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Short review of Shannon information theory

◮ Communication model [1]
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Short review of Shannon information theory

◮ Established the fundamental natural limits on communication

◮ Source entropy [1]

H(X ) =
∑

i

PiHi = −
∑

i ,j

Pipi(j) log pi(j) (1)

◮ Channel capacity [1] The capacity C of a discrete channel is
given by

C = lim
T→∞

log N(T )

T

where N(T ) is the number of allowed signals of duration T .



Multiset source entropy

Consider a discrete information source which produces multiset
messages:

◮ A message is a multiset of symbols.

◮ A multiset is a string equivalence class.

◮ The entropy rate of such a source is proved to be zero in [2]:

H(Xmultiset) = lim
n→∞

1

n
H({Xi}n

i=1) = 0



Information content of a multiset
The information content of an outcome (multiset) x is

h(x) = log
1

P(x)
= log
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i=1 p
mi

i

Definition according to [3].
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Encoding length

We consider a set X of N symbols, an alphabet A, and the length
of encoding l , therefore:
X = {xi = an1

1 an2
2 . . . anb

b
| ∑b

j=1 nj = l , aj ∈ A}
Theorem
Non-uniform encodings over multisets are shorter than uniform

encodings over multisets.



Channel Capacity in base 4
We consider that a sequence of multisets is transmitted along the
channel. The capacity of such a channel is computed for base 4,
then some properties of it for any base are presented.

According to Shannons’ Capacity Theorem we get b
(ak)
ij = tk

because we consider that the duration to produce ak is the same
for each (i , j) ∈ E . The determinant equation is
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Channel Capacity

Theorem
The multiset channel capacity is zero, C = 0.
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= 0

W =
1
t
√

x
⇒ C = −1

t
logb x . (2)

(1 − x)b = 0 ⇒ W = 1 ⇒ C = 0.



Conclusion

◮ we derive a formula for the information content of a multiset

◮ as future work:
◮ further explore the properties of multiset-based communication

systems
◮ compare these to similar results for string-based

communication systems
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