Active membrane systems without charges and using only symmetric elementary division characterise P

Niall Murphy¹ and Damien Woods²

¹Department of Computer Science, NUI Maynooth, Ireland. Funded by the Irish Research Council for Science Engineering and Technology

²Cork Complex Systems Group, CS Dept, University College Cork, Ireland. Funded by the Science Foundation of Ireland

June 25, 2007

伺 ト イ ヨ ト イ ヨ ト

- Recogniser active membranes without charges
 - Recogniser membrane systems
 - Evolution rules
 - Symmetric division
- 2 The P-Conjecture
 - Current results
 - Our result
- 3 Proof
 - Tricks
 - Increase in equivalence classes
 - RAM register structure
 - RAM algorithm

4 Conclusions

- Asymmetric division
- Wrap up

Recogniser membrane systems Evolution rules Symmetric division

Recogniser membrane systems

- Decide language problems
- Non-deterministic
- Maximally parallel
- (Semi-)Uniform by polynomial time deterministic Turing machines
- Have an *input* membrane
- Produce the correct yes or no response to the given problem in polynomial time
- Computation is confluent

(4月) (4日) (4日)

Recogniser membrane systems Evolution rules Symmetric division

Confluence, all computation paths are valid

< 🗇 > < 🖃 >

ъ

Recogniser membrane systems Evolution rules Symmetric division

The evolution rules of active membranes with out charges

- Object evolution, type (a), \bigcirc \rightarrow \bigcirc bc
- Communication in, type (b), $a \longrightarrow c$
- Communication out, type (c), $(a) \rightarrow (b)$ c
- Dissolution, type (d), \bigcirc a \rightarrow c
- Elementary division, type (e), $(a) \rightarrow (b) (c)$
- Non-elementary division, type (f), $(a \ b \ c) \rightarrow (a \ c) \ (b \ c)$

・ 同 ト ・ ヨ ト ・ ヨ ト

Recogniser membrane systems Evolution rules Symmetric division

Symmetric and Asymmetric division

Rules of type
$$(e)$$
 \xrightarrow{a} \xrightarrow{b} \xrightarrow{c}

Rules of type
$$(e_s)$$

 $\text{PMC}^{S}_{\mathcal{EAM}^{0}_{-a}}$

(日) (同) (三) (三)

Recogniser active membranes without charges

The P-Conjecture

Current results Our result

What is currently known

Artiom Alhazov and Mario Pérez-Jiménez. 2006

Miguel Gutiérrez-Naranjo, Mario Pérez-Jiménez, Agustín Riscos-Núñez, and Francisco Romero-Campero=2006 📃 🗤 🔿 🔿

Recogniser active membranes without charges

The P-Conjecture

Our result

Our result

Active membrane systems without charges and using only symme

Increase in equivalence classe RAM register structure RAM algorithm

We define an equivalence class in membrane systems

Conclusions

- Membranes with the same contents
- Membranes with the same parent

- 4 同 6 4 日 6 4 日 6

Tricks Increase in equivalence classes RAM register structure RAM algorithm

We have a deterministic simulation

• We sort rules, equivalence classes and objects

Conclusions

- Simulation is the same every time
- Confluence!

(日) (同) (三) (三)

Tricks Increase in equivalence classes RAM register structure RAM algorithm

Object evolution rules, $a \rightarrow b, c$

3

Increase in equivalence classes RAM register structure RAM algorithm

Communication out rules, $[a] \rightarrow [c]$

イロト イポト イヨト イヨト

3

Tricks Increase in equivalence classes RAM register structure RAM algorithm

Dissolution rules, $a \rightarrow c$

・ロト ・回ト ・ヨト ・ヨト

-

Increase: 0

(日) (同) (日) (日) (日)

Tricks Increase in equivalence classes RAM register structure RAM algorithm

For (b) rules in the case $\mathbb{V} < \mathbb{M}$, the increase is |V|

Conclusions

▲ □ ▶ ▲ □ ▶ ▲

Recogniser active membranes without charges The P-Conjecture Proof Conclusions RAM register structure RAM algorithm

For (b) rules in the case $\mathbb{V} \geq \mathbb{M}$, the increase is |V| - 1

▲ □ ▶ ▲ □ ▶ ▲

Tricks Increase in equivalence classes RAM register structure RAM algorithm

The register structures

(a)

3

Tricks Increase in equivalence classes RAM register structure RAM algorithm

Loop algorithm

	Input: equivalence_class
	Output: equivalence_class after one timestep of computation
	$b_rules \leftarrow \emptyset$;
	$b_{ecs} \leftarrow \emptyset;$
	b_objs ← Ø;
O(R)	forall rule in sortedRules do
	if rule.label matches equivalence_class.label and rule is not type (b) then
O(V)	forall object in sortedObjects do
	if not all copies of object have been used then
	if rule is type (a) then
O(V)	Apply_a_rule(equivalence_class, object, rule);
	else if rule is type (c) then
O(1)	Apply_c_rule(equivalence_class, object, rule);
	else if rule is type (d) then
O(V)	Apply_d_rule(equivalence_class, object, rule);
- (1)	else if rule is type (e_s) then
O(1)	Apply_e_rule(equivalence_class, object, rule);
	end
	end
	end
	end
	if rule is type (b) then
O(E)	forall child_ec in equivalence_class do
	if child_ec.label = rule.lhsLabel and object.used ≥ 1 then
	append child_ec to b_ecs ;
	append object to b_objs ;
O(V E)	Apply_b_rule(b_ecs, b_objs, rule)
	end
	end
	end
	end

 $O(|V| \times |E|)$ reset all used counters to 0;

Function ApplyRules(equivalence_class) Applies all applicable rules for an equivalence class for one timestep

ъ

Tricks Increase in equivalence classes RAM register structure RAM algorithm

Algorithm for (b) rules

.

	Input: membrane
	Output: membrane after (b) rules have been applied
	$b_{objects_sorted} \leftarrow sort(b_{objects});$
	b_equivalence_classes_sorted
O(V)	forall object in b_objects_sorted do
O(E)	forall equivalence_class in b_equivalence_classes_sorted do
	if object.multiplicity < equivalence_class.multiplicity then
	copy equivalence_class to new_equiv_class ;
	subtract object.multiplicity from new_equiv_class.multiplicity ;
	equivalence_class.multiplicity \leftarrow object.multiplicity;
	equivalence_class.used ← equivalence_class.multiplicity;
	increment equivalence_class.object.multiplicity :
	increment equivalence.class.object.used :
	end
	else if object.multiplicity ≥ equivalence_class.multiplicity then
	increment equivalence class object multiplicity,
	morement equivalence class. Object used ,
	equivalence_class.used
	subtract equivalence_class.multiplicity from object.multiplicity ;
	end
	end
	end

Function Apply_b_rules ($b_{equivalence_classes}$, $b_{objects}$, b_{rules}). Total time complexity O(|V||E|).

<ロ> <同> <同> < 同> < 同>

Tricks Increase in equivalence classes RAM register structure RAM algorithm

Total simulation time

$O\big(t|R||E|^2|V|\big)$

Niall Murphy and Damien Woods Active membrane systems without charges and using only symmetry

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Asymmetric division Wrap up

Asymmetric elementary division can create an exponential number of equivalence classes

同 ト イ ヨ ト イ ヨ ト

Recogniser active membranes without charges Proof

Conclusions

The result

• $PMC^{S}_{\mathcal{EAM}^{0}_{-a}}$ allows dissolution rules but has a P upper bound.

Wrap up

• We simulate in polynomial time a model which uses exponential numbers of membranes and objects

・ 同 ト ・ ヨ ト ・ ヨ ト

Asymmetric division Wrap up

Future work

- Upper bound or lower bound on the asymmetric case
- Symmetric non-elementary division
- log space uniformity

- ∢ ≣ ▶