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Summary. Although born as unconventional models of computation, P systems can be
conveniently adopted as modelling frameworks for biological systems simulations. This
choice brings with it the advantage of producing easier to be devised and understood
models than with other formalisms. Nevertheless the employment of P systems for mod-
elling purposes demands for biologically meaningful evolution strategies as well as for
complete computational tools to run simulations on. In previous papers an evolution
strategy known as metabolic algorithm has been presented, here a simulation tool called
Psim (current version 2.4) is discussed and a case study of its application is given as well.

1 Introduction

Membranes play a prominent role in living cells [1, 20]. In fact, membranes not
only act as a separation barrier indispensable to create different environments
within cells boundaries, but they can also physically constitute a kind of “working
board” whereby enzymes can activate and perform their duties on substrates.
Other examples of the crucial role of membranes within cells are their ability to
perform selective uptakes and expulsion of chemicals as well as their being the
interface of the cell with the surrounding environment allowing communication
with neighboring cells.

P systems originate from the recognition of this important role of membranes
and, by abstracting from the functioning and structure of living cells, they provide
a novel computation model rooted in the context of formal language theory [33, 35].

P systems investigations are nowadays focused on several research lines that
make the field “a fast Emerging Research Front” in computer science (as stated by
the Institute for Scientific Information). In particular, theoretical investigations on
the power of the computational model have been carried on and important results
have been achieved so far in order to characterize the computational power of many
elements of P systems (such as objects and membranes) and, from a complexity
viewpoint, P systems have been employed as well in the solution of NP hard
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problems. For a constant up to date bibliography of P systems we refer the reader
to [39].

Parallel to these lines some more practical investigations are under way too.
These studies exploit the resemblance of P systems to biological membranes in
order to develop computational models of interesting biological systems. P sys-
tems seem to be particularly suitable to model biological systems, due to their
direct correspondence of many elements (namely membranes, objects-chemicals
and rules-reactions), even in their basic formulation, with real biological entities
building the system to be modelled. Moreover, many extensions have been pro-
posed to the standard formulation of P systems, such as some biologically relevant
communication mechanisms [28, 36, 11], energy account [37] and active membranes
[34] among others, which show the flexibility of the model. In this way, discrete
mathematical tools can be used to represent interesting biological realities to be
investigated. A further step is that of simulating all systems described in this way
to get more information about their internal regulatory mechanisms and deeper
insights into their underlying elements.

Although born as a non-conventional model of computation inspired by nature,
P systems can therefore be employed as a simulation framework in which to em-
bed the in silico simulation of interesting biological systems. The strength of this
choice is, as said, the advantage that P systems share with biological systems many
of their features and this leads to easy-to-devise and easy-to-understand descrip-
tions of the studied realities. In fact, the membrane construct in P systems has
a direct counterpart into biological membranes: objects correspond to all chemi-
cals, proteins and macromolecules swimming in the aqueous solution within the
cell and, eventually, rewriting rules represent biochemical reactions taking place
in the controlled cellular environment. Other formalisms have been employed as
modelling and simulation frameworks too, such as Π calculus [29], Petri nets [38]
and Ambient calculus [10], but in their case the very same notions of membranes,
chemicals and reactions need to be reinterpreted and immersed in the particular
representation formalism in a less immediate way.

Nevertheless, the employment of P systems as a modelling framework for bio-
logical systems posed, from a purely computational viewpoint, some new challenges
to cope with, such as the identification of suitable, biologically meaningful, strate-
gies for system evolution and the development of new automatic tools to describe,
simulate and analyze the investigated system.

In previous works a novel strategy for systems evolution, called metabolic algo-
rithm has been introduced [6, 27, 8], an hybrid (deterministic-stochastic) variant of
which has been proposed as well [5]. Other strategies of evolution are known, such
as Dynamical Probabilistic P systems [32, 31] and Multi-compartmental Gillespie’s
algorithm [30, 2].

Here we will focus on the metabolic algorithm in its deterministic version which
has been confronted with the dynamics of several systems (a collection of case
studies can also be found in [4]). Some examples of investigated systems by means
of the metabolic algorithm are the Belousov-Zhabotinsky reaction (in the Brus-
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selator formulation) [6, 8], the Lotka-Volterra dynamics [6, 27, 7, 14], the SIR
(Susceptible-Infected-Recovered) epidemic [6], the leukocyte selective recruitment
in the immune response [16, 6], the Protein Kinase C activation [8], circadian
rhythms [12] and mitotic cycles in early amphibian embryos [26]. In order to cope
with the demand of computational tools to simulate the dynamics of P systems,
we developed a first simulator called Psim [6], which has now been extended with
several new features as will be explained later on. The new version of the simulator
is freely available for download at [15].

The remaining of the discussion will firstly introduce (section 2) some theoret-
ical aspects of the simulation framework we developed and some recent advances
will be mentioned too. Section 3 will then be devoted to the newer version of the
simulator itself and a practical case study will be given as well in such a way to
show to the reader how to set up a simulation with the interface of Psim.

2 MP systems

MP systems (Metabolic P systems) [21, 26, 24, 23] are a special class of P systems
[33, 35], introduced for expressing the dynamics of metabolic (or, more gener-
ally speaking, biological) systems. Their dynamics is computed by means of a
deterministic algorithm called metabolic algorithm which transforms populations
of objects according to a mass partition principle, based on suitable generalizations
of chemical laws.

A definition of MP systems follows, as given in [4].

Definition 1 (MP system). An MP system of level n − 1 (i.e., with n ∈ N
membranes) is a construct:

Π = (T, µ,Q, R, F, q0)

in which:

• T is a finite set of symbols (or objects) called the alphabet;
• µ is the hierarchical membrane structure, constituted by n membranes, labeled

uniquely from 0 to n − 1, or equivalently, associated in a one-to-one manner
to labels from a set L of n− 1 distinct labels;

• Q is the set of the possible states reachable by the MP system. Each element
q ∈ Q is a function q : T × L −→ R, from couples objects-membranes to real
values. A value q(X, l), with X ∈ T and l ∈ L gives the amount of objects
X inside a membrane labeled l, with respect to a conventional unit measure
(grams, moles, individuals, ...);

• R is the finite set of rewriting rules. Each r ∈ R is specified according to the
boundary notation [3]. In other words, each rule r has the form αr −→ βr,
where αr, βr are strings defined over the alphabet T enhanced with indexed
parenthesis representing membranes. As an example, an hypothetical rule can
have the form: α[1β −→ γ[1δ, with α, β, γ, δ ∈ T ∗, meaning that α and β are
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respectively changed in γ and δ, where all objects within α and δ are outside
membrane labeled 1, whereas elements of β and γ are placed inside membrane
1;

• F is the set of reaction maps, each fr ∈ F is a function uniquely associated to
a rule r ∈ R, defined as fr : Q −→ R and, given a certain state q, it produces
fr(q) that is a real number specifying the strength of rule r in acquiring objects;

• q0 ∈ Q is the initial state of the system. It specifies the initial amount of all
the species throughout the various compartments of the system.

Since encodings like [9] show that the membrane structure can be flattened by
augmenting the alphabet size, the definition of the membrane structure µ is not
very important in this context and the choice to employ 0-level MP systems in
the remaining of the discussion is not limiting from a theoretical point of view.
Moreover, dealing with 0-level MP systems ends up in a easier discussion, in fact
all states q ∈ Q do not need the specification of a membrane label and in this way
they have the simpler form: q : T −→ R. For this reason, in the following whenever
the term MP system will be used, the more correct term 0-level MP system has
to be implicitly assumed.

The dynamics of MP systems has been calculated, starting from the initial state
q0 by means of an evolution strategy called metabolic algorithm [6, 27, 8], which
is substantially different from the well known non-deterministic and maximally
parallel paradigm followed by standard P systems. More precisely, the perspective
of MP systems is to model systems at a population level rather than at an objects
level. In this way, nothing can be precisely said about individuals but the investi-
gation is focused on the macroscopic dynamics which assumes a deterministic flow
in spite of individual behaviors.

2.1 The metabolic algorithm: hints

Without entering into many details (which can be found anyway in [6, 27, 8, 25]),
the metabolic algorithm is a deterministic strategy for MP systems evolution based
on mass partition among rules of all elements in the alphabet T .

In very general terms, the metabolic algorithm can be summarized in the fol-
lowing main points [26]:

• Reactants are distributed among all the rules, as the system evolves, according
to a “competition” strategy.

• If some rules compete for the same reactant, then each of them obtains a
portion of the available substance that is proportional to its reaction strength
(reactivity) in that state.

• The reactivity of a rule in a certain state measures the capability of the rule
to acquire its reactants. It is calculated by the evaluation of the reaction map
corresponding to the rule due and it depends on the state of the system, that is
defined as the concentration and localization of all substances in the considered
instant.
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• The evolution strategy determines the reaction unit of all rules, that is, the
unitary amount of substance which is dealt by the rule. The stoichiometry is
used then to obtain the consumed and/or produced amount of substances for
each rule.

An example may be useful to clarify the concepts yet introduced. Let us suppose
that in a given instant, four rules, namely r1, r2, r3 and r4 ∈ R, need molecules of
a species A (with A belonging to the alphabet T ) as reactant (see Figure 1), then
a partition strategy for A is necessary.

A

r
r

r
r 2

1

5

4

Fig. 1. Competition for object A between rules r1, r2, r4 and r5.

A real number called reactivity represents the strength of the rule (i.e. the
rule’s capability of obtaining matter to work on), given by the value assumed by
a function uniquely associated to the rule called reaction map, in the considered
state. For example, with respect to Figure 1, if we denote with a, b and c the
concentrations of species A, B,C respectively (in a state q not specified for the
sake of simplicity), then the reactivities of rules r1, r2, r4 and r5, which ask for A
molecules, can be:

f1 = 200 · a, f2 = 0.5 · a1.25 · b−1, f4 = a1.25 · (b + c)−1 and f5 = 10

where the choice of reaction maps fi, i = {1, 2, 4, 5} is completely arbitrary in
this example.

We define the quantity

KA,q =
∑

i=1,2,4,5

fi(q)

as the total pressure on A in the state q (the intuitive idea is that all reaction maps
of rules competing for a certain species give the force that pushes that species to
react).

Then, for each of the competing rules rj we consider the partial pressure (or
weight) of rj on type A as
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wA,q(rj) =
fj(q)
KA,q

(again the idea behind this is that the strongest the force pushing an element
to follow a particular reaction channel, compared to other reaction channels, the
more matter will follow that path).

Note that, in general, the quantity KX,q is defined for each couple (X, q) where
X ∈ T and q is a possible state of the system, moreover a weight wX,q(r) has to
be calculated for each triple (X, q, r) where X and q are respectively, as before, an
element of the biological alphabet and a state of the system, while r ∈ R is a rule
in which the element X appears as a reactant (i.e., according to the terminology
adopted above, X ∈ αr).

Getting back to the example discussed above, it should be easy to see that the
partial pressure of r1 on A is

wA,q(r1) =
200a

200a + 0.5a1.25b−1 + a1.25(b + c)−1 + 10

while the same pressure due to r2 results to be equal to

wA,q(r2) =
0.5a1.25b−1

200a + 0.5a1.25b−1 + a1.25(b + c)−1 + 10

and the other weights can be calculated analogously. The weights calculated so far
determine the partition factors of the amount of species A, available in the state
q, among the rules which need objects A as reactants.

Now to calculate the reaction unit of a particular rule (i.e. the amount of
reactant that can be dealt by the rule) we simply need to multiply the partial
pressure of the rule on the reactant by the real amount of reactant present into
the system at the considered state. For example, the reaction unit of rule r1 (or
equivalently, the amount of A that that can be assigned to rule r1) turns out to
be wA,q(r1) · a = 0.5a2.25b−1

200a+0.5a1.25b−1+a1.25(b+c)−1+10 .
In this way, if r1 is a rule of the form A → X, no matter what element is

represented by X ∈ T , then the amount of A associated to r1 is exactly u1 =
wA,q(r1) · a and the effect of r1’s application is the loss of u1 units of A and the
acquisition of the same number of units of X.

In the case of cooperative rules (i.e. rules with more than just one reactant)
things are a little bit more complicated since we need to take into account the
real availability of all reactants taking part to the reaction. That is, for each
X belonging to the reactants of a certain rule r we need firstly to compute the
quantities wX,q(r) ·x and, since we have to respect species availability, the reaction
unit associated to the rule is then computed as the minimum of those quantities.
If we suppose that a rule r1 has the form AAB → X, then the reaction unit

u1 = min(
1
2
wA,q(r1) · a , wB,q(r1) · b)
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where the term 1
2 in the first element of the minimum is due to the fact that A

appears twice in the stoichiometry of the rule.
In general terms, the metabolic algorithm is an effective procedure for calcu-

lating in each state of the system a reaction unit ui for all rules ri ∈ R by using a
partition strategy that employs particular functions fi associated in a 1-1 manner
to rules. After this calculation, the evolution of the system can be obtained in a
straightforward way by consuming and producing species in a quantity given by
rules’ reaction units and by following the stoichiometry of the system.

Assuming an ordering on objects and on rules, let us denote with M the m×n
stoichiometric matrix associated to an MP system having m symbols and n rules
(in which the ci,j element of M denotes the gain or the loss of the ith object due
to rule j1) and with Uq the [u1 · · ·un]T vector of the reaction units in a state of
the system q, calculated as mentioned above.

Then, as pointed out in [25] the transition from one state q to the following one
is done by means of the delta operator (∆x(q)) which is a m-sized vector giving
the variation of each species in the transition from state q to the next state q′. In
particular

∆x(q) = M × Uq

stating that the delta operator can be obtained as the product of the stoichiometric
matrix M by the reaction units vector of state q, Uq.

Since each row i of ∆x(q) gives the variation on the ith object, then if we think
of a state q as a vector containing the concentration of all the m species at the
corresponding instant, then the next state can easily be calculated as

q′ = q + ∆x(q) = q + M × Uq.

Just to exemplify the last concepts discussed, we can think about an alphabet
T = {A,B, C} and focus on a rule set comprising the following four rewriting
rules:

r1 : A B −→ C
r2 : B B −→ A
r3 : C −→ A
r4 : C −→ B

then, assuming the lexicographic order on elements of the alphabet, we can obtain
the following stoichiometric matrix:

M =



−1 1 1 0
−1 −2 0 1

1 0 −1 −1




in which, the first row corresponds to the object A and states that we lose one
conventional unit of A due to rule r1, we get one A both from rule r2 and r3 and
finally r4 does not affect A concentration at all.
1 It is the difference between the number of occurrences of the ith symbol among prod-

ucts and among reactants of jth rule.
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Then, let us suppose to be in a state q, described by the vector of concentrations
q = [10 32 20]T (i.e. we have 10 units of A, 32 of B and 20 of C) and that the
corresponding reaction units vector Uq = [7 12 5 9]T (i.e. reaction r1 moves 7 mass
units, r2 12, r3 5 and finally r4 9). In this way it is possible to calculate the next
state q′ which turns out to be described by the following vector:

q′ = q + M × Uq =




10
32
20


 +



−1 1 1 0
−1 −2 0 1

1 0 −1 −1


×




7
12
5
9


 =




20
10
13




describing the amount of all species at that particular instant.
In previous papers [26] a convenient and intuitive formalism for representing

MP systems called MP graphs has been proposed. In particular, MP graphs are
bipartite graphs describing both the stoichiometry (i.e. the shape of the rules) and
the regulative part of MP systems that need to be effectively calculated in order to
obtain the dynamics of the system (i.e. the reaction maps). According to what said
above, MP graphs represent all the information needed to simulate MP systems
by means of the metabolic algorithm. An example of MP graphs, as produced by
the simulator we developed, will be shown later on.

2.2 Generalizing the metabolic algorithm

According to the formulation of the dynamics given in the previous section, the
metabolic algorithm is a strategy that given a particular state q provides the
system with the corresponding reaction units vector Uq which is used to calculate
the transition to the state q + 1. As discussed in [25], other strategies can be
considered whose aim is to produce a reasonable mass partition among all rules of
an MP system, or in other words that give a different Uq for each state q of the
system.

This view leads to the definition of several metabolic algorithms instead of a
single one and the definition of MP systems can be generalized accordingly.

Based on the definition given in [22], Definition 1 can be easily generalized, in
very general terms, in the following way:

Definition 2 (Generalized MP systems). A 0-level (generalized) MP system
is a 6-tuple:

Π = (T, Q, R, V, q0, φ)

in which:

• T is a finite set of symbols (or objects) called the alphabet;
• V is a finite set of variables;
• Q is the set of the possible states reachable by the MP system. Each element

q ∈ Q is a function q : T ∪ V −→ R;
• R is the finite set of rewriting rules;
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• q0 ∈ Q is the initial state of the system;
• φ is the strategy of evolution, φ : Q −→ Rn with |R| = n.

Note that nothing is said about the cardinality of the set of variables V and they
are not necessarily associated in a one-one manner to rules of R. Moreover, the
strategy of evolution φ, given a state q has to be defined in such a way that it
outputs the n-tuple providing the reaction unit vector of the system, or following
the terminology used above, φ(q) = Uq.

Complete freedom is left in the implementation of the strategy of evolution,
whose only constraints are that given a state it has to provide the reaction unit
vector corresponding to that state, which will be used to calculate the evolution
of the system by means of the matrix product recalled in the previous section.
As will be mentioned in the following, the specification of a fully customizable
strategy of evolution will be one of the prominent features of the new version of
the simulator Psim that has been implemented within the MNC Group of the
University of Verona.

3 Psim

Based on the theoretical framework expressed in previous sections, a simulator
called Psim (P systems simulator) has been developed to cope with the problem
of calculating the dynamics of biological systems. An early version of Psim has been
developed previously [6], with which the newer version shares the same philosophy,
though extending some of its concepts and enhancing the simulation environment
with many features.

The present release of Psim (version 2.4) has been developed in response to
the need of an effective and easy to use tool to calculate the dynamics of MP
systems by means of the metabolic algorithm. Its implementation has moreover
followed some flexibility and extensibility principles which led to a tool that can
be easily extended and integrated with other tools. In this way Psim, thanks to
its immediate setup (nothing needs actually to be done provided a Java virtual
machine is installed on the computer that is meant to run Psim) and to the easy
user interface, can be used by people without a strong background in program-
ming and a deep knowledge in the field of computer science. On the other hand,
the extendability provided, as we will see, by means of the plugins mechanism,
allows people with stronger expertise in programming to build their own tools to
complement and integrate the main core of Psim.

Some features of this tool, which is implemented by using the Java program-
ming language, are listed below:

• friendly user interface which is born to be easy-to-use and to interact with
people not necessarily having a strong computer science background. Its im-
mediacy can be found in the input side, which can be specified by means of
a transposition of the concept of MP graphs into a point and click graphical
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interface. Moreover, the same simplicity principle holds for the output side as
well, which is basically constituted by a graph containing the temporal evolu-
tion of all the species constituting the system (both on a temporal scale and
on the phase plan space);

• plugins architecture: the interaction with the system can either be done man-
ually or by means of some specifically designed plugins which, thanks to the
plugins support offered by the simulation engine, can interact with the sim-
ulation engine itself. More specifically, three different kinds of plugins can be
devised and implemented in Java as well. Input plugins can be used to im-
plement various sources for the data to run the simulation on (let us think
to some specific pathways databases like KEGG for instance); output plugins
conversely, can be used to observe and analyze in various ways the results ob-
tained from a simulation and can therefore give some meaningful insights into
the simulated dynamics. Moreover, they can be used to export simulation data
into particular formats. Finally, experiment plugins can directly control and
intimately interact with the simulation engine, by controlling the execution
flow, checking some properties and changing some experimental conditions.
This kind of plugins can be very useful in tasks like model optimizations and
stability analysis;

• extreme flexibility. The simulation tool we propose is based on a simulation
engine which is designed to accept the definition of new evolution strategies
for the calculation of the systems dynamics. At the only price of the imple-
mentation of some specific interfaces, the developer has the chance to define
his own simulation strategies and to design a customized library of metabolic
algorithms to calculate the systems evolution;

• models portability has been implemented by using the standard XML language
and some extensions towards the SBML language are being considered too;

• cross platform applicability, thanks to the choice of Java, Psim can be run on
all platforms supporting the Java virtual machine architecture.

An aspect deserving a special emphasis here is the possibility offered by the simu-
lation engine, to specify custom evolution strategies. Getting back to the definition
of generalized MP systems, the architecture of the simulator allows the specifica-
tion of a fully customized φ function. A set of evolution strategies can be devised
by developing in Java a specific class implementing a particular interface provided
by the main engine. Several different strategies can be handled simultaneously by
the simulator that gives the chance to decide which simulation strategy employ in
the simulation process. This gives the tool a very high level of flexibility and power
as well as the plugins mechanism does. Since plugins can interact with the simu-
lation engine at a different levels, such as input, output but also at the simulation
level too, they can be used for various reasons within the simulator and this again
gives users plenty of ways to improve the system and to extend its functionalities.
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3.1 A case study

In this section we show an application of the Psim computational tool for the
simulation of the well known mitotic oscillator as found in early amphibian embryos
[18, 19, 26].

Mitotic oscillations are a mechanism exploited by nature to regulate the onset
of mitosis, that is the process of cell division aimed at producing two identical
daughter cells from a single parent. More precisely, mitotic oscillations concern
the fluctuation in the activation state of a protein produced by cdc2 gene in fission
yeasts or by homolog genes in other eukaryotes. The model here considered focuses
on the simplest form of this mechanism, as it is found in early amphibian embryos.
Here, the progressive accumulation of the cyclin protein leads to the activation of
cdc2 kinase. This activation is achieved by a bound between cyclin and cdc2 kinase
forming a complex known as M-phase promoting factor (or MPF ). The complex
triggers mitosis and degrades cyclin as well; the degradation of cyclin leads to the
inactivation of the cdc2 kinase that brings the cell back to the initial conditions
in which a new division cycle can take place.

Goldbeter [18, 19] proposed a minimal structure for the mitotic oscillator in
early amphibian embryos in which the two main entities are cyclin and cdc2 ki-
nase. According to this model, depicted in Figure 2, the signalling protein cyclin
is produced at a constant rate vi and it triggers the activation (by means of a
dephosphorylation) of cdc2 kinase, passing from the inactive form labelled M+ to
the active one, denoted by M . This modification is reversible and the other way
round is performed by the action of another kinase (not taken into account in the
model) that brings M back to its inactive form M+. Moreover, active cdc2 kinase
(M) elicits the activation of a protease X+ that, when in the active (phosphory-
lated) form (X), is able to degrade the cyclin. This activation, as the previous one,
is reversible as stated by the arrow connecting X to X+.

The set of differential equations devised by Goldbeter produces an oscillatory
behavior in the activation of the three elements M , C, X that repeatedly go
through a state in which cells enter in a mitotic cycle (see Figure 3).

The goal of the case study showed here is to obtain a description and a sim-
ulation of the very same model of mitotic oscillations by means of the simulator
Psim.

In general, there is no unique way to translate a differential equation system in
terms of a metabolic P system, therefore we choose to obtain it by the application
of the MP-ODE transformation [13]. The resulting MP system is reported here:

Π = (T, µ,R, F, q0)

where:

• The alphabet: T = {A,C, X, X+,M, M+}
• The membrane structure: µ = [0 ]0;
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Fig. 2. The mitotic oscillator model by A. Goldbeter, from [18].

Fig. 3. Dynamics of the mitotic oscillator from [18].

• The set of rules is R = {r1, r2, ..., r10}, where:
r1 : A → A C
r2 : C → X
r3 : X → λ
r4 : C → λ
r5 : C → M C
r6 : M+ → λ
r7 : M → M+

r8 : X+ → X M
r9 : M → λ
r10 : X → X+

in which all symbols have the meaning described before (and A is a kind of well
to draw substance C out from). Moreover, for every symbol in the system, we
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have introduced an inertia rule (i.e., a rule having the form Y → Y , for each
Y ∈ T to model the inertia of the system), omitted in this set of rules.

• The set of reaction maps is F = {Fr1, F r2, ..., F r10}, where:
Fr1 = k1

Fr2 = k2
x

k3+c

Fr3 = k2
c

k3+c

Fr4 = k3

Fr5 = k5
m+

(k6+c)(k7+m+)

Fr6 = k5
c

(k6+c)(k7+m+)

Fr7 = k8
1

(k9+m)

Fr8 = k10
m

(k11+x+)

Fr9 = k10
x+

(k11+x+)

Fr10 = k12
1

(k13+x)

• The initial state q0 of the single membrane system is defined by:
q0(A) = 1.3;
q0(C) = 0.01;
q0(X) = 0.01;
q0(X+) = 0.99;
q0(M) = 0.01;
q0(M+) = 0.99;

in which we deal with concentrations of species, rather than with objects, and
in this way the initial amounts are real numbers;

where, for each element of T the reaction map of inertia rules is set to 1600.
We start the modeling session by opening the Psim’s main interface showed in

Figure 4. This window allows the user to manage all the experiment’s stages. In
particular the main possible choices involve:

1. modelling the system, setting substances, initial conditions, reaction maps and
rules;

2. starting the simulation;
3. displaying output charts.

The first step to consider while setting up a system’s simulation is the speci-
fication of the corresponding MP graph. In what follows, some steps towards the
creation of an MP graph modelling the mitotic oscillator are presented.

After clicking on the New Experiment label of the File menu, a window like
the one depicted in the Figure 5 appears. This is the main window of the graphical
interface allowing the user to input in a easy way the MP graph components by
simply dragging them from the upper toolbar to the bottom white panel. This
task is performed by using the following toolbar icons:

• The blue circle: adds a new type node that stores the name of a substance, its
initial number of molar units and its inertia value (as explained in previous
papers, inertias are a way to represent the fact that not all reactants need to
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Fig. 4. The Psim’s main interface

Fig. 5. Psim’s input interface

react at a certain instant, they are a sort of resistance opposed to species to
performing reactions).

• The black circle: adds a new metabolic reaction node that represents a reaction
channel between interacting substances and stores the name of a reaction rule.

• The red rectangle: adds a new reactivity node building the regulatory part of
MP graphs. In the simulator, reactivity nodes store the reactivity map function
corresponding to the connected rule and, if necessary, a boolean guard function
for the rule activation.
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• The green triangles: add input gates and output gates nodes that identify rules
which respectively introduce new matter in the membrane or expel part of it
from the system.

After the insertion of the nodes in the white panel the user can specify their
internal parameters and connect the nodes by drawing arcs among them. The best
way to accomplish this task is to start by defining the type node parameters and
the metabolic reaction node parameters by double clicking on the corresponding
nodes and filling in the window’s field that automatically appears (Figure 6).
Importantly enough, a parser has been implemented to check the consistency of
inserted parameters and to alert the user if any irregularity arose.

Fig. 6. Insertion of the type node parameters

At this point, one can connect the type nodes and the metabolic reaction nodes
with each other by drawing arcs among them with the simple use of the mouse.
This is a very important step because it allows to represent the stoichiometric part
of the system by means of the MP graph topology (Figure 7).

As an example, let us consider the reaction r2 : C → X. Within the input
graphical interface it is represented by the R2 black circle that is connected by
means of black arcs to the C and the X blue circles, representing the corresponding
substances; the direction of the arrow represents the substance flow of the reaction.

A further modeling step is needed to add the reactivity nodes describing the
regulatory part of the system. This can be done by first linking every type node,
that affects a reaction map, with the corresponding reactivity nodes (as showed in
Figure 8). Finally the reactivity map function of every reactivity node is specified
by using the linked type nodes and the environmental measures as variables or
constants (as reported in Figure 9). Figure 8 represents the final mitotic oscillator
MP graph as produced by the Psim GUI.

This completes the modelling stage and the next logical step is to start the
simulation of the specified system. This is done by clicking on the rightmost icon
of the upper toolbar (the rightward arrow). The click causes a small window to
pop out, in which it is possible to set the number of steps the simulation will span
(Figure 10). A possible choice for this system is to run 150000 steps. By click on
the Start button the dynamics computation begins.

When the simulation is finished the system prompts that results are available
and ready to be visualized by the Psim chart visualization form (Figure 11). Using
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Fig. 7. Adding type nodes, metabolic reaction nodes and drawing arches among them

Fig. 8. An MP graph that models the mitotic oscillator

Fig. 9. Reactivity node input parameter window
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Fig. 10. Set the number of steps for the simulation to 150000

the bottom panel check boxes it is possible to decide elements to be displayed. In
the considered case oscillations of cyclin C (red line), active cdc2 kinase M (blue
line) and active protease M (green line) are displayed but the phase space plot
can be drawn as well.

Fig. 11. Oscillations of the mitotic systems as calculated by Psim.

We finally highlight an important mechanism of the Psim platform: plugins
extensibility. As already mentioned, plugins allow the user to enhance the main
Psim computing core with powerful functionalities for the data import, export,
control and analysis. An example under development is the experiment plugin that
stores the experiment state (concentration of the substances and environmental
measures) every x steps, where x is a parameter set by the user before the com-
putation starts. This plugin could save, for instance, an XML file for every state,
allowing the user to export the experiment samples in an standard way.

A software developer generates the plugin code (basically some Java classes)
relying on the Psim’s JavaDoc documentation obtainable at [15] which lists the
experiment plugin methods to be mandatorily implemented. Plugin classes are
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meant to be archived in a Jar file and placed in a proper plugins directory. Provided
this, at the following start up Psim will automatically find and load all the plugins
contained in the plugins directory. The user can find all available experiment plugin
statements in the main interface Experiment Plugin menu (Figure 4) in the form
of a list. By clicking on the relative label its possible to activate the plugin that
will be run at each step of the subsequent simulation and will save the state every
x steps chosen by the user filling in a plugin popup window.

The plugin just described yields a set of XML files but the same principles can
be extended also to the other kinds of plugins (input, output, engine plugins).

A particular mention is deserved by engine plugins that allow to implement
new simulation strategies which can be different from the metabolic algorithm
described above. This gives the simulation tool a very high flexibility as well as
extendability as discussed previously.

4 Conclusion and further work

P systems can be useful frameworks to embed biological systems models in. This
demands for some modifications to the classical definition of P systems and par-
ticularly a biologically meaningful evolution strategy is needed. In previous papers
an essentially deterministic strategy, called metabolic algorithm, for the calcula-
tion of biological systems dynamics has been provided as well as an extension of
the classic model of P systems, known as MP systems, focused on the dynamics of
bio-systems. Moreover, all data needed for the simulation of MP systems dynamics
can be provided by means of a graphical formalism known as MP graphs.

The basics of MP systems have been briefly revisited in this paper and based
on them a simulation tool called Psim has been highlighted, together with a case
study of a well known and previously investigated model of mitotic cycles in early
amphibians. Psim v. 2.4 is the latest release of the MP systems simulator developed
within the MNC Group of the University of Verona and it has very interesting
features such as the plugin mechanism and the meta-engine architecture which give
the tool an high level of extendability and personalization. In particular, plugins
can be useful to perform several tasks such as data import/export, control of the
simulation flow, output of dynamics obtained and analysis of the results among
others. Moreover, the meta-engine architecture of the simulator allows users to
define their own evolution strategies by implementing some fixed interfaces of the
simulator.

In the future we plan to enrich the core of this simulation tool by implementing
a series of plugins such as the one described above to have a snapshot of the state of
the system in particular instants. Other plugins under investigation involve some
automatic procedures for parameter estimation given suitable observations of the
reality to be modelled. Finally, we plan to employ this simulation tool for the
calculation of the dynamics of systems not already modelled and in this respect
the possibility to devise ad-hoc evolution strategies can be very important to tackle
some specific issues related with the particular reality to be modelled.
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