Hill Kinetics

Case Study: Computational Units

Discussion, Conclusion, Further Work

Hill Kinetics Meets P Systems

A Case Study on Gene Regulatory Networks as Computing Agents *in silico* and *in vivo*

Thomas Hinze¹ Sikander Hayat² Thorsten Lenser¹ Naoki Matsumaru¹ Peter Dittrich¹

{hinze,thlenser,naoki,dittrich}@minet.uni-jena.de s.hayat@bioinformatik.uni-saarland.de

¹Bio Systems Analysis Group Friedrich Schiller University Jena www.minet.uni-jena.de/csb

²Computational Biology Group Saarland University www.zbi-saar.de

Eight Workshop on Membrane Computing

Hill Kinetics Meets P Systems

Hill Kinetics

Case Study: Computational Units

Discussion, Conclusion, Further Work

Outline

Hill Kinetics Meets P Systems

Introduction

- Research Project, Motivation, Intention
- Biological Principles of Gene Regulatory Networks (GRNs)
- Modelling Approaches, Transformation Strategies, Comparison

Hill Kinetics

- Definition and Discretisation
- P Systems Π_{Hill}
- Dynamical Behaviour
- Introductory Example

Case Study: Computational Units

- Inverter
- NAND Gate
- RS Flip-Flop and Its Validation in vivo

Discussion, Conclusion, Further Work

Hill Kinetics Meets P Systems

Hill Kinetics

Case Study: Computational Units

Discussion, Conclusion, Further Work

ESIGNET – Research Project

Evolving Cell Signalling Networks in silico

European interdisciplinary research project

- University of Birmingham (Computer Science)
- TU Eindhoven (Biomedical Engineering)
- Dublin City University (Artificial Life Lab)
- University of Jena (Bio Systems Analysis)

Objectives

- Study the computational properties of GRNs
 - Develop new ways to model and predict real GRNs
- Gain new theoretical perspectives on real GRNs

Computing Facilities

- Cluster of 38 workstations
 (two Dual Core AND OpterorTM 270 processors)
- Use of Dresden BIOTEC laborationes for *in vivo* studies

Hill Kinetics Meets P Systems

Thomas Hinze, Sikander Hayat, Thorsten Lenser, Naoki Matsumaru, Peter Dittrich

SIXTH FRAMEWORK PROGRAMME

Hill Kinetics

Case Study: Computational Units

Discussion, Conclusion, Further Work

ESIGNET – Research Project

Evolving Cell Signalling Networks in silico

European interdisciplinary research project

- University of Birmingham (Computer Science)
- TU Eindhoven (Biomedical Engineering)
- Dublin City University (Artificial Life Lab)
- University of Jena (Bio Systems Analysis)

Objectives

- Study the computational properties of GRNs
- Develop new ways to model and predict real GRNs DCU
- Gain new theoretical perspectives on real GRNs

Computing Facilities

- Cluster of 33 workstations
 (two Dual Core AND OpteronTM 270 processors)
- Use of Dresden BIOTEC laboratories for *in vivo* studies

SIXTH FRAMEWORK PROGRAMME

Hill Kinetics Meets P Systems

Hill Kinetics

Case Study: Computational Units

Discussion, Conclusion, Further Work

ESIGNET – Research Project

Evolving Cell Signalling Networks in silico

European interdisciplinary research project

- University of Birmingham (Computer Science)
- TU Eindhoven (Biomedical Engineering)
- Dublin City University (Artificial Life Lab)
- University of Jena (Bio Systems Analysis)

Objectives

- Study the computational properties of GRNs
- Develop new ways to model and predict real GRNs DCU
- Gain new theoretical perspectives on real GRNs

Computing Facilities

- Cluster of 33 workstations (two Dual Core AMD Opteron[™] 270 processors)
- Use of Dresden BIOTEC laboratories for in vivo studies

Hill Kinetics Meets P Systems

SIXTH FRAMEWORK PROGRAMME

Hill Kinetics

Case Study: Computational Units

Discussion, Conclusion, Further Work

Motivation and Intention

Exploring Dynamical Behaviour of Gene Regulatory Networks

- Understanding biological reaction networks: essential task in systems biology
- Many coexisting approaches: analytic, stochastic, algebraic
- Each specifically emphasises certain modelling aspects
- Exclusion dynamical system behaviour based on reaction kinetics

 often key to network functions
- Reaction kinetics mostly specified for analytic models based on ODE
- Combining advantages of approaches: transformation strategies, model shifting
- Example: Transformation of Hill-Kinetics to P Systems

Hill Kinetics Meets P Systems

Hill Kinetics

Case Study: Computational Units

Discussion, Conclusion, Further Work

Motivation and Intention

Exploring Dynamical Behaviour of Gene Regulatory Networks

- Understanding biological reaction networks: essential task in systems biology
- Many coexisting approaches: analytic, stochastic, algebraic
- Each specifically emphasises certain modelling aspects
- Emulating dynamical system behaviour based on reaction kinetics

 often key to network functions
- Reaction kinetics mostly specified for analytic models based on ODE
- Combining advantages of approaches: transformation strategies, model shifting
- Example: Transformation of Hill Kinetics to P Systems

Case Study: Computational Units

Discussion, Conclusion, Further Work

Biological Principles of Gene Regulation

Intercellular Information Processing of Spatial Globality within Organisms

Feedback loops: gene products can act as transcription factors and signalling substances forming gene regulatory networks

Hill Kinetics Meets P Systems

Hill Kinetics Meets P Systems

Case Study: Computational Units

Discussion, Conclusion, Further Work

Comparison of Approaches

Specific Advantages and Preferred Applications

Analytic approaches

- Primarily adopted from chemical reaction kinetics
- Macroscopic view on species concentrations
- Differential equations from generation and consumption rates
- Continuous average concentration gradients
- Deterministic monitoring of temporal or spatial system behaviour

Stochastic approaches

- Aspects of uncertainty: incorporating randomness and probabilities
- Ranges of possible scenarios and their statistical distribution
 Facilitating direct comparison with wetlab experimental data
 Statistics: discovering correlations between network components

Algebraic approaches

- Discrete principle of operation
- Embedding/evaluating structural information
- Modularisation, bierarchical graduation of provided system information
- Molecular tracing
- Flexible instruments regarding lever of abstraction

Hill Kinetics Meets P Systems

Case Study: Computational Units

Discussion, Conclusion, Further Work

Comparison of Approaches

Specific Advantages and Preferred Applications

Analytic approaches

- Primarily adopted from chemical reaction kinetics
- Macroscopic view on species concentrations
- Differential equations from generation and consumption rates
- Continuous average concentration gradients
- Deterministic monitoring of temporal or spatial system behaviour

Stochastic approaches

- Aspects of uncertainty: incorporating randomness and probabilities
- Ranges of possible scenarios and their statistical distribution
- Facilitating direct comparison with wetlab experimental data
- Statistics: discovering correlations between network components

Igebraic approaches

- Discrete principle of operation
- Embedding/evaluating structural information
- Modularisation, bierarchical graduation of provided system information
- Molecular tracing
- Flexible instruments regarding lever of abstraction

Hill Kinetics Meets P Systems

Case Study: Computational Units

Discussion, Conclusion, Further Work

Comparison of Approaches

Specific Advantages and Preferred Applications

Analytic approaches

- · Primarily adopted from chemical reaction kinetics
- Macroscopic view on species concentrations
- Differential equations from generation and consumption rates
- Continuous average concentration gradients
- Deterministic monitoring of temporal or spatial system behaviour

Stochastic approaches

- Aspects of uncertainty: incorporating randomness and probabilities
- Ranges of possible scenarios and their statistical distribution
- Facilitating direct comparison with wetlab experimental data
- Statistics: discovering correlations between network components

Algebraic approaches

- Discrete principle of operation
- Embedding/evaluating structural information
- Modularisation, hierarchical graduation of provided system information
- Molecular tracing
- Flexible instruments regarding level of abstraction

Hill Kinetics Meets P Systems

Case Study: Computational Units

Discussion, Conclusion, Further Work

Hill Kinetics – Sigmoid-Shaped Threshold Functions

- Model cooperative and competitive aspects of interacting gene regulatory units dynamically and quantitatively
- Homogeneous and analytic
- Formulate relative intensity of gene regulations by sigmoidshaped threshold functions h⁺, h⁻ : ℝ × ℝ × ℕ → ℝ
- x ≥ 0: input concentration of transcription factor activating/ inhibiting gene expression
- $\Theta > 0$: threshold (50% level)
- $m \in \mathbb{N}_+$: degree of regulation

Hill Kinetics Meets P Systems

Hill Kinetics

Case Study: Computational Units

Discussion, Conclusion, Further Work

Hill Kinetics – Network Composition

- Several interacting (competing) transcription factors influence gene expression
- Activators A_i, inhibitors I_j and proportional factor c₁ > 0: determine production rate of a gene product
- Additional assumption of linear spontaneous decay rate
 c₂ · [GeneProduct] with c₂ > 0
- Differential equation for corresponding gene product:

Hill Kinetics Meets P Systems

U

Hill Kinetics 000000

Hill Kinetics – Discretisation

- Discretisation with respect to value and time => homologous term rewriting mechanism
- Large but finite pool of particles (multiset)
- Reaction: remove number of reactant particles, simultaneously add all products
- Time-varying reaction rates \Longrightarrow variable stoichiometric factors
- Gene: limiting resource
- Reaction conditions: presence of A_1, \ldots, A_n , absence (\neg) of I_1, \ldots, I_n
- $\Delta \tau \in \mathbb{R}_+$: step length between discrete time points t and t + 1

$$s \text{ Gene } \longrightarrow s \text{ GeneProduct} + s \text{ Gene } \Big|_{A_1, \dots, A_n, \neg I_1, \dots, \neg I_p} \text{ where}$$

$$s = \left\lfloor \Delta \tau \cdot c_1 \cdot [\text{Gene}] \cdot \\ h^+(A_1, \Theta_{A_1}, m) \cdot \dots \cdot h^+(A_n, \Theta_{A_n}, m) \cdot \\ \left(1 - h^+(I_1, \Theta_{I_1}, m) \cdot \dots \cdot h^+(I_p, \Theta_{I_p}, m)\right)\right\rfloor$$

$$u \text{ GeneProduct} \longrightarrow \emptyset \text{ where } u = \left\lfloor \Delta \tau \cdot c_2 \cdot [\text{GeneProduct}] \right\rfloor \text{ ESIGNET}$$
Hill Kinetics Meets P Systems
Thomas Hinze, Sikander Hayat, Thorsten Lenser, Naoki Matsumaru, Peter Dittrich

Hill Kinetics

Case Study: Computational Units

Discussion, Conclusion, Further Work

P Systems Π_{Hill} – Definition of Components

 $\Pi_{\text{Hill}} = (V_{\text{Genes}}, V_{\text{GeneProducts}}, \Sigma, [1]_1, L_0, r_1, \dots, r_k, f_1, \dots, f_k, \Delta\tau, m)$

- V_{Genes} : alphabet of genes, $V_{\text{Genes}} \cap V_{\text{GeneProducts}} = \emptyset$
- $V_{\text{GeneProducts}}$: alphabet of gene products. Let $V = V_{\text{Genes}} \cup V_{\text{GeneProducts}}$.
- Σ ⊆ V_{GeneProducts}: output alphabet
- [1]1: skin membrane as only membrane
- L₀ ∈ ⟨V⟩: initial configuration, multiset over V
- reaction rules with initial stoichiometric factors, i = 1, ..., k

• $E_{i,0} \subseteq V \times \mathbb{N}$: multiset of r_i reactants at time point 0,

- $_0 \subseteq V \times \mathbb{N}$: multiset of r_i products at time point 0,
- TFi C VGeneProduce: set of involved transcription factors
- $r_i \in \langle E_{i,0} \rangle \times \langle P_{i,0} \rangle \times P(\mathsf{T} \mathsf{F}_i)$ whereas

 $\langle A \rangle$: all multisets over A, $\mathcal{P}(A)$: power set over A

f: corresponding function for updating eloichiometric factors

 $\times \mathbb{N}_+ \to \mathbb{N}$ with $(\Delta \tau, L_t, m) \mapsto s$

- $\Delta \tau \in \mathbb{R}_+$: time step between discrete time points *t* and *t* + 1
- $m \in \mathbb{N}_+$: degree of all sigmoid-shaped functions h^+ and h^- used in f_i

Hill Kinetics Meets P Systems

Hill Kinetics

Case Study: Computational Units

Discussion, Conclusion, Further Work

P Systems Π_{Hill} – Definition of Components

 $\Pi_{\text{Hill}} = (V_{\text{Genes}}, V_{\text{GeneProducts}}, \Sigma, [1]_1, L_0, r_1, \dots, r_k, f_1, \dots, f_k, \Delta\tau, m)$

- V_{Genes} : alphabet of genes, $V_{\text{Genes}} \cap V_{\text{GeneProducts}} = \emptyset$
- $V_{\text{GeneProducts}}$: alphabet of gene products. Let $V = V_{\text{Genes}} \cup V_{\text{GeneProducts}}$.
- Σ ⊆ V_{GeneProducts}: output alphabet
- [1]1: skin membrane as only membrane
- L₀ ∈ ⟨V⟩: initial configuration, multiset over V
- r_i : reaction rules with initial stoichiometric factors, $i = 1, \ldots, k$
 - $E_{i,0} \subseteq V \times \mathbb{N}$: multiset of r_i reactants at time point 0,
 - $P_{i,0} \subseteq V \times \mathbb{N}$: multiset of r_i products at time point 0,
 - *TF_i* ∈ *V*_{GeneProducts}: set of involved transcription factors
 - $r_i \in \langle E_{i,0} \rangle \times \langle P_{i,0} \rangle \times \mathcal{P}(TF_i)$ whereas

 $\langle A \rangle$: all multisets over A, $\mathcal{P}(A)$: power set over A

sourcesponding function for updating solichiometric factors

 $\times \mathbb{N}_+ \to \mathbb{N}$ with $(\Delta \tau, L_t, m) \mapsto s$

- $\Delta \tau \in \mathbb{R}_+$: time step between discrete time points t and t + 1
- $m \in \mathbb{N}_+$: degree of all sigmoid-shaped functions h^+ and h^- used in f_i

Hill Kinetics Meets P Systems

P Systems Π_{Hill} – Definition of Components

 $\Pi_{\text{Hill}} = (V_{\text{Genes}}, V_{\text{GeneProducts}}, \Sigma, [1]_1, L_0, r_1, \dots, r_k, f_1, \dots, f_k, \Delta\tau, m)$

- V_{Genes} : alphabet of genes, $V_{\text{Genes}} \cap V_{\text{GeneProducts}} = \emptyset$
- $V_{\text{GeneProducts}}$: alphabet of gene products. Let $V = V_{\text{Genes}} \cup V_{\text{GeneProducts}}$.
- Σ ⊆ V_{GeneProducts}: output alphabet
- [1]1: skin membrane as only membrane
- L₀ ∈ ⟨V⟩: initial configuration, multiset over V
- r_i : reaction rules with initial stoichiometric factors, $i = 1, \ldots, k$
 - $E_{i,0} \subseteq V \times \mathbb{N}$: multiset of r_i reactants at time point 0,
 - $P_{i,0} \subseteq V \times \mathbb{N}$: multiset of r_i products at time point 0,
 - *TF_i* ∈ *V*_{GeneProducts}: set of involved transcription factors
 - $r_i \in \langle E_{i,0} \rangle \times \langle P_{i,0} \rangle \times \mathcal{P}(TF_i)$ whereas

 $\langle A \rangle$: all multisets over A, $\mathcal{P}(A)$: power set over A

• f_i: corresponding function for updating stoichiometric factors

• $f_i : \mathbb{R}_+ \times \langle V \rangle \times \mathbb{N}_+ \to \mathbb{N}$ with $(\Delta \tau, L_t, m) \mapsto s$

- $\Delta \tau \in \mathbb{R}_+$: time step between discrete time points *t* and *t* + 1
- $m \in \mathbb{N}_+$: degree of all sigmoid-shaped functions h^+ and h^- used in f_i

Hill Kinetics Meets P Systems

Case Study: Computational Units

Discussion, Conclusion, Further Work

P Systems Π_{Hill} – Dynamical Behaviour Iteration scheme

- Updating system configuration L_t and
- Stoichiometric factors of reaction rules $r_i \in \langle E_{i,t} \rangle \times \langle P_{i,t} \rangle \times \mathcal{P}(TF_i)$
- Starting from initial configuration L₀

 $L_{t+1} = L_t \ominus Reactants_t \oplus Products_t \quad \text{with}$ $Reactants_t = \biguplus_{i=1}^{k} (E_{i,t+1} \cap L_t)$ $Products_t = \biguplus_{i=1}^{k} (P_{i,t+1} \cap L_t)$ $E_{i,t+1} = \{(e,a') \mid (e,a) \in E_{i,t} \land a' = f_i(\Delta\tau, L_t, m)\}$ $P_{i,t+1} = \{(q,b') \mid (q,b) \in P_{i,t} \land b' = f_i(\Delta\tau, L_t, m)\}$

Informally:

 Specification of *E_{i,t+1}* and *P_{i,t+1}*: all reactants *e* and products *q* remain unchanged over time, just their stoichiometric factors updated from *a* to *a*' (reactants) and from *b* to *b*' (products) according to functions f_i

Computational output

• Function output : $\mathbb{N} \to \mathbb{N}$ with $output(t) = |L_t \cap \{(w, \infty) \mid w \in \Sigma\}|$

ESIGNET

Hill Kinetics Meets P Systems

Hill Kinetics

Case Study: Computational Units

Discussion, Conclusion, Further Work

P Systems Π_{Hill} – Introductory Example

Hill Kinetics

Case Study: Computational Units

Discussion, Conclusion, Further Work

Case Study: Inverter

Gene Regulatory Networks as Computational Units

Input: concentration levels of transcription factor x

Output: concentration level of gene product y

Dynamical behaviour depicted for m = 2, $\Theta_j = 0.1$, $j \in \{x, a\}$, a(0) = 0, y(0) = 0, $x(t) = \begin{cases} 0 & \text{for } 0 \le t < 10; \ 20 \le t < 30 \\ 1 & \text{for } 10 \le t < 20; \ 30 \le t < 40 \end{cases}$

$$\dot{a} = h^+(x, \Theta_x, m) - a$$

 $\dot{y} = h^-(a, \Theta_a, m) - y$

Hill Kinetics Meets P Systems

Hill Kinetics

Case Study: Computational Units

Discussion, Conclusion, Further Work

Case Study: Inverter

Definition and Simulation of Corresponding P System IIHill, GRNinv.

Hill Kinetics

Case Study: Computational Units

Discussion, Conclusion, Further Work

Case Study: NAND Gate

Input: concentration levels of transcription factors x (inp.1), y (inp.2) Output: concentration level of gene product z

Dynamical behaviour depicted for m = 2, $\Theta_j = 0.1$, $j \in \{x, y, a, b\}$

 $\dot{a} = h^{+}(x, \Theta_{x}, m) - a$ $\dot{b} = h^{+}(y, \Theta_{y}, m) - b$ $\dot{z} = 1 - h^{+}(a, \Theta_{a}, m) \cdot h^{+}(b, \Theta_{b}, m) - z$

Hill Kinetics Meets P Systems

Hill Kinetics

Case Study: Computational Units

Discussion, Conclusion, Further Work

Case Study: NAND Gate

Definition and Simulation of P System IIHill, GRNnand

Hill Kinetics Meets P Systems

Hill Kinetics

Case Study: Computational Units

Discussion, Conclusion, Further Work

Case Study: RS Flip-Flop

Input: concentration levels of transcription factors $\overline{S}, \overline{R}$ Output: concentration level of gene product Q

Dynamical behaviour depicted for m = 2, $\Theta_j = 0.1$, $j \in \{a, b, \overline{R}, \overline{S}\}$

 $\dot{a} = 1 - h^{+}(b, \Theta_{b}, m) \cdot h^{-}(\overline{S}, \Theta_{\overline{S}}, m) - a$ $\dot{b} = 1 - h^{+}(a, \Theta_{a}, m) \cdot h^{-}(\overline{R}, \Theta_{\overline{R}}, m) - b$ $\dot{Q} = h^{+}(b, \Theta_{b}, m) \cdot h^{-}(\overline{S}, \Theta_{\overline{S}}, m) - Q$

ESIGNET

Hill Kinetics Meets P Systems

Case Study: Computational Units 00000000

Case Study: RS Flip-Flop

Definition and Simulation of P System IIHII.GRNrsff

Simulation Result (MATLAB, P system iteration scheme)

- Dynamical behaviour depicted for $m = 2, \Delta \tau = 0.1, \Theta_i = 500, j \in \{\neg a, \neg b, \neg \overline{R}, \neg \overline{S}\}$
- $rgr = 10,000, rgs = 10,000, eg = 10,000, g_0 = 0, ss_0 = 0, rs_0 = 0, a_0 = 0, b_0 = 0$

Wetlab Implementation of GRN-Based RS Flip-Flop

Experimental Setup

- in vivo system (bistable toggle switch in Vibrio fischeri) mimics RS flip-flop
- Encoding of all genes using two constructed plasmids
- Quantification of its performance using flow cytometry
- Presence or absence of inducers AHL and IPTG acts as input signals, green fluorescent protein (*gfp*) as output

Collaboration with S. Hayat, at this time Dresden University of Technology, BIOTEC laboratories. Thanks to J.J. Collins, W. Pompe, G. Rödel, K. Ostermann, L. Brusch for their support.

Hill Kinetics Meets P Systems

Hill Kinetics

Case Study: Computational Units

Discussion, Conclusion, Further Work $_{\rm OO}$

Wetlab Experimental Results

Repeated activation and deactivation of the toggle switch based on inducers and temperature. Temperature was switched every 24 hours. Cells were incubated with inducers for 12 hours, followed by growth for 12 hours without inducers, initially kept at 30° C (**A**) and 42° C (**B**). The cells successfully switched states thrice.

Collaboration with S. Hayat, at this time Dresden University of Technology, BIOTEC laboratories. Thanks to J.J. Collins, W. Pompe, G. Rödel, K. Ostermann, L. Brusch for their support.

Hill Kinetics Meets P Systems

Discussion and Conclusion

Discussion

- Gap between idealised models and observed wetlab data
- Consider GRN of the whole microorganism rather than isolated part
- Granularity of simulation
- Undersatisfy problem: avoid conflicts between reactions at low reactant amounts

Conclusion

- P systems framework for applications in systems biology:
- Map reaction kinetics to P systems with dynamical behaviour
- Exemplified by transformation of Hill kinetics for GRNs
- Computability issues addressed by logic gates as simple GRNs

Hill Kinetics Meets P Systems

Hill Kinetics

Case Study: Computational Units

Discussion, Conclusion, Further Work

Further Work

Theory

- Integrate structural information into Π_{Hill}, extend symbol objects to string objects
- Introduce matching strategies based on string objects
- Unify Π_{Hill} with Π_{CSN} (presented at WMC7)

Computational Applications

- Design GRNs for solution to NP-complete problems and for emulating behaviour of different automata (first results)
- Emerge artificial GRNs by evolutionary computation

Wetlab

- Coupling of several GRN-based computational units in vivo
- Coping with side effects (signal weakening)
- Grant application in preparation.
 Interested in participation? hinze@minet.uni-jena.de

Hill Kinetics Meets P Systems