A Hybrid Approach to Modelling Biological Systems

Francisco J. Romero-Campero¹ Marian Gheorghe² Francesco Bernardini³ Neil Walkinshaw ²

¹Department of Computer Science and Artificial Intelligence, University of Seville

²Department of Computer Science, University of Sheffield

³Leiden Institute of Advanced Computer Science, Leiden University

WMC8, Thessaloniki 2007

・ロット (雪) () () () ()

- Modelling Approaches
 ODEs
- 3 Computational Modelling
 - Petri Nets
 - π-calculus
 - P Systems
- Analysing Computational Models
 - PIPE
 - Daikon
 - PRISM

→ E → < E →</p>

What is this???

20

Francisco J. Romero-Campero A Hybrid Approach to Modelling Biological Systems

What is this???

Francisco J. Romero-Campero

A Hybrid Approach to Modelling Biological Systems

ъ

What is this???

Francisco J. Romero-Campero

A Hybrid Approach to Modelling Biological Systems

Models and Reality

- <u>Models are abstractions</u> of the real-world that highlight some key features while ignoring others that are assumed to be not relevant.
- The use of models is intrinsic to any scientific activity.
- A <u>model</u> should not be seen or presented as representations of the truth, but instead as a *statement of our current knowledge*.

Models and Reality

- <u>Models are abstractions</u> of the real-world that highlight some key features while ignoring others that are assumed to be not relevant.
- The use of models is intrinsic to any scientific activity.
- A <u>model</u> should not be seen or presented as representations of the truth, but instead as a *statement of our current knowledge*.

Models and Reality

- <u>Models are abstractions</u> of the real-world that highlight some key features while ignoring others that are assumed to be not relevant.
- The use of models is intrinsic to any scientific activity.
- A <u>model</u> should not be seen or presented as representations of the truth, but instead as a *statement of our current knowledge*.

★ 문 ► ★ 문 ►

Models and Reality

- There are mainly **three goals** in modelling: understanding, prediction and control.
- A <u>model</u> should have at least four properties: relevance, understandability, extensibility and computability.

Models and Reality

- There are mainly **three goals** in modelling: understanding, prediction and control.
- A <u>model</u> should have at least four properties: relevance, understandability, extensibility and computability.

ODEs

Models and Reality

- Modelling Approaches
 ODEs
- 3 Computational Modelling
 - Petri Nets
 - π-calculus
 - P Systems
- Analysing Computational Models
 - PIPE
 - Daikon
 - PRISM

→ E → < E →</p>

э

ODEs

Modelling Approaches

There exist **many modelling approaches**, each one with its advantages and disadvantages.

- Macroscopic, Microscopic and Mesoscopic
- Quantitative and qualitative
- Discrete and Continuous
- Deterministic and Stochastic
- Top-down or Bottom-up

ODEs

Modelling Approaches

There exist **many modelling approaches**, each one with its advantages and disadvantages.

- Macroscopic, Microscopic and Mesoscopic
- Quantitative and qualitative
- Discrete and Continuous
- Deterministic and Stochastic
- Top-down or Bottom-up

ODEs

Modelling Approaches

There exist **many modelling approaches**, each one with its advantages and disadvantages.

- Macroscopic, Microscopic and Mesoscopic
- Quantitative and qualitative
- Discrete and Continuous
- Deterministic and Stochastic
- Top-down or Bottom-up

ODEs

Modelling Approaches

There exist **many modelling approaches**, each one with its advantages and disadvantages.

- Macroscopic, Microscopic and Mesoscopic
- Quantitative and qualitative
- Discrete and Continuous
- Deterministic and Stochastic
- Top-down or Bottom-up

→ Ξ → < Ξ →</p>

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

ODEs

Modelling Approaches

There exist **many modelling approaches**, each one with its advantages and disadvantages.

- Macroscopic, Microscopic and Mesoscopic
- Quantitative and qualitative
- Discrete and Continuous
- Deterministic and Stochastic
- Top-down or Bottom-up

→ Ξ → < Ξ →</p>

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

ODEs

Modelling Approaches

There exist **many modelling approaches**, each one with its advantages and disadvantages.

- Macroscopic, Microscopic and Mesoscopic
- Quantitative and qualitative
- Discrete and Continuous
- Deterministic and Stochastic
- Top-down or Bottom-up

★ E → ★ E →

< 🗇 🕨

ODEs

Ordinary Differential Equations

- The **most widely used approach** in modelling cell systems.
- Macroscopic, continuous and deterministic approach.
- Quantitative and qualitative analysis.

Two key assumptions:

- Homogeneous or well stirred volume: valid only in small volumes
- Continuous and deterministic variation of the concentration: valid only with large number of molecules

ヘロト ヘワト ヘビト ヘビト

ODEs

Ordinary Differential Equations

- The **most widely used approach** in modelling cell systems.
- Macroscopic, continuous and deterministic approach.
- Quantitative and qualitative analysis.

Two key assumptions:

- Homogeneous or well stirred volume: valid only in small volumes
- Continuous and deterministic variation of the concentration: valid only with large number of molecules

ヘロア 人間 アメヨア 人口 ア

ODEs

Ordinary Differential Equations

- The **most widely used approach** in modelling cell systems.
- Macroscopic, continuous and deterministic approach.
- Quantitative and qualitative analysis.

Two key assumptions:

- Homogeneous or well stirred volume: valid only in small volumes
- Continuous and deterministic variation of the concentration: valid only with large number of molecules

ヘロア 人間 アメヨア 人口 ア

ODEs

Ordinary Differential Equations

- The **most widely used approach** in modelling cell systems.
- Macroscopic, continuous and deterministic approach.
- Quantitative and qualitative analysis.

Two key assumptions:

- Homogeneous or well stirred volume: valid only in small volumes
- Continuous and deterministic variation of the concentration: valid only with large number of molecules

ODEs

Ordinary Differential Equations

- The **most widely used approach** in modelling cell systems.
- Macroscopic, continuous and deterministic approach.
- Quantitative and qualitative analysis.

Two key assumptions:

- Homogeneous or well stirred volume: valid only in small volumes
- Continuous and deterministic variation of the concentration: valid only with large number of molecules

ODEs

Ordinary Differential Equations

- The **most widely used approach** in modelling cell systems.
- Macroscopic, continuous and deterministic approach.
- Quantitative and qualitative analysis.

Two key assumptions:

- Homogeneous or well stirred volume: valid only in small volumes
- Continuous and deterministic variation of the concentration: valid only with large number of molecules

ODEs

Ordinary Differential Equations

- The concentration of each chemical species is represented by a continuous variable $X_i(t)$.
- A differential equation is written to describe the concentration change of each species.
- Most used **kinetic laws**: exponential decay, mass action law and Michaelis-Menten dynamics.

$$\begin{cases} \frac{dr}{dt} = c_1 - c_3 r + c_7 \frac{act}{act + K} & K \text{ is the Michaelis-Menten constant} \\ \frac{dp}{dt} = c_2 r - c_4 p \end{cases}$$

ODEs

Ordinary Differential Equations

- The concentration of each chemical species is represented by a continuous variable *X_i*(*t*).
- A differential equation is written to describe the concentration change of each species.
- Most used **kinetic laws**: exponential decay, mass action law and Michaelis-Menten dynamics.

$$\begin{cases} \frac{dr}{dt} = c_1 - c_3 r + c_7 \frac{act}{act + K} & K \text{ is the Michaelis-Menten constant} \\ \frac{dp}{dt} = c_2 r - c_4 p \end{cases}$$

ODEs

Ordinary Differential Equations

- The concentration of each chemical species is represented by a continuous variable *X_i*(*t*).
- A differential equation is written to describe the concentration change of each species.
- Most used **kinetic laws**: exponential decay, mass action law and Michaelis-Menten dynamics.

$$\begin{cases} \frac{dr}{dt} = c_1 - c_3 r + c_7 \frac{act}{act + K} & K \text{ is the Michaelis-Menten constant} \\ \frac{dp}{dt} = c_2 r - c_4 p \end{cases}$$

ODEs

Ordinary Differential Equations

- The concentration of each chemical species is represented by a continuous variable *X_i*(*t*).
- A differential equation is written to describe the concentration change of each species.
- Most used **kinetic laws**: exponential decay, mass action law and Michaelis-Menten dynamics.

$$\begin{cases} \frac{dr}{dt} = c_1 - c_3 r + c_7 \frac{act}{act + K} & K \text{ is the Michaelis-Menten constant} \\ \frac{dp}{dt} = c_2 r - c_4 p \end{cases}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

ODEs

Ordinary Differential Equations

٢

- The concentration of each chemical species is represented by a continuous variable *X_i*(*t*).
- A differential equation is written to describe the concentration change of each species.
- Most used **kinetic laws**: exponential decay, mass action law and Michaelis-Menten dynamics.

$$\begin{cases} \frac{dr}{dt} = c_1 - c_3 r + c_7 \frac{act}{act + K} & K \text{ is the Michaelis-Menten constant} \\ \frac{dp}{dt} = c_2 r - c_4 p \end{cases}$$

(4) 臣() (4) 臣()

Petri Nets τ-calculus P Systems

- Models and Reality
 Modelling Approaches

 ODEs

 Computational Modelling
 - Petri Nets
 - π-calculus
 - P Systems
- Analysing Computational Models
 - PIPE
 - Daikon
 - PRISM

(< ∃) < ∃)</p>

Petri Nets π-calculus P Systems

Computational Modelling

Francisco J. Romero-Campero

A Hybrid Approach to Modelling Biological Systems

etri Nets -calculus Systems

Computational Modelling

- Most computational models were implemented in custom programs.
- Different computational frameworks proposed to model cellular systems:
 - Petri Nets
 - Process Algebras: π-calculus
 - P systems
 - Others: L Systems, Cellular Automata, Agent Based models, ...

Petri Nets r-calculus P Systems

Computational Modelling

- Most computational models were implemented in custom programs.
- Different computational frameworks proposed to model cellular systems:
 - Petri Nets
 - Process Algebras: π-calculus
 - P systems
 - Others: L Systems, Cellular Automata, Agent Based models, ...

ヘロト ヘアト ヘビト ヘビト

Petri Nets r-calculus P Systems

Computational Modelling

- Most computational models were implemented in custom programs.
- Different computational frameworks proposed to model cellular systems:
 - Petri Nets
 - Process Algebras: π-calculus
 - P systems
 - Others: L Systems, Cellular Automata, Agent Based models, ...

ヘロト ヘアト ヘビト ヘビト

Petri Nets r-calculus P Systems

Computational Modelling

- Most computational models were implemented in custom programs.
- Different computational frameworks proposed to model cellular systems:
 - Petri Nets
 - Process Algebras: π-calculus
 - P systems
 - Others: L Systems, Cellular Automata, Agent Based models, ...

ヘロト ヘアト ヘビト ヘビト

Petri Nets r-calculus P Systems

Computational Modelling

- Most computational models were implemented in custom programs.
- Different computational frameworks proposed to model cellular systems:
 - Petri Nets
 - Process Algebras: *π*-calculus
 - P systems
 - Others: L Systems, Cellular Automata, Agent Based models, ...

ヘロト 人間 ト ヘヨト ヘヨト

Petri Nets r-calculus P Systems

Computational Modelling

- Most computational models were implemented in custom programs.
- Different computational frameworks proposed to model cellular systems:
 - Petri Nets
 - Process Algebras: π-calculus
 - P systems
 - Others: L Systems, Cellular Automata, Agent Based models, ...
Petri Nets r-calculus P Systems

Gene regulation

★ E > ★ E >

ъ

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Petri Nets π -calculus P Systems

ODE Model

$$\begin{cases} \frac{dr}{dt} = c_1 - c_3 r + c_7 \frac{act}{act + K} \\ \frac{dp}{dt} = c_2 r - c_4 p \end{cases}$$

 \boldsymbol{K} is the Michaelis-Menten constant

Francisco J. Romero-Campero

A Hybrid Approach to Modelling Biological Systems

Petri Nets π-calculus P Systems

Petri Nets

- A mathematical and computational tool for modelling and analysis of discrete event systems with a concurrent behaviour.
- A formal way to represent the system structure, simulate its behaviour, and prove certain properties of the system.
- A PT-net is a directed graph with two kinds of nodes, places and transitions; arcs, connecting places and transition; and tokens.

Petri Nets π-calculus P Systems

Petri Nets

- A mathematical and computational tool for modelling and analysis of discrete event systems with a concurrent behaviour.
- A formal way to represent the system structure, simulate its behaviour, and prove certain properties of the system.
- A PT-net is a directed graph with two kinds of nodes, places and transitions; arcs, connecting places and transition; and tokens.

Petri Nets π-calculus P Systems

Petri Nets

- A mathematical and computational tool for modelling and analysis of discrete event systems with a concurrent behaviour.
- A formal way to represent the system structure, simulate its behaviour, and prove certain properties of the system.
- A PT-net is a directed graph with two kinds of nodes, places and transitions; arcs, connecting places and transition; and tokens.

Petri Nets π-calculus P Systems

Petri Net Modelling Principles

Biochemistry	PT-net		
Molecule	Place		
Molecular Population	Marking		
Biochemical Transformation	Transition		

Goss, P.J.E., Peccoud, J. (1998) Quantitative Modeling of Stochastic Systems in Molecular Biology using Stochastic Petri Nets., *Proc. Natl. Acad. Sci. USA*, **95** 6750–6755.

→ Ξ → < Ξ →</p>

Petri Nets π -calculus P Systems

Francisco J. Romero-Campero A Hybrid Approach to Modelling Biological Systems

<ロ> (四) (四) (注) (注) (注) (注)

Petri Nets π -calculus P Systems

Petri Net Model

ъ

Petri Nets π -calculus P Systems

Process Algebras: π -calculus

- Introduced as a formal language to describe mobile concurrent processes and systems with dynamically evolving communication topology.
- The *π*-calculus has a simple semantics and a tractable algebraic theory.
- The process expressions are defined by guarded processes, parallel composition *P*|*Q*, nondeterministic choice *P* + *Q*, replication !*P*, and a restriction operator (*vx*)*P* creating a local fresh channel *x* for a process *P*.

ヘロト ヘワト ヘビト ヘビト

Petri Nets π -calculus P Systems

Process Algebras: π -calculus

- Introduced as a formal language to describe mobile concurrent processes and systems with dynamically evolving communication topology.
- The *π*-calculus has a simple semantics and a tractable algebraic theory.
- The process expressions are defined by guarded processes, parallel composition *P*|*Q*, nondeterministic choice *P* + *Q*, replication !*P*, and a restriction operator (*vx*)*P* creating a local fresh channel *x* for a process *P*.

ヘロア 人間 アメヨア 人口 ア

Petri Nets π -calculus P Systems

Process Algebras: π -calculus

- Introduced as a formal language to describe mobile concurrent processes and systems with dynamically evolving communication topology.
- The *π*-calculus has a simple semantics and a tractable algebraic theory.
- The process expressions are defined by guarded processes, parallel composition *P*|*Q*, nondeterministic choice *P* + *Q*, replication !*P*, and a restriction operator (*vx*)*P* creating a local fresh channel *x* for a process *P*.

Petri Nets π -calculus P Systems

π -calculus Modelling Principles

Biochemistry	π -calculus
Molecule	Process
Molecular Population	Systems of communicating processes
Biochemical Transformation	Communication channel
Compartment	Private communication channel
Compartment Translocation	Extrusion of a private channel's scope

Regev, A., Shapiro, E. (2004) The π -calculus as an Abstraction for Biomolecular Systems. In Ciobanu, G., Rozenberg, G. (eds.) *Modelling in Molecular Biology*. Springer Verlag.

Petri Nets π -calculus P Systems

π -calculus model

Initial processes: $S_{0,1} = gene; S_{0,2} = gene \mid act \mid \ldots \mid act$ and $\overline{S_{0,3} = gene \mid rep \mid \ldots \mid rep}$

Processes:

 $gene := \tau_{c_1}.(gene | rna) + a_{c_5}?.act-gene + r_{c_8}?.rep-gene$ $rna := \tau_{c_2}.(rna | protein) + \tau_{c_3}.0$ $protein := \tau_{c_4}.0$ $act := a_{c_5}!.0$ $act-gene := \tau_{c_6}.(act | gene) + \tau_{c_7}.(act-gene | rna)$ $rep := r_{c_8}!.0$ $rep-gene := \tau_{c_9}.(rep | gene)$

Petri Nets π -calculus P Systems

Francisco J. Romero-Campero A Hybrid Approach to Modelling Biological Systems

(日) (四) (注) (注) (注)

Petri Nets π -calculus P Systems

Membrane Computing: P Systems

• **Inspired directly** from the <u>structure</u> and <u>functioning</u> of the living cells.

- Distributed and parallel rewritting systems compartmentalised hierarchical structures.
- A **formal framework** for the specification and simulation of cellular systems which integrates structural and dynamic aspects in a comprehensive and relevant way while keeping mathematical and computational tractability.

Petri Nets π -calculus P Systems

Membrane Computing: P Systems

- **Inspired directly** from the <u>structure</u> and <u>functioning</u> of the living cells.
- Distributed and parallel rewritting systems compartmentalised hierarchical structures.
- A **formal framework** for the specification and simulation of cellular systems which integrates structural and dynamic aspects in a comprehensive and relevant way while keeping mathematical and computational tractability.

Petri Nets π -calculus P Systems

Membrane Computing: P Systems

- **Inspired directly** from the <u>structure</u> and <u>functioning</u> of the living cells.
- Distributed and parallel rewritting systems compartmentalised hierarchical structures.
- A **formal framework** for the specification and simulation of cellular systems which integrates structural and dynamic aspects in a comprehensive and relevant way while keeping mathematical and computational tractability.

Petri Nets π -calculus P Systems

P System Modelling Principles

Biochemistry	P System
Compartment	Region defined by a membrane
Molecule	Object
Molecular Population	Multiset of objects
Biochemical Transformation	Rewriting rule
Compartment Translocation	Boundary rule

Pérez-Jiménez, M.J., Romero-Campero, F.J. Modelling Gene Expression Control Using P Systems: The Lac Operon, A Case Study, BioSystems, to appear.

ヘロト ヘアト ヘビト ヘビト

ъ

Petri Nets π -calculus P Systems

P System Model

 $\Pi = (\{gene, rna, protein, act, rep, act-gene, rep-gene\}, \{b\}, [\]_b, (b, M_i, \emptyset), \{r_1, \dots, r_9\})$

Initial multisets: $M_{0,1} = gene$; $M_{0,2} = gene + act... + act$ and $M_{0,3} = gene + rep... + rep$

Petri Nets π -calculus P Systems

Francisco J. Romero-Campero A Hybrid Approach to Modelling Biological Systems

(日) (四) (注) (注) (注)

Petri Nets π -calculus P Systems

イロト イポト イヨト イヨト

ъ

Petri Nets π -calculus P Systems

- In the original approaches the transitions / communications / rules are applied in a nondeterministic parallel way. This produces two inaccuracies:
 - Reactions do not take place at the correct rate
 - All time steps are equal and do not represent the **time evolution** of the real system
- To get around this problem, Stochastic Simulation Algorithm (SSA) or Gillespie algorithm is used.
- A stochastic constant is associated with each transition / communication channel / rule.

Petri Nets π -calculus P Systems

- In the original approaches the transitions / communications / rules are applied in a nondeterministic parallel way. This produces two inaccuracies:
 - Reactions do not take place at the correct rate
 - All time steps are equal and do not represent the **time evolution** of the real system
- To get around this problem, Stochastic Simulation Algorithm (SSA) or Gillespie algorithm is used.
- A stochastic constant is associated with each transition / communication channel / rule.

Petri Nets π -calculus P Systems

- In the original approaches the transitions / communications / rules are applied in a nondeterministic parallel way. This produces two inaccuracies:
 - Reactions do not take place at the correct rate
 - All time steps are equal and do not represent the **time evolution** of the real system
- To get around this problem, Stochastic Simulation Algorithm (SSA) or Gillespie algorithm is used.
- A stochastic constant is associated with each transition / communication channel / rule.

Petri Nets π -calculus P Systems

Stochastic Variants

- In the original approaches the transitions / communications / rules are applied in a nondeterministic parallel way. This produces two inaccuracies:
 - Reactions do not take place at the correct rate
 - All time steps are equal and do not represent the **time evolution** of the real system
- To get around this problem, Stochastic Simulation Algorithm (SSA) or Gillespie algorithm is used.
- A stochastic constant is associated with each transition / communication channel / rule.

Francisco J. Romero-Campero A Hybrid Approach to Modelling Biological Systems

Petri Nets π -calculus P Systems

- In the original approaches the transitions / communications / rules are applied in a nondeterministic parallel way. This produces two inaccuracies:
 - Reactions do not take place at the correct rate
 - All time steps are equal and do not represent the time evolution of the real system
- To get around this problem, Stochastic Simulation Algorithm (SSA) or Gillespie algorithm is used.
- A stochastic constant is associated with each transition / communication channel / rule.

PIPE Daikon PRISM

- Models and Reality
 Modelling Approaches

 ODEs

 Computational Modell

 Petri Nets
 π-calculus
 P Systems
- Analysing Computational Models
 - PIPE
 - Daikon
 - PRISM

→ E → < E →</p>

э

PIPE Daikon PRISM

Analysing Computational Models

<u>Models</u> are difficult to analyse

- Similar to the problem faced by software engineers when analysing software systems
- Use existing software analysis techniques to discover behaviour rules by analysing model simulations: PIPE, Daikon and PRISM.

PIPE Daikon PRISM

Analysing Computational Models

- Models are difficult to analyse
- Similar to the problem faced by software engineers when analysing software systems
- Use existing software analysis techniques to discover behaviour rules by analysing model simulations: PIPE, Daikon and PRISM.

PIPE Daikon PRISM

Analysing Computational Models

- Models are difficult to analyse
- Similar to the problem faced by software engineers when analysing software systems
- Use existing software analysis techniques to discover behaviour rules by analysing model simulations: PIPE, Daikon and PRISM.

PIPE Daikon PRISM

Platform Independent Preti net Editor (PIPE)

- Platform independent tool for creating and analysing Petri nets including Generalised Stochastic Petri nets
- PIPE allows to check properties of boundedness and liveness (i.e, absence of deadlock)

T-invariants and P-invariants computed by PIPE for some initial marking contains one token in *gene* n in *act* and m in *rep*, with $n, m \ge 0$:

<i>r</i> 1	1	0	0	0	0				
r2	0	1	0	0	0	gene	1	0	0
r4	0	1	0	0	0	rna	0	0	0 M(gene) + M(act.gene) + M(rep.gene) = 1
r3	1	0	0	1	0	protein	0	0	0 M(act) + M(act - gene) = n
r5	0	0	1	0	0	act	0	1	0 M(rep) + M(rep - gene) = m
r7	0	0	0	1	0	act – gene	1	1	0
<i>r</i> 6	0	0	1	0	0	rep	0	0	1
r8	0	0	0	0	1	rep – gene	1	0	1
r9	0	0	0	0	1				
									< □ > < □ > < ■ > < ■ > < ■ > < ■ > < ■ < ○ <

PIPE Daikon PRISM

Daikon

• Reverse engineers software specifications

- Analyses traces of software behaviour
- Uses machine learning techniques to extract rules relating program variables
- Can be used as basis for interpreting output from biological models
 - Prevent modeller from erroneously altering model behaviour
 - Precisely characterise specific model properties
 - Documenting or discovering novel aspects of model behaviour

PIPE Daikon PRISM

Daikon

- Reverse engineers software specifications
- Analyses traces of software behaviour
- Uses machine learning techniques to extract rules relating program variables
- Can be used as basis for interpreting output from biological models
 - Prevent modeller from erroneously altering model behaviour
 - Precisely characterise specific model properties
 - Documenting or discovering novel aspects of model behaviour

PIPE Daikon PRISM

Daikon

- Reverse engineers software specifications
- Analyses traces of software behaviour
- Uses machine learning techniques to extract rules relating program variables
- Can be used as basis for interpreting output from biological models
 - Prevent modeller from erroneously altering model behaviour
 - Precisely characterise specific model properties
 - Documenting or discovering novel aspects of model behaviour

PIPE Daikon PRISM

Daikon

- Reverse engineers software specifications
- Analyses traces of software behaviour
- Uses machine learning techniques to extract rules relating program variables
- Can be used as basis for interpreting output from biological models
 - Prevent modeller from erroneously altering model behaviour
 - Precisely characterise specific model properties
 - Documenting or discovering novel aspects of model behaviour

PIPE Daikon PRISM

Daikon

- Reverse engineers software specifications
- Analyses traces of software behaviour
- Uses machine learning techniques to extract rules relating program variables
- Can be used as basis for interpreting output from biological models
 - Prevent modeller from erroneously altering model behaviour
 - Precisely characterise specific model properties
 - Documenting or discovering novel aspects of model behaviour
PIPE Daikon PRISM

Daikon

- Reverse engineers software specifications
- Analyses traces of software behaviour
- Uses machine learning techniques to extract rules relating program variables
- Can be used as basis for interpreting output from biological models
 - Prevent modeller from erroneously altering model behaviour
 - Precisely characterise specific model properties
 - Documenting or discovering novel aspects of model behaviour

PIPE Daikon PRISM

Daikon

- Reverse engineers software specifications
- Analyses traces of software behaviour
- Uses machine learning techniques to extract rules relating program variables
- Can be used as basis for interpreting output from biological models
 - Prevent modeller from erroneously altering model behaviour
 - Precisely characterise specific model properties
 - Documenting or discovering novel aspects of model behaviour

PIPE Daikon PRISM

Daikon

- Reverse engineers software specifications
- Analyses traces of software behaviour
- Uses machine learning techniques to extract rules relating program variables
- Can be used as basis for interpreting output from biological models
 - Prevent modeller from erroneously altering model behaviour
 - Precisely characterise specific model properties
 - Documenting or discovering novel aspects of model behaviour

PIPE Daikon PRISM

Using Daikon with Biological Models

- Model aims to investigate effect of repressors and activators on expression activity
- Executed model 30 times
 - 10 times with activators and no repressors (positve)
 - 10 times with both repressors and activators (negative)
 - 10 times with no repressors and no activators (constitutive)

PIPE Daikon PRISM

Using Daikon with Biological Models

- Model aims to investigate effect of repressors and activators on expression activity
- Executed model 30 times
 - 10 times with activators and no repressors (positve)
 - 10 times with both repressors and activators (negative)
 - 10 times with no repressors and no activators (constitutive)

PIPE Daikon PRISM

Using Daikon with Biological Models

- Model aims to investigate effect of repressors and activators on expression activity
- Executed model 30 times
 - 10 times with activators and no repressors (positve)
 - 10 times with both repressors and activators (negative)
 - 10 times with no repressors and no activators (constitutive)

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

· < 프 > < 프 >

PIPE Daikon PRISM

Invariants Discovered by Daikon

Positive	Negative	Constitutive
$gene = one of \{0, 1\}$ $rep = rep-gene = 0$ $0 \le rna \le 24$ $0 \le prot \le 205$ $act = one of \{9, 10\}$ $act-gene = one of \{0, 1\}$ $(gene \land act-gene) = 0$ $(rna = 0) \rightarrow (prot = 0)$	$gene = one of \{0, 1\}$ $act = act-gene = 0$ $rna = one of \{0, 1\}$ $rep = one of \{9, 10\}$ $rep-gene = one of \{0, 1, 2, 3\}$ $(gene \land rep-gene) = 0$ $rna < rep$	$rep = rep-gene$ $= act$ $= act-gene$ $= 0$ $gene = 1$ $0 \le rna \le 7$ $0 \le prot \le 32$ $rna \ge rep$
	rep > prot	

ヘロト ヘワト ヘビト ヘビト

ъ

PIPE Daikon PRISM

Probabilistic and Symbolic Model Checking (PRISM)

- Probabilistic model checking is a formal verification technique.
- Construction of a precise mathematical model of a system which is to be analysed.
- Properties are expressed formally using temporal logic and analysed.
- The fundamental components of the **PRISM language** are modules, variables and commands.
 - A model is composed of a number of modules which can interact with each other.
 - A module contains a number of local variables and commands.

・ロト ・ 理 ト ・ ヨ ト ・

э

PIPE Daikon PRISM

Probabilistic and Symbolic Model Checking (PRISM)

- Probabilistic model checking is a formal verification technique.
- Construction of a precise mathematical model of a system which is to be analysed.
- Properties are expressed formally using temporal logic and analysed.
- The fundamental components of the **PRISM language** are modules, variables and commands.
 - A model is composed of a number of modules which can interact with each other.
 - A module contains a number of local variables and commands.

イロト 不得 とくほ とくほ とうほ

PIPE Daikon PRISM

Probabilistic and Symbolic Model Checking (PRISM)

- Probabilistic model checking is a formal verification technique.
- Construction of a precise mathematical model of a system which is to be analysed.
- Properties are expressed formally using temporal logic and analysed.
- The fundamental components of the **PRISM language** are modules, variables and commands.
 - A model is composed of a number of modules which can interact with each other.
 - A module contains a number of local variables and commands.

イロト 不得 とくほ とくほ とうほ

PIPE Daikon PRISM

Probabilistic and Symbolic Model Checking (PRISM)

- Probabilistic model checking is a formal verification technique.
- Construction of a precise mathematical model of a system which is to be analysed.
- Properties are expressed formally using temporal logic and analysed.
- The fundamental components of the **PRISM language** are modules, variables and commands.
 - A model is composed of a number of modules which can interact with each other.
 - A module contains a number of local variables and commands.

イロト 不得 とくほ とくほ とうほ

PIPE Daikon PRISM

Probabilistic and Symbolic Model Checking (PRISM)

- Probabilistic model checking is a formal verification technique.
- Construction of a precise mathematical model of a system which is to be analysed.
- Properties are expressed formally using temporal logic and analysed.
- The fundamental components of the **PRISM language** are modules, variables and commands.
 - A model is composed of a number of modules which can interact with each other.
 - A module contains a number of local variables and commands.

・ロト ・ 理 ト ・ ヨ ト ・

э

PIPE Daikon **PRISM**

Probabilistic and Symbolic Model Checking (PRISM)

- Probabilistic model checking is a formal verification technique.
- Construction of a precise mathematical model of a system which is to be analysed.
- Properties are expressed formally using temporal logic and analysed.
- The fundamental components of the **PRISM language** are modules, variables and commands.
 - A model is composed of a number of modules which can interact with each other.
 - A module contains a number of local variables and commands.

・ロト ・ 理 ト ・ ヨ ト ・

3

PIPE Daikon PRISM

PRISM Model

```
module bacterium
    gene : [0..1] init 1;
    rna : [0.. rnabound] init 0;
    protein : [0.. proteinbound] init 0;
    // [gene ]b -c1-> [gene + rna ]b
    [] gene = 1 & rna < rnabound -> c1 : (rna' = rna + 1);
    // [ rna ]b -c2-> [ rna + protein ]b
    [] rna > 0 \& protein < proteinbound -> c2*rna :(protein' = protein + 1);
    // [ rna ]b -c3-> [ ]b
    [] rna > 0 -> c3^{*}rna : (rna' = rna - 1);
    // [ protein ]b -c4-> [ ]b
    [] protein > 0 -> c4*protein : (protein' = protein - 1);
endmodule
```

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

PIPE Daikon PRISM

PRISM Results: Ranges of molecules in Constitutive Expression

$$0 \le rna \le 7$$
 $0 \le prot \le 32$

 $P = ? [true U \le T rna > bound]$ $P = ? [true U \le T protein > bound]$

Francisco J. Romero-Campero A Hybrid Approach to Modelling Biological Systems

PIPE Daikon PRISM

PRISM Results: Relationship between rna/protein and repressors

Francisco J. Romero-Campero A Hybrid Approach to Modelling Biological Systems

- Models and Reality
 Modelling Approaches

 ODEs
 Computational Modell
 - Petri Nets
 - π-calculus
 - P Systems
- Analysing Computational Models
 - PIPE
 - Daikon
 - PRISM

(< ∃) < ∃)</p>

э

Take Home Message

Modelling is intrinsic to the scientific activity.

- Limitations of the Conventional Macroscopic and deterministic approach (ODE).
- Computational Modelling: Not only custom programs but formal frameworks (Petri Nets, Process Algebra, Membrane Computing).
- Simulation is not enough. Analysis on computational models is necessary.
- PIPE, Daikon and PRISM are good candidates to solve this problem.

Take Home Message

- Modelling is intrinsic to the scientific activity.
- Limitations of the Conventional Macroscopic and deterministic approach (ODE).
- Computational Modelling: Not only custom programs but formal frameworks (Petri Nets, Process Algebra, Membrane Computing).
- Simulation is not enough. Analysis on computational models is necessary.
- PIPE, Daikon and PRISM are good candidates to solve this problem.

Take Home Message

- Modelling is intrinsic to the scientific activity.
- Limitations of the Conventional Macroscopic and deterministic approach (ODE).
- Computational Modelling: Not only custom programs but formal frameworks (Petri Nets, Process Algebra, Membrane Computing).
- Simulation is not enough. Analysis on computational models is necessary.
- PIPE, Daikon and PRISM are good candidates to solve this problem.

ヘロト 人間 ト ヘヨト ヘヨト

Take Home Message

- Modelling is intrinsic to the scientific activity.
- Limitations of the Conventional Macroscopic and deterministic approach (ODE).
- Computational Modelling: Not only custom programs but formal frameworks (Petri Nets, Process Algebra, Membrane Computing).
- Simulation is not enough. Analysis on computational models is necessary.
- PIPE, Daikon and PRISM are good candidates to solve this problem.

ヘロト 人間 ト ヘヨト ヘヨト

Take Home Message

- Modelling is intrinsic to the scientific activity.
- Limitations of the Conventional Macroscopic and deterministic approach (ODE).
- Computational Modelling: Not only custom programs but formal frameworks (Petri Nets, Process Algebra, Membrane Computing).
- Simulation is not enough. Analysis on computational models is necessary.
- PIPE, Daikon and PRISM are good candidates to solve this problem.

Ενχαριστω π**ο**λν

Thank You

Francisco J. Romero-Campero A Hybrid Approach to Modelling Biological Systems

ヘロン ヘアン ヘビン ヘビン

3