# On the Reachability Problem in P Systems with Mobile Membranes

Bogdan Aman<sup>1</sup> <u>Gabriel Ciobanu<sup>1,2</sup></u>

 <sup>1</sup>Romanian Academy, Institute of Computer Science Blvd. Carol I no.8, 700505 Iaşi, Romania
<sup>2</sup> "A.I.Cuza" University of Iaşi, Faculty of Computer Science Blvd. Carol I no.11, 700506 Iaşi, Romania baman@iit.tuiasi.ro, gabriel@info.uaic.ro

8th Workshop on Membrane Computing Thessaloniki, Greece, 25 - 28 June, 2007

## Outline



#### Mobile Ambients

#### 3 Reachability Problem

- From Mobile Membranes to Mobile Ambients
- From Mobile Ambients to Petri Nets
- Deciding Reachability

### 4 Conclusions

# Mobile Membrane Systems

### Definition

A mobile membrane system is a construct

$$\overline{I} = (V \cup \overline{V}, H \cup \overline{H}, \mu, w_1, \dots, w_n, R)$$
, where:

- $n \ge 1$  (the initial degree of the system);
- ②  $V \cup \overline{V}$  is an alphabet (its elements are called objects), where  $V \cap \overline{V} = \emptyset$ ;
- **③**  $H \cup \overline{H}$  is a finite set of labels for membranes, where  $H \cap \overline{H} = \emptyset$ ;
- µ is a membrane structure, consisting of n membranes, labelled (not necessarily in a one-to-one manner) with elements of H;
- w<sub>1</sub>, w<sub>2</sub>,..., w<sub>n</sub> are multisets of objects placed in the n membranes of the system;
- $\bigcirc$  R is a finite set of developmental rules, of the following forms:

4 3 5 4 3

## Mobile Membrane Systems

(a)  $\overline{a} \downarrow \rightarrow \overline{a} \downarrow a \downarrow$ , for  $a \downarrow \in V$ ,  $\overline{a} \downarrow \in \overline{V}$ ; replication rule

The objects  $\overline{a} \downarrow$  are used to create new objects  $a \downarrow$  without being consumed.

(b)  $\overline{a}^{\uparrow} \rightarrow \overline{a}^{\uparrow} a^{\uparrow}$ , for  $a^{\uparrow} \in V$ ,  $\overline{a}^{\uparrow} \in \overline{V}$ ; replication rule

The objects  $\overline{a}$  are used to create new objects a without being consumed.

(c)  $[a\downarrow]_h []_a \rightarrow [[]_h]_a$ , for  $a, h \in H, a\downarrow \in V$ ; endocytosis

An elementary membrane labelled h enters the adjacent membrane labelled a, under the control of object  $a \downarrow$ . The labels h and a remain unchanged during this process; however the object  $a \downarrow$  is consumed during the operation. Membrane a is not necessarily elementary.

(d)  $[[a\uparrow]_h]_a \rightarrow []_h []_a$ , for  $a, h \in H, a\uparrow \in V$ ; exocytosis

An elementary membrane labelled h is sent out of a membrane labelled a, under the control of object  $a\uparrow$ . The labels of the two membranes remain unchanged; the object  $a\uparrow$  of membrane h is consumed during the operation. Membrane a is not necessarily elementary.

(e)  $[]_{\overline{h}} \rightarrow []_{\overline{h}}[]_{h}$  for  $h \in H$ ,  $\overline{h} \in \overline{H}$  division rules An elementary membrane labelled  $\overline{h}$  is divided into two membranes labelled by  $\overline{h}$  and h having the same objects.

4 / 14

## **Mobile Ambients**

### **Syntax**

| С | ::= | in n       | out n |        |    | Capabilities |
|---|-----|------------|-------|--------|----|--------------|
| Α | ::= | $A \mid B$ | C.A   | n[ A ] | !A | Processes    |

### **Axioms**

$$\begin{array}{ll} \textbf{(In)} & n[ \ in \ m. \ A \ | \ A' \ ] \ | \ m[ \ B \ ] \ \Rightarrow \ m[ \ n[ \ A \ | \ A' \ ] \ | \ B \ ] ; \\ \textbf{(Out)} & m[ \ n[ \ out \ m. \ A \ | \ A' \ ] \ | \ B \ ] \ \Rightarrow \ n[ \ A \ | \ A' \ ] \ | \ m[ \ B \ ] ; \\ \textbf{(Repl)} & !A \ \Rightarrow \ A \ | \ !A \ . \end{array}$$

### **Rules**

(Comp) 
$$\frac{A \Rightarrow A'}{A \mid B \Rightarrow A' \mid B}$$
 (Amb)  $\frac{A \Rightarrow A'}{n[A] \Rightarrow n[A']}$   
(Struc)  $\frac{A \equiv A', A' \Rightarrow B', B' \equiv B}{A \Rightarrow B}$ .

イロト イヨト イヨト イヨト

э

### **Mobile Ambients**

#### Structural Congruence

 $A | B \equiv B | A$   $(A | B) | A' \equiv A | (B | A')$   $A \equiv A$   $A \equiv B \text{ implies } B \equiv A$  $A \equiv B, B \equiv A' \text{ implies } A \equiv A'$   $A \equiv B \text{ implies } A \mid A' \equiv B \mid A'$   $A \equiv B \text{ implies } !A \equiv !B$   $A \equiv B \text{ implies } n[A] \equiv n[B]$  $A \equiv B \text{ implies } C.A \equiv C.B$ 

# Reachability Problem

#### Main Result

#### Theorem

For two arbitrary mobile membranes  $M_1$  and  $M_2$ , it is decidable whether  $M_1$  reduces to  $M_2$ .

### Steps of the proof

- we reduce mobile membranes systems to pure and public mobile ambients without the capability *open*.
- we show that the reachability problem for two arbitrary mobile membranes can be expressed as the reachability problem for the corresponding mobile ambients.
- we use the result that the reachability problem is decidable for a fragment of pure and public mobile ambients without the capability open.

→ ∃ →

< 47 ▶

→

7 / 14

# From Mobile Membranes to Mobile Ambients

**Step 1:** mobile membranes are translated into pure public mobile ambients without capability *open* 

### Translation steps

- **(**) any object  $a \downarrow$  is translated into a capability *in a*;
- 2 any object  $a\uparrow$  is translated into a capability *out a*;
- **(3)** any object  $\overline{a}$  is translated into a replication !*in a*
- any object  $\overline{a}$  is translated into a replication !*out a*
- a membrane h is translated into an ambient h
- an elementary membrane  $\overline{h}$  is translated into a replication !h[] where all the objects inside membrane h are translated into capabilities in ambient h using the above steps.

# From Mobile Membranes to Mobile Ambients

**Step 2:** reachability problem for two arbitrary mobile membranes can be expressed as the reachability problem for the corresponding mobile ambients

#### Correspondence between rules

- rule (c) of mobile membranes corresponds to rule (In)
- rule (d) of mobile membranes corresponds corresponds to rule **(Out)**
- rules (a), (b), (e) correspond to instances of rule (Repl)

#### Example

$$M = [m \downarrow m \uparrow]_n []_m$$
 is translated into  $\mathcal{T}(M) = n[in \ m \mid out \ m] \mid m[]$ .

#### Proposition

For mobile membrane systems M and N, M reduces to N by applying one rule if and only if  $\mathcal{T}(M)$  reduces to  $\mathcal{T}(N)$  by applying only one reduction rule.

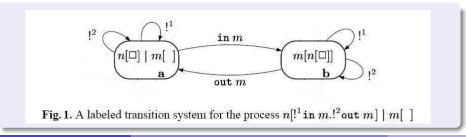
(日) (同) (三) (三)

# From Mobile Ambients to Petri Nets

Labelled Transition System

In order to uniquely identify all the occurrences of replication, ambient, capability or hole  $\Box$  within an ambient context or a process, we introduce a labelling system.

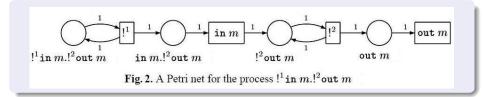
As an example, we give the labelled transition system associated with the process  $n[!^{1}in \ m.!^{2}out \ m] \mid m[$ ] (we omit unnecessary labels). We use the labelled replications  $!^{1}$  and  $!^{2}$  to distinguish between different replication operators which appear in the process.



## From Mobile Ambients to Petri Nets

From Processes Without Ambients to Petri Nets

As an example, for the process  $!^{1}$  in  $m.!^{2}$  out m, we obtain the Petri net given below:



## From Mobile Ambients to Petri Nets

Combining the Transition System and Petri Nets

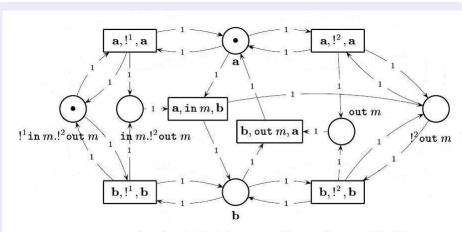


Fig. 3. The Petri net for the labeled process  $n[!^{1}$  in  $m.!^{2}$  out  $m \mid m[$ 

# Deciding Reachability

**Step 3:** reachability problem is decidable for a fragment of pure and public mobile ambients without the capability open.

### Theorem (Mayr84)

For all Petri nets P, for all markings m, m' for P, one can decide whether m' is reachable from m.

**Proposition:** For a Petri net  $PN_{A,B}$ , there are only finitely many markings corresponding to the process B, and their set  $\mathcal{M}_B$  can be computed. **Proposition:** For all ambient processes A, B we have that  $A \Rightarrow B$  if and only if there exists a marking from  $\mathcal{M}_B$  such that  $m_B$  is reachable from  $m_A$  in  $PN_{A,B}$ .

#### Theorem

For two arbitrary ambients A and B from our restricted fragment, it is decidable whether A reduces to B.

## Conclusions

- We have investigated the problem of reaching a configuration starting from another configuration in mobile membranes.
- We proved that the reachability can be decided by reducing this problem to the reachability problem of a version of pure and public ambient calculus without open capability and using a result of Boneva and Talbot.