enables the student to
demonstrate adherence to the development life-cycle. In grading a submission for
consistency we wish to provide feedback that will engender within the student an engineering
approach to the development of a software product. The course that students are studying
and consequently the coursework upon which we will apply our developed framework is a
B.Sc.(hons) Computing programme. In particular, the module that we are considering
applying our technique to is that delivered to year 2 undergraduate students in the subject
area of object oriented development.

Proceedings of the
Informatics Education Europe II Conference
IEEII 2007

371

© South-East European Research Center
(SEERC)

Our interest in this area has arisen from work in the automated assessment of free-form,
diagrams submitted by students as a component of their assignment. Work in this field
focuses on both fully automated [1, 2] and semi-automated [5, 6] assessment systems. In
both contexts, student-submitted diagrams are often imprecise and contain missing or
extraneous data. Often such data promulgates into the student code and it is against this
background that we are developing our automated assessment framework. Additionally,
work in the automated assessment of student source code [3, 4] led to our consideration of
the interface of the design and code areas and the implications for the automated
assessment process. Consequently, our framework considers the automation of the
assessment of student coursework for consistency between the code and design.

The remainder of this paper presents the context of our framework followed by discussing
how we can infer design and code structure from the student submission. We then present a
model for how this inferred structure can be used to aid the automated assessment process
before describing how we currently intend to apply this framework to our undergraduate
scheme.

2. Automated Marking - Context
The context of the approach we have taken to the automated assessment of the student
submission is illustrated in figure 1 below. The student submission consists of two separate
deliverables: a design and an implementation.

Figure 1: Initial Context of an Automated Marking System

If we treat the two student submissions as disjunctive non-related deliverables it would be
possible to divide the automated marking system into two distinct components, one focusing
on the design and one on the implementation. This approach is illustrated in figure 2.
However, such an approach does not lend itself to focusing upon the interface between the
code and the design. When considering the automation of the assessment process for
consistency at the interface there needs to be a link between the structure of the student
code and that of the accompanying design. However, a consequence of a disjunctive
approach is that a mark scheme that focuses upon consistency between the student design
and student code may not be supplied by the tutor. This particularly may be the case when,

Student
design

Student
code

Automated
Marking
System

Tutor
Supplied
Design with
mark
scheme

Tutor
Supplied
Code with
mark
scheme

Grade for
Design

Grade for
Code

Proceedings of the
Informatics Education Europe II Conference
IEEII 2007

372

© South-East European Research Center
(SEERC)

for example, the submission date is different for each deliverable to allow for formative
feedback to be given on the design before the student embarks upon the implementation
stage or when the design and implementation assignments are contained within two
separately delivered modules (integrative assignment). However, it remains the case that an
assignment comprising of an integrated design and implementation needs the student to
produce more than just a design and an implementation. Consequently, our proposed
framework looks at enhancing the model illustrated in figure 2 with a view to providing
support for the automated assessment process when the context is grading for consistency
between the two separate deliverables of a design and an implementation

Figure 2: A system that marks the design and the code disjunctively

2.1 Inferred Structures

When the focus of the assignment is that of consistency between the source code submitted
and its accompanying design there are several marking models that emerge for the
automated tool. Focusing upon the student submission, with an appropriate tool, it would be
possible to imagine forward engineering the student’s design to produce an idealised
structure for the submitted student code. It is also possible to imagine an appropriate tool
that would reverse engineer the student code and produce an idealised structure for the
student design. Consequently an automated marking tool has the possibility of generating
two further enhancements to that illustrated in Figure 1. This is illustrated in Figures 3 and 4.

Tutor
Supplied
Code with
mark
scheme

Student
design

Tutor
Supplied
Design
with mark
scheme

Code
Marking

Design
Marking

Student
code

Grade for
design

Grade for
Code

Proceedings of the
Informatics Education Europe II Conference
IEEII 2007

373

© South-East European Research Center
(SEERC)

Figure 3: Forward Engineer the Design to produce the inferred code structure

Figure 4: Reverse engineer the code to produce the inferred design structure

2.2 Inferred Structures and the Assessment Process

Having created the inferred design and the inferred code it would be possible to use them as
input into the automated marking system. It should be noted that the inferred models do not
contain any marking allocation as they have been derived from the student submission. An
automated marking system could use these inferred structures to both confirm consistencies
and identify inconsistencies within the student submission. Such an approach leads to three
possible models. Each model offers a different perspective upon the student submission and
consequently provides an automated marking system with the potential of utilising each
resultant model to analyse and determine a grade for the student submission.
The first step is to compare the submitted design and the inferred design structure. We refer
to this as a design-centric model. Discrepancies identified in the comparison could be used
to identify possible inconsistencies between the student code and the accompanying student
design. Hence, one model that focuses upon consistency between the student code and the
student design would be for the automated marking system to take as its input the student
design and the inferred design structure. This is illustrated in Figure 5.

The second model is to compare the student code with the inferred code structure. We refer
to this as a code-centric model. Discrepancies identified in the comparison could be used to
identify possible inconsistencies between the student code and the inferred code structure.
This is illustrated in figure 6.

Student
design

Student
code

Reverse
engineer

Inferred Design
Structure

Forward
Engineer

Student
design

Inferred Code
Structure

Student
Code

Proceedings of the
Informatics Education Europe II Conference
IEEII 2007

374

© South-East European Research Center
(SEERC)

Figure 5: A model that focuses upon comparing the student design with the inferred design

structure

Figure 6: A model that focuses upon comparing the student code with the inferred structure.

Ideally the results from adopting these two approaches would be identical. However, this
may not be the case. The imprecise nature of the student submission for both the code and
the design could lead to ambiguities in inconsistencies identified. For example, erroneous or
missing data in the student design will be reflected in the derived inferred code structure.
This erroneous data may not be reflected in the student code. Similarly, erroneous data
contained in the student code will be reflected in the inferred design structure. This
erroneous data may not be reflected in the student design. It is therefore, possible to
envisage a third model that triangulates between the two models identified (figure 7).

Such triangulation would enhance the model by providing the possibility of two benefits. The
first is that of confirmation of consistencies identified between the student code and the
student design. For example, a component in the student submission identified as being
consistent when comparing the student design with the inferred design that is also identified
as being consistent when comparing the student code with the inferred code leads to a high
degree of confidence in concluding that the component has been designed and implemented
consistently by the student.

Compare
Code Student

Code
Inferred
Code
Structure

Code-centric discrepancies
between the student code and
the inferred code structure

Compare
Designs Student

design
Inferred
Design
Structure

Design-centric discrepancies
between the student design and
the inferred design structure

Proceedings of the
Informatics Education Europe II Conference
IEEII 2007

375

© South-East European Research Center
(SEERC)

Figure 7: Triangulate the Assessment of the student submission with both the inferred code

structure and inferred design structure

The second benefit offered by triangulation is that of confirmation of inconsistencies identified
between the student design and the student code. For example, a component identified as
being inconsistent in the student submission when comparing the student design with the
inferred design that is also identified as being inconsistent when comparing the student code
with the inferred code leads to a high degree of confidence in concluding that the component
has been designed and implemented inconsistently by the student.

There remains one further case to consider under the triangulation model. It is conceivable
that inconsistencies identified when comparing the student code with the inferred code are
not identified when the student design is compared with the inferred design. It is possible to
imagine, with an appropriate tool, that the triangulation model would facilitate some resolving
of this type of ambiguity.

3 Experimentation
We are currently conducting experimentation in the automated assessment of student
submitted course work using the techniques and models illustrated above. We are
developing our system using data collected from work submitted for assessment by
undergraduate computing students. We have refined our model to include the use of a tutor-
supplied mark scheme that attributes marks for consistency between the source code and
the design. Such a marking scheme would guide the automated marking system in how
marks are to be awarded/deducted for consistencies/inconsistencies identified when
comparing the student submission with the inferred models. This is illustrated in figure 8.

Triangulate

Student
Code

Inferred
Code
Structure

Student
design

Inferred
Design
Structure

Discrepancies between
the submitted design and
its implementation

Proceedings of the
Informatics Education Europe II Conference
IEEII 2007

376

© South-East European Research Center
(SEERC)

Figure 8: A model that requires the tutor to supply a marking scheme that focuses upon
consistency

However, we have found that within such a model there remains a need to be able to
compare the student submitted code with the student submitted design. We are adopting the
above approach of using reverse and forward engineering techniques to facilitate traversal
between the student code and student design to produce the inferred code structure and the
inferred design structure. We are developing a system that uses the tutor supplied mark
scheme as the mechanism for allocating a grade. In this context our automated marking
system analyses the student design and compares this with the inferred design structure
generated from the student code and the tutor supplied marking scheme. This is illustrated in
figure 9.

We are currently at the data-collection stage of this project. We have designed the integrative
assignment and distributed it to the student cohort. We have produced the marking scheme
and identified the UML design and Java implementation tools. Once this data has been
collected we intend to instantiate our framework and conduct further experimentation. This
will consist of using one of the forward and reverse engineering tools commercially available,
for example those features found in Borland’s JBuilder Enterprise, and using the work on the
assessment of diagrams in [1] to implement the model in figure 9.

4. Conclusion

We have presented and discussed our framework for the development of an automated
assessment tool that focuses upon consistency between the source code and the design. An
integral component to our approach is the adoption of reverse and forward engineering
techniques to produce an inferred structure from the student submission. We have discussed
how such inferred structures can be used to support the automated assessment process. We
have discussed and illustrated the need for an assessment tool to triangulate between the
inferred structures and a tutor-supplied marking scheme. We have described the
experimentation and development that we are currently undertaking to utilise these models in
the development of our assessment framework.

Automated
marking
system

Student
Design

Student
Code

Tutor
supplied
mark scheme
focusing on
consistency

Grade for consistency
between code, design and
model answer

Proceedings of the
Informatics Education Europe II Conference
IEEII 2007

377

© South-East European Research Center
(SEERC)

Figure 9: A model that marks the student submitted design by using input from the student
design and a tutor-supplied mark scheme focusing on consistency

5. Future Work
It is anticipated that the resulting automated marking system will need to traverse easily
between source code and design. Further work needs to take place in ensuring that the data
structure and format adopted by the tool to represent the design would be the same as that
used to represent the code. This is because the models require traversal and comparison
between structures contained within the student code and those contained within the student
design. Additionally, we intend to instantiate our framework and consequently develop an
automated marking tool. We intend to exercise the resultant system against the student data
that we are in the process of collating and subsequently publish our results. In this context
our results will constitute a comparison between the grades produced by our assessment
system and those generated by the (human) marking team.

References

1 Thomas, P., Waugh K. and Smith N., (2005) Experiments in the Automated Marking of ER-

Diagrams. In Proceedings of 10th Annual Conference on Innovation and Technology in Computer
Science Education (ITiCSE 2005) (Lisbon, Portugal, June 27-29, 2005).

2 Smith N., Thomas, P. and Waugh K.(2004) Interpreting Imprecise Diagrams. In Proceedings of the
Third International Conference in Theory and Applications of Diagrams. March 22-24, Cambridge,
UK. Springer Lecture Notes in Computer Science, eds: Alan Blackwell, Kim Marriott, Atsushi
Shimomnja, 2980, 239-241. ISBN 3-540-21268-X.

3 English, J. (2004) Automated Assessment of GUI Programs using JEWL . In Proceedings of the
9th annual SIGCSE conference on Innovation and Technology in Computer Science Education
(ITiCSE ’04) (Leeds, United Kingdom, June 2004).

4 Tsintsifas, A. (2002) A Framework for the Computer Based Assessment of Diagram Based
Coursework. Ph.D. Thesis University of Nottingham, School of Computer Science and Information
Technology. March 2002.

Automated
Marking
Scheme

Student
Design

Inferred Design
Structure

Tutor
supplied
mark scheme
focusing on
consistency

Grade for Consistency
between code, design and
model answer

Proceedings of the
Informatics Education Europe II Conference
IEEII 2007

378

© South-East European Research Center
(SEERC)

5 Batmaz F. and Hinde C.(2006) A Diagram Drawing Tool for Semi-Automatic Assessment of
Conceptual Diagrams. In Proceeding s of the 10th International Conference on Computer Assisted
Assessment,(Loughborough, July 2006)

6 Tselonis C., Sargeant J and McGee M. (2005) Diagram Matching for Human-Computer
Collaborative Assessment. In Proceeding s of the 9th International Conference on Computer
Assisted Assessment, (Loughborough University July 2005).

7 Thomas, P.G., Waugh, K and Smith, N. (2007) Computer Assisted Assessment of Diagrams. In the
Proceedings of ITiCSE, 25-29 June 2007, Dundee Scotland

8 Thomas, P.G., Waugh, K, Smith, N. (2007) Learning and automatically assessing graph-based
diagrams. In the Proceedings of 14th International Conference of the Association for Learning
Technology (ALT-C), September 2007, Nottingham, UK

9 Waugh, K.G, Thomas, P.G, Smith, N. Teaching and learning applications related to the automated
interpretation of ERDs. In Proceedings of the Fifth Workshop on Teaching, Learning and
Assessment of Databases (TLAD) , July 2007, Glasgow, UK

