Hierarchical Clustering with Membrane Computing

M. Cardona, M. A. Colomer, M. J. Pérez-Jiménez, A. Zaragoza
Universidad de Lleida, Universidad de Sevilla (Spain)
27th June 2007

The main Goal is:

- Classify a group of individuals with dichotomizing variables (measuring the presence or absence of certain qualitative characteristics).
- Design a P system for each Boolean matrix associated with a group of individuals.

Hierarchical Clustering

- The clustering is used to characterize and to order a vast amount of information on the variability of population of individuals.
- It is a technique based in statistical methods.
- It is obtained a grouping formed by similar individuals (cluster).
- The result is a hierarchy where the individuals are grouped in levels. Each level is a partition of the set of the individuals.

The individuals to classify are the elements of the set $\Omega=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{N}\right\}$
Each individual are k-tuple formed by k characteristics or variables.

The values of the individuals can be described in the matrix form:

$$
P_{N k}=\left(\begin{array}{llll}
\omega_{11} & \omega_{12} & \ldots & \omega_{1 k} \\
\omega_{21} & \omega_{22} & \ldots & \omega_{2 k} \\
& & \ldots & \\
\omega_{N 1} & \omega_{N 2} & \ldots & \omega_{N k}
\end{array}\right) \quad \omega_{\mathrm{ij}} \in\{0,1\} \quad 1 \leq \mathbf{i}, \mathbf{j} \leq \mathbf{k}
$$

To make the hierarchy we need:

- A function measuring the similarity between individuals. We use the similarity defined as follows:

$$
s\left(\omega_{i}, \omega_{j}\right)=\sum_{r=1}^{k}\left(1-\left|\omega_{i r}-\omega_{j r}\right|\right)
$$

- A function measuring the similarity between clusters, called aggregation index. We use the aggregation index based on the minimum defined by:

$$
\delta\left(h, h^{\prime}\right)=\min \left\{s\left(\omega_{i}, \omega_{j}\right) \mid \omega_{i} \in h, \omega_{j} \in h^{\prime}\right\} \quad h, h^{\prime} \in \mathrm{P}(\Omega)
$$

- A function measuring the homogeneity degree between the individuals belonging to the same cluster. This application is called hierarchical index.

$$
f(h)=\delta\left(h_{1}, h_{2}\right) \quad \text { if } \quad h=h_{1} \cup h_{2}, h, h_{1}, h_{2} \in \mathrm{P}(\Omega)
$$

An algorithm for the construction of a hierarchy:

1. The first level of the hierarchy :

$$
P_{0}=\left\{S_{1}=\left\{\omega_{1}\right\}, S_{2}=\left\{\omega_{2}\right\}, \ldots, S_{N}=\left\{\omega_{N}\right\}\right\}
$$

the aggregation index is

$$
\delta\left(\left\{\omega_{i}\right\},\left\{\omega_{j}\right\}\right)=s\left(\omega_{i}, \omega_{j}\right)
$$

and the hierarchical index is

$$
f\left(\left\{\omega_{i}\right\}\right)=k \quad 1 \leq i \leq N
$$

2. Find the two closest clusters $\mathrm{S}_{\mathrm{i}}, \mathrm{S}_{\mathrm{j}} \quad 1 \leq i<j \leq N$ and we consider a new cluster $S_{i}=S_{i} \cup S_{j}$

- Remove S_{j} from P_{0}, and the new partition is:

$$
P_{1}=\left\{S_{1}, \ldots, S_{i}=\left\{S_{i} \cup S_{j}\right\}, \ldots, S_{j-1}, S_{j+1}, \ldots S_{N}\right\}
$$

3. Compute the aggregation index between all pairs of the clusters in the new partition.
4. Go to step 2 until there is only one set remaining.

Remark: If at step 2 there are more than one possibility, then one of them is chosen so the hierarchy obtained is not unique.

Example of construction of the indexed hierarchy

1- The individuals to classify are

$$
\omega_{1}=(1,0,0,0) \omega_{2}=(0,1,1,0) \omega_{3}=(1,1,1,0) \omega_{4}=(1,1,1,1)
$$

- The matrix of similarities is:

$$
\left(\begin{array}{llll}
4 & 1 & 2 & 1 \\
1 & 4 & 3 & 2 \\
2 & 3 & 4 & 3 \\
1 & 2 & 3 & 4
\end{array}\right)
$$

Example of construction of the indexed hierarchy

1- We want to classify the individuals

$$
\omega_{1}=(1,0,0,0) \omega_{2}=(0,1,1,0) \omega_{3}=(1,1,1,0) \omega_{4}=(1,1,1,1)
$$

- The matrix of similarities is:

$$
\left(\begin{array}{cccc}
4 & 1 & 2 & 1 \\
1 & 4 & 3 & 2 \\
2 & 3 & 4 & 3 \\
1 & 2 & 3 & 4
\end{array}\right)\left[\begin{array}{c}
s\left(\omega_{1}, \omega_{3}\right)= \\
(1-|1-1|)+(1-|0-1|) \\
+(1-|0-1|)+(1-|0-0|)
\end{array}\right.
$$

Example of construction of the indexed hierarchy

1- We want to classify the individuals

$$
\omega_{1}=(1,0,0,0) \omega_{2}=(0,1,1,0) \omega_{3}=(1,1,1,0) \omega_{4}=(1,1,1,1)
$$

- The matrix of similarities is:

$$
\left(\begin{array}{llll}
4 & 1 & 2 & 1 \\
1 & 4 & 3 & 2 \\
2 & 3 & 4 & 3 \\
1 & 2 & 3 & 4
\end{array}\right)
$$

- The initial partition is

$$
P_{0}=\left\{\left\{\omega_{1}\right\},\left\{\omega_{2}\right\},\left\{\omega_{3}\right\},\left\{\omega_{4}\right\}\right\}
$$

-The hierarchical index are

$$
f\left(\left\{\omega_{1}\right\}\right)=f\left(\left\{\omega_{2}\right\}\right)=f\left(\left\{\omega_{3}\right\}\right)=f\left(\left\{\omega_{4}\right\}\right)=4
$$

- The aggregation index in this step is the same as the similarity

2- We obtain the partition P_{1} joining the two most similar clusters of the previous partition. Maximizing δ

- In this case for instance ω_{3} and ω_{4}

$$
P_{1}=\left\{\left\{\omega_{1}\right\},\left\{\omega_{2}\right\},\left\{\omega_{3}, \omega_{4}\right\}\right\}
$$

$$
\left(\begin{array}{llll}
4 & 1 & 2 & 1 \\
1 & 4 & 3 & 2 \\
2 & 3 & 4 & 3 \\
1 & 2 & 3 & 4
\end{array}\right)
$$

- The hierarchical index is $f\left(\left\{\omega_{3}, \omega_{4}\right\}\right)=3$
- The aggregation index of the new cluster is:

$$
\delta\left(\left\{\omega_{1}\right\},\left\{\omega_{3}, \omega_{4}\right\}\right)=\min \left\{s\left(\left\{\omega_{1}\right\},\left\{\omega_{3}\right\}\right), s\left(\left\{\omega_{1}\right\},\left\{\omega_{4}\right\}\right)\right\}=1
$$

$$
\delta\left(\left\{\omega_{2}\right\},\left\{\omega_{3}, \omega_{4}\right\}\right)=\min \left\{s\left(\left\{\omega_{2}\right\},\left\{\omega_{3}\right\}\right), s\left(\left\{\omega_{2}\right\},\left\{\omega_{4}\right\}\right)\right\}=2
$$

$$
\text { and we obtain the matrix } \quad\left(\begin{array}{ccc}
- & 1 & 1 \\
1 & - & 2 \\
1 & 2 & -
\end{array}\right)
$$

3- We repeat the previous step

- In this case the maxim value of the aggregation index is obtained with $\left\{\omega_{2}\right\}$ and $\left\{\omega_{3}, \omega_{4}\right\}$

$$
P_{2}=\left\{\left\{\omega_{1}\right\},\left\{\omega_{2}, \omega_{3}, \omega_{4}\right\}\right\}
$$

- The hierarchical index is

$$
f\left(\left\{\omega_{2}, \omega_{3}, \omega_{4}\right\}\right)=2
$$

- The aggregation index of the new classes are calculated:

$$
\delta\left(\left\{\omega_{1}\right\},\left\{\omega_{2}, \omega_{3}, \omega_{4}\right\}\right)=\min \left\{\delta\left(\left\{\omega_{1}\right\},\left\{\omega_{3}, \omega_{4}\right\}\right), \delta\left(\left\{\omega_{1}\right\},\left\{\omega_{2}\right\}\right)\right\}=1
$$

4- We repeat the step 2

- In this case only the clusters are left to be joined $\left\{\omega_{1}\right\}$ and $\left\{\omega_{2}, \omega_{3}, \omega_{4}\right\}$

$$
P_{3}=\left\{\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}\right\}=\Omega
$$

- The hierarchical index is $\quad f\left(\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}\right)=1$

Designing a P System

Let $P_{N k}=\left(\omega_{i j}\right)_{1 \leq i \leq N, 1 \leq j \leq k}$ the value matrix of the individuals to classify:

$$
\Pi\left(P_{N k}\right)=\left(\Gamma\left(P_{N k}\right), \mu\left(P_{N k}\right), M_{1}, M_{2}, \ldots, M_{N}, R, \rho\right)
$$

$>$ Membrane structure: $\mu\left(P_{N k}\right)=\left[{ }_{N}[]_{1}\right]_{2}\left[_{2} \ldots\left[{ }_{N-1}\right]_{N-1}\right]_{N}$
> Working alphabet:
$\left\{e_{j s}, \quad d_{j s}: 1 \leq j \leq N, 1 \leq s \leq k\right\} \cup\left\{a_{s}, \quad b_{s}: 1 \leq s \leq k\right\} \cup$ $\left\{S_{i j}, \quad C_{i j}: 1 \leq i<j \leq N\right\} \cup$ $\left\{\alpha_{i j t}, X_{i j t}: 1 \leq i<j \leq N, 1 \leq t \leq k-1\right\} \cup\left\{\gamma_{i}: 1 \leq i \leq N\right\} \cup$ $\left\{\eta_{i}: 0 \leq i \leq(N-1)(3 k-1)\right\} \cup\left\{\epsilon_{i}: 0 \leq i \leq 3 k-2\right\} \cup$ $\left\{\beta_{i}: 0 \leq i \leq k-2\right\} \cup\{\sharp\}$

$>$ Initial multisets:

$$
\begin{aligned}
\mathcal{M}_{i}= & \left\{a_{s}^{(N-i) \omega_{i s}}: 1 \leq s \leq k \wedge 1 \leq i \leq N-1\right\} \cup \\
& \left\{b_{s}^{(N-i)\left(1-\omega_{i s}\right)}: 1 \leq s \leq k \wedge 1 \leq i \leq N-1\right\} \\
& \left\{e_{j j_{j s}}: 1 \leq s \leq k \wedge i \leq j \leq N\right\} \cup \\
& \left\{d_{j s}^{\left(1-\omega_{j s}\right)}: 1 \leq s \leq k \wedge i \leq j \leq N\right\} ;
\end{aligned}
$$

$\mathcal{M}_{N}=\left\{\begin{array}{lll}\gamma_{N}, & \epsilon_{0}, & \eta_{0}\end{array}\right\}$

An example

$$
\omega_{1}=(1,0,0,0) \quad \omega_{2}=(0,1,1,0) \quad \omega_{3}=(1,1,1,0) \quad \omega_{4}=(1,1,1,1)
$$

The initial configuration is

$$
\begin{aligned}
& \boldsymbol{a}_{1}^{3} b_{2}^{3} b_{3}^{3} b_{4}^{3} \\
& d_{21} e_{22} e_{23} d_{24} \\
& e_{31} e_{32} e_{33} d_{34} \\
& e_{41} e_{42} e_{43} e_{44}
\end{aligned}
$$

> The structure of computation:

1. calculate the similarity between individuals

- membrane $i \quad(1 \leq i \leq N-1)$
- 1 step
- rules: $r_{k+4}=\left\{a_{s} e_{j s} \rightarrow\left(S_{i j}\right.\right.$, out $\left.): 1 \leq s \leq k, i+1 \leq j \leq N\right\}$
$r_{k+5}=\left\{b_{s} d_{j s} \rightarrow\left(S_{i j}\right.\right.$, out $\left.): 1 \leq s \leq k, i+1 \leq j \leq N\right\}$

2. select the two closest clusters:

- skin membrane N
- k steps
- rules:

$$
\begin{aligned}
& r_{0}=\left\{\epsilon_{0} \rightarrow \epsilon_{1} \beta_{0}\right\} \cup\left\{\eta_{i} \rightarrow \eta_{i+1}: 0 \leq i \leq(N-1)(3 k-1)-1\right\} \\
& \cup\left\{\epsilon_{i} \rightarrow \epsilon_{i+1}: 1 \leq i \leq 3 k-2 \wedge i \neq k\right\} \\
& r_{u}=\left\{\beta_{u-1} S_{i j}^{k-u} \rightarrow \alpha_{i j(k-u)}: 1 \leq i<j \leq N\right\} \\
& r_{u}^{\prime}=\left\{\beta_{u-1} \rightarrow \beta_{u}\right\} \\
& r_{k-1}^{\prime}=\left\{\eta_{(N-1)(3 k-1)} \rightarrow(\sharp, \text { out })\right\} \\
& r_{k}=\left\{\epsilon_{k} \gamma_{q} \alpha_{i j t} \rightarrow \epsilon_{k+1} X_{i j t}^{q-2} \gamma_{q-1}\left(X_{i j t}, \text { out }\right):\right. \\
& r_{k}^{\prime}=\left\{\epsilon_{k} \rightarrow \epsilon_{k+1}\right\}
\end{aligned}
$$

- priorities:
$\left\{r_{k}>r_{k}^{\prime}\right\} \cup\left\{r_{1}>r_{1}^{\prime}>r_{2}>r_{2}^{\prime}>\ldots>r_{k-1}>r_{k-1}^{\prime}\right\}$

3. compute the aggregation index between new cluster and the other clusters:

- skin membrane N
- 2k-1 steps
- rules:

$$
\begin{aligned}
r_{k+1}= & \left\{X_{i j t} S_{i p} S_{j p} \rightarrow C_{i p} X_{i j t}: 1 \leq i<j<p \leq N, 1 \leq t \leq k-1\right\} \\
& \left\{X_{i j t} S_{i p} S_{p j} \rightarrow C_{i p} X_{i j t}: 1 \leq i<p<j \leq N, 1 \leq t \leq k-1\right\} \\
& \left\{X_{i j t} S_{p i} S_{p j} \rightarrow C_{p i} X_{i j t}: 1 \leq p<i<j \leq N, 1 \leq t \leq k-1\right\} \\
r_{k+2}= & \left\{X_{i j t} S_{i p} \rightarrow X_{i j t}: 1 \leq i<p<j \leq N, 1 \leq t \leq k-1\right\} \\
& \left\{X_{i j t} S_{j p} \rightarrow X_{i j t}: 1 \leq i<j<p \leq N, 1 \leq t \leq k-1\right\} \\
& \left\{X_{i j t} S_{p i} \rightarrow X_{i j t}: 1 \leq p<i<j \leq N, 1 \leq t \leq k-1\right\} \\
& \left\{X_{i j t} S_{p j} \rightarrow X_{i j t}: 1 \leq p<i<j \leq N, 1 \leq t \leq k-1\right\} \\
& \left\{X_{i j t} S_{p j} \rightarrow X_{i j t}: 1 \leq i<p<j \leq N, 1 \leq t \leq k-1\right\} \\
r_{k+3}= & \left\{C_{i j} \rightarrow S_{i j}: 1 \leq i<j \leq N\right\} \\
& \left\{\epsilon_{3 k-1} X_{i j t}^{q-2} \gamma_{q-1} \rightarrow \epsilon_{1} \beta_{0} \gamma_{q-1}: 1 \leq i<j \leq N, 1 \leq t \leq k-1\right\}
\end{aligned}
$$

- priorities:

$$
\left\{r_{k+1}>r_{k+2}>r_{k+3}>r_{k+3}^{\prime}\right\}
$$

4. repeat the steps 2 and $3 N-1$ times:

- Initially: $h_{1}=\left\{\omega_{1}\right\} \quad h_{2}=\left\{\omega_{2}\right\}$

$$
h_{3}=\left\{\omega_{3}\right\} \quad h_{4}=\left\{\omega_{4}\right\}
$$

- From the object X_{343} we obtain:

$$
\begin{aligned}
& h_{1}=\left\{\omega_{1}\right\} \quad h_{2}=\left\{\omega_{2}\right\} \\
& h_{3}=\left\{\omega_{3}, \omega_{4}\right\}
\end{aligned}
$$

- From the object X_{232} we obtain:

$$
h_{1}=\left\{\omega_{1}\right\} \quad h_{2}=\left\{\omega_{2}, \omega_{3}, \omega_{4}\right\}
$$

- Finally from the object X_{121}

4 we obtain:

$$
h_{1}=\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}
$$

- The resources initially required for constructing the P system $\Pi\left(P_{N k}\right)$ from the matrix $P_{N k}$ are:
- Initial number of membranes: N
- Size of the alphabet: $\quad \theta\left(k \cdot N^{2}\right)$
- Sum of the sizes of initial multisets: $\theta(k \cdot N)$
- Number of rules: $\theta\left(k \cdot N^{3}\right)$
- Maximum of rules' lengths: $\theta(N)$
- Number of priority relations: $\theta\left(k^{2} \cdot N^{6}\right)$
- Cost of time: $\theta(k \cdot N)$
- In classical algorithm:
- Number of steps: $\theta\left(k \cdot N^{3}\right)$

Formal Verification

For each matrix $P_{N k}$ we construct a P system $\Pi\left(P_{N k}\right)$. We must to prove that:

- The multiplicity of the objects $S_{i j} \in C_{1}(N) \rightarrow t_{i j}^{(1)}$

$$
t_{i j}^{(1)}=s\left(\omega_{i}, \omega_{j}\right)
$$

- The multiplicity of the objects $S_{i j} \in C_{1+n(3 k-1)}(N) \rightarrow t_{i j}^{(n)}$

$$
t_{i j}^{(n)}=\delta\left(B_{i}^{(n)}, B_{j}^{(n)}\right) \quad B_{i}^{(n)}, B_{j}^{(n)} \in \Delta_{n}
$$

- The halting configuration is $C_{(N-1)(3 k-1)}$
- The objects $X_{i_{n} j_{n} t_{i_{n} j_{n}}^{(n)}}$ are sent to environment only in $C_{1+k+n(3 k-1)}$

$$
\begin{aligned}
& \text { and } t_{i_{n} j_{n}}^{(n)}=\max \left\{t_{i j}^{(n)} \mid B_{i}^{(n)}, B_{j}^{(n)} \in \Delta_{n}\right\} \\
& \qquad B_{i_{n}}^{(n+1)}=B_{i_{n}}^{(n)} \cup B_{j_{n}}^{(n)} \in \Delta_{n+1}
\end{aligned}
$$

- With the partition $\Delta_{0}, \Delta_{1}, \ldots, \Delta_{N-1}$ we can construct a hierarchy

Conclusions

- A P system associated with a set of individuals is presented.
- This P system provides one possible hierarchy.
- The solution is encoded in the environment of the P system
- The solution provide is:
- Semi-uniform
- Efficient
- The amount of resources initially required to construct the P system is quadratic in N and k.
- ADVANTATGE:
\checkmark The cost of time of the P system is quadratic in N and k.
\checkmark In classical algorithm the number of steps:

$$
\theta\left(k \cdot N^{3}\right)
$$

