P Systems with String Objects and with Communication by Request

Erzsébet Csuhaj-Varjú and György Vaszil

Computer and Automation Research Institute, Hungarian Academy of Sciences, H-1111 Budapest, Kende u.13-17, Hungary

E-mail:{csuhaj,vaszil}@sztaki.hu

Outline of the talk

- P systems with string ojects and with communication by request, definitions, example
- The two different types of communication
- The power of these constructs
- Conclusions and some further research directions

P systems in general

- A (hierarchically embedded) structure of membranes containig a collection of objects which evolve and move through the regions embraced by the membranes.
- The evolution of the system corresponds to a computation.
- There are rules associated to the regions, having two basic goals: **change** the objects (**rewriting**), **move** the objects from one membrane to some other one (**communication**).

Our model

Multisets of **strings** over sets of **terminal** and **nonterminal** symbols in each membrane, processed simultaneously by context-free **rewriting**.

Special nonterminal symbols called **query symbols** associated to each membrane. **Communication requests** are initiated by the appearance of query symbols in the processed strings.

Our model (continued)

When one or more **query symbols** are **introduced in a string**, then

- the **rewriting stops** and the
- queries are satisfied by replacing the query symbols with query symbol free strings from the region indicated by the query symbol, in all possible combinations.
- If **no query symbol free string** exists in the queried **region**, then the **string** containing the query **disappears**.

The result consists of all **terminal strings** which appear in an **output membrane**.

The two types of communication

Consider the **strings** as descriptions of **simple organisms** and the **query symbols** as their **"weak points"** possibly **infected** or **attacked** by other organisms. Then:

- Communication of type "i" (infection): Copies of the communicated strings are sent, one copy also **remains in the originating region**.
- Communication of type "p" (parasitism): The communicated strings **disappear from the originating region**.

An RPC system

 $\Pi = (N \cup T \cup K, \mu, (I_1, R_1), \dots, (I_n, R_n), i_o)$

 $K = \{Q_1, \ldots, Q_n\}$ – the alphabet of **query symbols**

- I_i finite multiset of **strings** over $N \cup T$ (the initial multiset of region *i*)
- R_i finite set of (context-free) **rules** associated to region *i*, of the form $A \rightarrow \alpha$, where $A \in N, \ \alpha \in (N \cup T \cup K)^*$
- $i_o \in \{1, \dots, n\}$ the index of the **output** membrane SZTAKI - Theoretical Computer Science Research Group

Changing the objects: rewriting

$$\Pi = (N \cup T \cup K, \mu, (I_1, R_1), \dots, (I_n, R_n), i_o)$$
$$(M_1, \dots, M_n) \Rightarrow_{rew} (M'_1, \dots, M'_n)$$

1. There are **no query symbols** in the strings of M_i $M'_i = \{\{x'_1, \dots, x'_m\}\}$ where $M_i = \{\{x_1, \dots, x_m\}\}$ and either $x_j \Longrightarrow x'_j$ by applying a rule of R_i or $x'_j = x_j$.

Moving the objects: communication

 $(M_1,\ldots,M_n) \Rightarrow_{com} (M'_1,\ldots,M'_n)$

2. There are query symbols in the strings of M_i

a) the **p-communicating** variant:

$$M'_i = M_i - M^{req}_i - \{\{x \in M_i \mid |x|_K > 0\}\} + \bigcup_{x \in M_i, |x|_K > 0} Sat(x)$$
where

$$M_i^{req} = \begin{cases} \{ x \in M_i \mid |x|_K = 0 \} \}, \text{ if there is } y \in M_j, |y|_{Q_i} > 0 \\ \emptyset, \text{ otherwise.} \end{cases}$$

$$Sat(x) = \{ \{ x_1 y_{i_1} x_2 y_{i_2} \dots y_{i_t} x_{t+1} \mid x = x_1 Q_{i_1} x_2 Q_{i_2} \dots Q_{i_t} x_{t+1}, y_{i_j} \in M_{i_j} \\ |y_{i_j}|_K = 0, \ 1 \le j \le t \} \}$$

SZTAKI - Theoretical Computer Science Research Group

Moving the objects: communication

 $(M_1,\ldots,M_n) \Rightarrow_{com} (M'_1,\ldots,M'_n)$

- 2. There are query symbols in the strings
- b) the **i-communicating** variant:

$$M'_{i} = M_{i} - \{\{x \in M_{i} \mid |x|_{K} > 0\}\} + \bigcup_{x \in M_{i}, |x|_{K} > 0} Sat(x)$$

where

$$Sat(x) = \{ \{ x_1 y_{i_1} x_2 y_{i_2} \dots y_{i_t} x_{t+1} \mid x = x_1 Q_{i_1} x_2 Q_{i_2} \dots Q_{i_t} x_{t+1}, y_{i_j} \in M_{i_j} \\ |y_{i_j}|_K = 0, \ 1 \le j \le t \} \}$$

The generated language

$$\Pi = (N \cup K \cup T, \mu, (I_1, R_1), \dots, (I_n, R_n), i_o)$$
$$L_X(\Pi) = \{x \in T^* \mid (I_1, \dots, I_n) \Rightarrow^* (M'_1, \dots, M'_n) \text{ and } x \in M'_{i_o}, \}$$

for $X \in \{p, i\}$.

The language classes: $pRPC_nCF$, $iRPC_nCF$

Example: A system with one membrane

$$\Pi = (\{S, A\} \cup \{Q_1\} \cup \{a, b\}, [], (\{\{S, A, b\}\}, R_1), 1), \text{ with}$$
$$R_1 = \{S \to aSa, S \to Q_1, A \to A, A \to Q_1Q_1\}$$

$$\begin{split} &[S, A, b] \Rightarrow \\ & \mathsf{a}) \dots \Rightarrow [a^n Q_1 a^n, Q_1 Q_1, b] \Rightarrow [a^n b a^n, b b] \\ & \mathsf{b}) \dots \Rightarrow [a^n Q_1 a^n, A, b] \Rightarrow [a^n A a^n, a^n b a^n] \Rightarrow \dots \Rightarrow [a^n Q_1 Q_1 a^n, a^n b a^n] \Rightarrow \\ & [a^n a^n b a^n a^n b a^n a^n] \\ & \mathsf{c}) \dots \Rightarrow [a^n S a^n, Q_1 Q_1, b] \Rightarrow [a^n S a^n a^n S a^n, a^n S a^n b, b a^n S a^n, b b] \Rightarrow \dots \Rightarrow \\ & [\dots \alpha b b \beta \dots] \end{split}$$

Example: A system with one membrane

$$L(\Pi) \cap a^{+}ba^{+}ba^{+} = \{a^{2n}ba^{2n}ba^{2n} \mid n \ge 1\}$$

thus, $L(\Pi) \not\in CF$

$$pRPC_1CF - CF \neq \emptyset$$

[Csuhaj-Varjú, Pāun, Vaszil, 2006]

Tissue-like P systems and "standard" P systems

• <u>Tissue-like P systems</u>: **Direct communication** is possible between **any two regions** of the system.

[Csuhaj-Varjú, Pāun, Vaszil, 2006]

• <u>Standard P systems</u>: Direct **communication** is possible between **neighboring regions** only.

Tissue-like P systems with string objects and communication by request

 $CF \subset (tissue)XRPC_1CF \subseteq (tissue)iRPC_6CF =$ $(tissue)pRPC_8CF = (tissue)XRPC_*CF = RE,$

for $X \in \{i, p\}$.

[Csuhaj-Varjú, Pāun, Vaszil, 2006]

In the following we will study the **standard variant**, when communication is only possible between **neighboring regions**.

The notation $pRPC_nCF$, $iRPC_nCF$ will be used to denote the corresponding language classes.

The relationship of systems with the different types of communication

The proof of $iRPC_nCF \subseteq pRPC_{3n}CF$

SZTAKI - Theoretical Computer Science Research Group

The proof of $iRPC_nCF \subseteq pRPC_{3n}CF$ continued

We also add

the strings: S_1, S_2 , and the rules: $S_1 \rightarrow Q_i, S_2 \rightarrow Q_{n+i}$

to each "original" region *i*.

The first rule "saves a copy" of all strings, the second one adds S_1, S_2 again.

```
SZTAKI - Theoretical Computer Science Research Group
```

The power of RPC systems

$$iRPC_{10}CF = RE$$

The proof of $iRPC_{10}CF = RE$

RPC systems with i-type of communication can **simulate twocounter machines**.

Instantenous description:

$$(q, a, c_1, c_2)$$

Transition:

 $(q, a, c_1, c_2; q', e_1, e_2)$

Explanations how the membrane system corresponds to the two-counter machine:

Region *sel* is for producing nonterminals

 $[q, a, c_1, c_2; q', e_1, e_2]$ that correspond to the TCM transitions $(q, a, c_1, c_2; q', e_1, e_2).$

In the final phase, it also checks if the computation was correct.

Region *gen* is responsible for **adding the symbol read by the TCM** to the word generated by the membrane system.

The generation of the word letter-by letter corresponds to the computation (reading) of the word by the TCM.

SZTAKI - Theoretical Computer Science Research Group

Regions c_i simulate the changes in the contents of counters c_i . Strings **containing** $A \in N$ in the regions c_i

$$\underbrace{AA\ldots A}_{c_i}$$

correspond to the **counter values** c_i .

SZTAKI - Theoretical Computer Science Research Group

Region *ch*1 assists in **checking the correctness** of the simulation.

If **symbol** *A* **appears** in a word in region *ch*1, then an **instruction** of the TCM to be executed with an **empty counter** was not correctly simulated.

SZTAKI - Theoretical Computer Science Research Group

Regions ind_i and $ch_{2,i}$ assists in **checking the correctness** of the simulation.

These regions guarantee that the simulation of the **decrement in**structions of the TCM can be performed iff the corresponding word in region c_i contains at least one symbol A.

SZTAKI - Theoretical Computer Science Research Group

Simulating a transition: $\alpha = [q, x, Z, B; q', +1, -1], \delta_{\alpha} = AA$

	C_{sel}	C_{gen}	C_{ch_1}	C_{c_1}	C_{ind}	$C_{ch_{2,1}}$
0	β_8	wS_1, S'_1	ES_1, S'_1	EJ, C_1	B_1	$AEJH_1$
1	α_1	wS_2, Q_{sel}	ES_2, S'_2	EJ_1, C_2	<i>B</i> ₂	$AEJH_2$
1C	α_1	wS_2, α_1	ES_2, S'_2	EJ_1, C_2	<i>B</i> ₂	$AEJH_2$
2	α_2	$wQ_{sel}, lpha_1'$	ES_3, Q_{gen}	EJ_{2}, C_{3}	<i>B</i> ₃	$AEJH_3$
2C	α_2	$w\alpha_2, \alpha_1'$	ES_3, α'_1	EJ_2, C_3	<i>B</i> ₃	$AEJH_3$
3	α_3	$wQ_{sel}, lpha_1''$	EQ_{gen}, \bar{lpha}'_1	EQ_{ch_1}, C_4	<i>B</i> 4	$AEJH_4$
3C	α_3	$wlpha_{3},lpha_{1}''$	$E\alpha_1'', \bar{\alpha}_1'$	$E\bar{lpha}_1', C_4$	<i>B</i> 4	$AEJH_4$
4	α_4	$w\alpha_4, S'_2$	$EQ_{c_1}Q_{S_4}, \underline{\bar{lpha}}_1'$	$Ear{lpha}_1'', Q_{ch_1}$	B_5	$AEJH_5$
4C	α_4	$w\alpha_4, S'_2$	$E\bar{\alpha}_1''S_4, \underline{\bar{\alpha}}_1'$	$E\bar{\alpha}_1'', \underline{\bar{\alpha}}_1'$	B_5	$AEJH_5$
5	α_5	$w\alpha_5, S'_3$	$E\bar{\alpha}_{1}''S_{5},S_{3}'$	$E\delta_{lpha}J_{3},C_{5}$	<i>B</i> 6	$AEJH_6$
6	α_6	$w\alpha_6, S'_4$	$E\bar{\alpha}_{1}''S_{6},S_{4}'$	$EQ_{ind}J_3, C_6$	E	$AEJH_7$
6C	α_6	$wlpha_6, S'_4$	$E\bar{\alpha}_{1}''S_{6},S_{4}'$	EEJ_3, C_6	E	$AEJH_7$
7	α_7	$w\alpha_7, S'_5$	$E\bar{\alpha}_{1}''S_{7},S_{5}'$	EEQ_{ind}, C_7	J_4	$AEJH_8$
7C	α7	$w\alpha_7, S'_5$	$E\bar{\alpha}_{1}''S_{7},S_{5}'$	EEJ_4, C_7	J_4	$AEJH_8$
8	α_8	wxS_1, S'_1	$E\bar{\alpha}_{1}''S_{1},S_{1}'$	EEJ, C_1	B_1	$AEJQ_{c_1}H_1$
8C	α_8	wxS_1, S'_1	$E\bar{\alpha}_1''S_1, S_1'$	EEJ, C_1	B_1	$AEJH_1$

SZTAKI - Theoretical Computer Science Research Group

	C_{sel}	C_{gen}	C_{ch_1}	C_{c_1}	C_{ind}	$C_{ch_{2,1}}$
0	β_8	wS_1, S'_1	ES_1, S'_1	EJ, C_1	B_1	$AEJH_1$
1	F_1	wS_2, Q_{sel}	ES_2, S'_2	EJ_1, C_2	<i>B</i> ₂	$AEJH_2$
1C	F_1	wS_2, F_1	ES_2, S'_2	EJ_1, C_2	<i>B</i> ₂	$AEJH_2$
2	F_2	$wQ_{sel}, F_{1,1}$	ES_3, Q_{gen}	EJ_{2}, C_{3}	B3	$AEJH_3$
2C	F_2	$wF_2, F_{1,1}$	$ES_3, F_{1,1}$	EJ_2, C_3	<i>B</i> ₃	$AEJH_3$
3	F_3	$wQ_{sel}, F_{1,2}$	EQ_{gen}, \bar{F}'_1	EQ_{ch_1},C_4	<i>B</i> 4	$AEJH_4$
3C	F_3	$wF_{3}, F_{1,2}$	$EF_{1,2}, \bar{F}'_1$	$Ear{F}_1', C_4$	<i>B</i> 4	$AEJH_4$
4	F_4	$wF_4, F_{1,3}$	$EQ_{S_4}, \underline{\bar{F}'_1}$	$Ear{F}_1'',Q_{ch_1}$	B_5	$AEJH_5$
4C	F_4	$wF_4, F_{1,3}$	ES_4, \overline{F}'_1	$E\overline{F}_{1}^{\prime\prime},\overline{F}_{1}^{\prime}$	B_5	$AEJH_5$
5	F_5	$wF_{5}, F_{1,4}$	$ES_5, \underline{\overline{F}'_1}$	$Ear{F}_1'', Q_{ch_{2,1}}$	B_6	$AEJH_6$
5C	F_5	$wF_5, F_{1,4}$	$ES_5, \underline{\overline{F}'_1}$	$E\overline{F}_1'', AEJH_6$	<i>B</i> ₆	$AEJH_6$
6	F_6	wQ_{ch_1}	ES_6	$Ear{F}_1''$	E	$AEJH_7$
		$F_{1,5}$	$Q_{c_1}Q_{c_2}$	$AEJH_7$		
6C	F_6	wES_6	ES_{6}	$Ear{F}_1''$	E	$AEJH_7$
		$F_{1,5}$	$AEJH_7$	$AEJH_7$	E	$AEJH_7$
7	Q_{gen}	wES_{6}'	ES_{7}	$Ear{F}_1''$	J_4	$AEJH_8$
		Q_{ch_1}	$AEJH_7$	$AEJH_7$		
7C	wES_6'	wES_{6}'	ES_7	$E\overline{F}_{1}^{\prime\prime}$	J_4	$\overline{AEJH_8}$
		$AEJH_7$	$AEJH_7$	$AEJH_7$		

Simulating the termination, moving the result w to C_{sel} .

Thus, combining our results, we obtain

$$iRPC_{10}CF = pRPC_{30}CF = RE$$

Conclusions

- RPC systems are as powerful as the Turing machines
- The two variants of communication do not imply difference in the generative power
- The organization of the membrane structure (standard, tissuelike) does not imply difference in the generative power

Open problems

- How to model biological phenomena as resistance, malignant behaviour, etc. in this framework?
- These systems can be considered as models of assembly as well. How they can be related to the existing models?
- What about the communication complexity of these constructs?