A cellular solution to Subset Sum using non-elementary division and dissolution, with time and initial resources bounded by log *k*

Daniel Díaz-Pernil Miguel A. Gutiérrez-Naranjo Mario J. Pérez-Jiménez Agustín Riscos-Núñez

> Research Group on Natural Computing University of Sevilla, Spain

8th Workshop on Membrane Computing, Thessaloniki, 2007

< □ > < □ > < □ > < □ >

Index

2 Solving Problems – Complexity Classes

- Devices to Solve Problems
- Formal Framework

3 Subset Sum

- An overview of the computations
- Conclusions

< (□) <

Index

Solving Problems – Complexity Classes

- Devices to Solve Problems
- Formal Framework

3 Subset Sum

- An overview of the computations
- Conclusions

< /₽ > < ≥ >

ъ

P systems with active membranes with weak non-elementary division and without polarizations

Formal Definition

- Γ (working alphabet)
- *H* (labels for membranes)
- μ (membrane structure)
- M (initial multisets)
- Rules:

(a)
$$[a \rightarrow u]_h$$

(b) $a[]_h \rightarrow [b]_h$
(c) $[a]_h \rightarrow b[]_h$
(d) $[a]_h \rightarrow b$
(e) $[a]_h \rightarrow [b]_h [c]_h$

< □ > < 同 > < 回 > <

Devices to Solve Problems Formal Framework

< □ > < □ > < □ > < □ >

ъ

Index

Solving Problems – Complexity Classes

- Devices to Solve Problems
- Formal Framework

3 Subset Sum

- An overview of the computations
- Conclusions

Devices to Solve Problems Formal Framework

Recognizing P systems

- Decision problems.
- First receive an input (via a multiset).
- Creation of an exponential number of membranes.
- Parallel evolution.
- Final stage check/answer

< □ > < 同 > < 回 > <

Devices to Solve Problems Formal Framework

< □ > < 同 > < 回 > < 回 > < 回 >

Recognizing P systems (cont.)

Definition

A *recognizing P system* is a P system with input membrane and external output such that:

- Yes, $No \in \Gamma$ (working alphabet).
- all the computations halt.
- for every computation, one symbol Yes or one symbol No (but not both) is sent out (and in the last step of the computation).

 $\mathcal{AM}^{0}(+d, +ne)$: class of polarizationless P systems using weak division of non-elementary membranes and dissolution.

Devices to Solve Problems Formal Framework

・ロト ・ 聞 ト ・ 臣 ト ・ 臣 ト

æ.

Uniform designs: sketch

$$X = (I_X, \theta_X) \quad \rightsquigarrow \quad F_X = (\Pi(n))_{n \in \mathbb{N}}$$

Devices to Solve Problems Formal Framework

Computational complexity framework (informal) M.J. Pérez, A. Romero, F. Sancho, 2002

Definition

Let \mathcal{R} be a class of recognizing P systems. A decision problem X is solvable in polynomial time by a family F_X , of \mathcal{R} , if

• elements of F_X can be built polynomially.

< □ > < 同 > < 回 > < 回 > < 回 >

Devices to Solve Problems Formal Framework

Computational complexity framework (informal) M.J. Pérez, A. Romero, F. Sancho, 2002

Definition

Let \mathcal{R} be a class of recognizing P systems. A decision problem X is solvable in polynomial time by a family F_X , of \mathcal{R} , if

- elements of F_X can be built polynomially.
- There exists a pair (*cod*, s) of pol-time computable functions such that
 - elements of F_X run polynomially, with regard to (X, cod, s).

・ロト ・聞 ト ・ ヨト ・ ヨト

• F_X is sound and complete, with regard to (X, cod, s).

Devices to Solve Problems Formal Framework

Computational complexity framework (informal) M.J. Pérez, A. Romero, F. Sancho, 2002

Definition

Let \mathcal{R} be a class of recognizing P systems. A decision problem X is solvable in polynomial time by a family F_X , of \mathcal{R} , if

- elements of F_X can be built polynomially.
- There exists a pair (*cod*, *s*) of pol-time computable functions such that
 - elements of F_X run polynomially, with regard to (X, cod, s).

< ロ > < 同 > < 回 > < 回 > < □ > <

• F_X is sound and complete, with regard to (X, cod, s).

We denote this by $X \in \mathsf{PMC}_{\mathcal{R}}$.

An overview of the computations Conclusions

< □ > < 同 > < 回 > <

Index

Solving Problems – Complexity Classes
 Devices to Solve Problems
 Formal Fragments

Formal Framework

3 Subset Sum

- An overview of the computations
- Conclusions

An overview of the computations Conclusions

< ロ > < 同 > < 回 > < 回 > < □ > <

э

Solving the Subset Sum Problem

Subset Sum problem

Given a finite set *A*, a weight function $w : A \to \mathbb{N}$, and a constant $k \in \mathbb{N}$, determine whether or not there exists a subset $B \subseteq A$ such that w(B) = k.

An overview of the computations Conclusions

< □ > < 同 > < 回 > <</p>

Stages of the solution

- *Preparation:* log *k* membranes $ch \Rightarrow k$ membranes.
- Generation: obtain by division 2ⁿ membranes e (non-elem).
- Weight calculation: for each possible subset.
 WAIT / SYNCHRO
- Checking: w(B) = k?
 WAIT / SYNCHRO
- Output: send either yes or no.

An overview of the computations Conclusions

< □ > < 同 > < 回 > < 回 > < 回 >

э

A small example: n = 3, k = 5

$$A = \{a_1, a_2, a_3\}, w(a_1) = 3, w(a_2) = 1, w(a_3) = 6$$

Figure: Initial Configuration

An overview of the computations Conclusions

ヘロト 人間 とくほ とくほ とう

$$A = \{a_1, a_2, a_3\}, w(a_1) = 3, w(a_2) = 1, w(a_3) = 6$$

Figure: Time = 1

Agustín Riscos Núñez Subset Sum ... log k

An overview of the computations Conclusions

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

$$A = \{a_1, a_2, a_3\}, w(a_1) = 3, w(a_2) = 1, w(a_3) = 6$$

Figure: Time = 2

Agustín Riscos Núñez Subset Sum ... log k

An overview of the computations Conclusions

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

$$A = \{a_1, a_2, a_3\}, w(a_1) = 3, w(a_2) = 1, w(a_3) = 6$$

Figure: *Time* = 3 (z_2 dissolves membrane a')

An overview of the computations Conclusions

ヘロト 人間 とくほ とくほ とう

∃ 990

$$A = \{a_1, a_2, a_3\}, w(a_1) = 3, w(a_2) = 1, w(a_3) = 6$$

Figure: *Time* = 4

Agustín Riscos Núñez Subset Sum ... log k

An overview of the computations Conclusions

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

$$A = \{a_1, a_2, a_3\}, w(a_1) = 3, w(a_2) = 1, w(a_3) = 6$$

Figure: Time = $7 = 2\lfloor \log k \rfloor + 3$

An overview of the computations Conclusions

< ロ > < 同 > < 回 > < 回 > < □ > <

э

Final remarks

Looking for Computational Power / Efficiency

Can objects be "aware" of the situation in their region?

- Context sensitivity
- Changing membrane charge / label
- Dissolution rules (irreversible)

Future work

- Decreasing number of counters
- Removing / restricting other ingredients

An overview of the computations Conclusions

< □ > < 同 > < 回 > < 回 > < 回 >

э

Final remarks

Looking for Computational Power / Efficiency

Can objects be "aware" of the situation in their region?

- Context sensitivity
- Changing membrane charge / label
- Dissolution rules (irreversible)

Future work

- Decreasing number of counters
- Removing / restricting other ingredients
- Θ...

An overview of the computations Conclusions

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

THANK YOU!

Agustín Riscos Núñez Subset Sum ... log k