Characterizing Membrane Structures through Multiset Tree Automata

José M. Sempere and Damián López Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia

http://www.dsic.upv.es/users/tlcc/tlcc.html

Outline

Basic concepts: Membrane structures and multiset tree automata
Basic concepts: *k*-Testability and *k*-reversability
Relations between *k*-Testability and *k*-reversability
From Multiset Tree Automata to Membrane Structures
Conclusions and future research

P systems and membrane structures

 $\Pi = (V, T, C, \mu, w_1, ..., w_m, (R_1, \rho_1), ..., (R_m \rho_m), i_0)$

 $\Pi = (V, T, C, \mu, w_1, ..., w_m, (R_1, \rho_1), ..., (R_m \rho_m), i_0)$

8th Workshop on Membrane Computing (WMC8) Thessaloniki, 25-28 June 2007 Multiset Tree Automata (MTA)

 $\prod = (\mathsf{Q}, \mathsf{V}, \delta, \mathsf{F})$

 $\delta_i: V_i \times M_i (Q \cup V_0) \rightarrow P (M_1(Q))$

$$\delta_0(a) = M_\Psi(a) \in M_1 \ (\mathsf{Q} \cup \mathsf{V}_0)$$

 $\delta = \bigcup \delta_i$

 $1 \le i \le maxarity(V)$

V is a ranked alphabet (V' × N) V_i = { $a \in V' : (a,i) \in V$ }

 $M_i(\cdot)$ is a *bounded multiset* (the sum of elements is i)

Any multiset tree automaton performs a bottom-up parsing over any tree

$$(\mathbf{q}_{1}) \begin{array}{c} \sigma & (\mathbf{q}_{3}) \\ (\mathbf{q}_{1}, \mathbf{q}_{2} \rangle & \sigma \\ \langle \mathbf{q}_{2}, \mathbf{q}_{1} \rangle \\ (\mathbf{a}) \mathbf{a} \end{array} \begin{array}{c} \sigma & (\mathbf{q}_{3}) \\ \langle \mathbf{q}_{2}, \mathbf{q}_{1} \rangle \\ \mathbf{b} \end{array} (\mathbf{b}) \end{array} \left(\langle \mathbf{q}_{3} \rangle \in \delta_{2}(\sigma, \langle \mathbf{q}_{1}, \mathbf{q}_{2} \rangle) \right)$$

Multiset Tree Automata (MTA)

Any tree automaton A induces a multiset tree automaton MA such that if $t \in L(A)$ then $t \in L(MA)$

For any tree automaton A, its induced multiset tree automaton MA accepts all the trees that A accepts together with all their "*mirrored*" trees

k-Testability in the Strict Sense (k-TSS)

 $T \subseteq V^T$ is a <u>k-TSS multiset tree language</u> iff given two trees u_1 and u_2 in V^T with root_{k-1}(u_1) =root_{k-1}(u_2), $u_1^{-1}T \neq \emptyset$ and $u_2^{-1}T \neq \emptyset$ implies that $u_1^{-1}T = u_2^{-1}T$

Let A be a multiset tree automaton over $V_{\T . Let u_1 , u_2 in V^{T} be two trees such that $root_{k-1}(u_1) = root_{k-1}(u_2)$ and $t_1 \# u_1$, $t_2 \# u_2$ in L(A) for some valid contexts t_1 and t_2 . If A is a k-TSS mirror tree automaton then $\delta(u_1) = \delta(u_2)$.

The MTA is not k-TSS for any $k \ge 2$ (q_1 , q_2 and q_3 share a common *k*-root)

k-reversability

Let $T \subseteq V^T$ and the integer value $k \ge 0$. <u>T is a k-reversible multiset tree</u> <u>language</u> if and only if, given whatever two trees u_1 , u_2 in V^T such that root_{k-1}(u_1) = root_{k-1}(u_2), whenever there exists a context t in $V_{\T such that both $u_1 \# t$, $u_2 \# t$ in T, then $u_1^{-1}T = u_2^{-1}T$

Let A be a multiset tree automaton over $V_{\T . Let p_1 , p_2 in Q be two states such that $root_k(L(p_1)) \cap root_k(L(p_2)) \neq \emptyset$. A is <u>order k reset free</u> if the automaton does not contain two transitions such that $\delta(\sigma, q_1q_2 \dots q_np_1) = \delta(\sigma, q_1q_2 \dots q_np_2)$

Let A be a multiset tree automaton. <u>A is k-reversible</u> if A is order k reset free and for any two distinct final states f_1 and f_2 the condition $root_k(L(f_1)) \cap root_k(L(f_2)) \neq \emptyset$ is fulfilled.

k-reversability

A:

Example

 $\begin{array}{l} \delta(\sigma,aa)=q_1\\ \delta(\sigma,a)=q_2\\ \delta(\sigma,q_2q_2)=q_2\\ \delta(\sigma,aaq_1)=q_1\\ \delta(\sigma,aq_1q_1)=q_3\in \mathsf{F}\\ \delta(\sigma,q_2q_1)=q_3\in \mathsf{F} \end{array}$

The MTA is not k-TSS for any $k \ge 2$. The MTA is k-reversible for any $k \ge 2$.

Relations between k-reversible and k-TSS MT Languages

k-TSS forms an infinite hierarchy of MTL such that (k-1)-TSS languages are k-TSS languages

k-reversability forms an infinite hierarchy of MTL such that (k-1) reversible languages are k reversible languages

Theorem. Let $T \subseteq V^T$ and an integer value $k \ge 2$. If T is k-TSS then T is (k-1)-reversible.

From MTA to membrane structures

The meaning of root_k(t)

 $root_k(t)$ takes into account all the membrane structures from the skin one up to a depth of order k (we croos k-1 membranes)

From MTA to membrane structures

The operator

The operator # allows new substructures by means of membrane creation at a given region (labelled by \$)

From MTA to membrane structures

k-TSS

k-TSS implies that, whenever we take two membrane structures u_1 and u_2 at any level of the P regions, if they are part of a structure that share a common substructure from the skin up to depth k-1 then they are part of the same set of structures (u_1 cannot appear as a substructure of a membrane structure if u_2 does not appear as a substructure of the same membrane structure at the same level).

From MTA to membrane structures

k- reversability

k-reversibility implies that whenever two membrane structures u_1 and u_2 share the same substructure up to length k-1, if u_1 and u_2 have a common structure t such that u_1 #t and u_2 #t are valid configurations of the P system, then u_1 #s is a valid configuration of the P system iff u_2 #s so is.

Conclusions

- We have introduced new classes of MT languages which can be defined by the transitions in their corresponding MTA.
- The features of k-TSS and k-reversability restrict the behavior of the P systems rules for membrane creation/deletion/duplication etc.

Future research

What is the set of integers/strings/vectors that P systems can generate/accept if their membrane structures are defined by (k) reversible/testable Multiset Tree Automata ?