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Summary. Further results on the study of the dynamics of HIV infection with grids of
conformon-P systems are reported. This study clearly shows a subdivision in two main
phases, the first faster than the second, of the mechanism at the base of the considered
dynamics.

1 Introduction

The infection by the human immuno-deficiency virus (HIV), the cause of acquired
immunodeficiency syndrome (AIDS), has been widely studied both in the labora-
tory and with computer models in order to understand the different aspects that
regulate the virus-host interaction.

Several mathematical models have been proposed (for example [12, 18, 10]) but
all of them fail to describe some aspects of the infection. The recent model reported
by Dos Santos & Coutinho in [14], based on cellular automata, clearly shows the
different time scales of the infection and has a broad qualitative agreement to the
density of healthy and infected cells observed in vivo. However, in [15] it is noted
that this qualitative agreement is reached only if some parameters are chosen in a
small interval. If some of the parameters are chosen outside this interval, then the
model of [14] does not follow the dynamics of what is observed in vivo.

In the present paper we continue our study on the modeling of the dynamics of
HIV infection with grids of conformon-P systems started in [2]. There our model
proved to be robust than the cellular automata model of [14] to a wide range of
conditions and parameters, with more reproducible qualitative agreement to the
overall dynamics and to the densities of healthy and infected cells observed in vivo.
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2 The Modeling Platforms

2.1 Cellular automata

Cellular Automata (CA) are a regularly used platform for modeling, and are in-
creasingly explored as modeling tools in the context of natural phenomena that
exhibit characteristic spatiotemporal dynamics [16, 3]. Of interest here, for exam-
ple, are their use in modeling the spread of infection [1, 11, 14, 10, 17].

A CA consists of a finite number of cells (invariably arranged in a regular
spatial grid), each of which can be in one of a finite (typically small) number of
specific states. In the usual approach, at each time step t the status of the CA
is characterized by its state vector; that is, the state of each of the cells. In the
simplest type of CA, the state vector at time t + 1 is obtained from that at time
t by the operation of a single rule applied in parallel (synchronously) to each cell.
The rule specifies how the state of a cell changes as a function of its current state
and the states of the cells in its neighborhood (see Figure 4). In many applications,
including that addressed here, it is appropriate for the rule to be probabilistic.

The straightforward nature of the time evolution of a CA, combined with its
emphasis on local interactions, has made it an accessible and attractive tool for
modeling many biological processes.

2.2 Conformon-P systems

Conformon-P systems (cP systems) [5] have been introduced as a novel compu-
tational device (P systems are the chief systems arising in the emerging research
area of Membrane Computing [13]) whose early inspiration comes from a theoret-
ical model of the living cell.

CP systems are defined in an extremely simple way that does not limit either
their computational power, or their modeling capabilities. As a variant of P sys-
tems, they capture the dynamics of interacting processes in a novel way, using
constructs that characterize the flow of information between regions in a range
of cell-like topological structures. Moreover, their definition allows them to model
different kinds of process (a compartment defines locality in general, it is not nec-
essarily a membrane compartment in a cell) and to integrate several degrees of
abstraction in the same system.

P systems are well-defined models of parallel computational systems that have
a rich and growing base [19] of theoretical understanding of their properties.

A cP system has conformons, a name-value pair, as objects. If V is an alphabet
(a finite set of letters) and N0 is the set of natural numbers (with 0 included), then
we can define a conformon as [γ, a], where γ ∈ V and a ∈ N0, we will say that
γ is the name and a is the value of the conformon [γ, a]. If, for instance, V =
A,B, C, . . . , Z, then [A, 5], [C, 0], [Z, 14] are conformons, while [AB, 21], [C,−15],
and [D, 0.5] are not.

Two conformons can interact according to an interaction rule. An interaction
rule is of the form γ

n→ β, where γ, β ∈ V and n ∈ N0, and it says that a conformon
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with name γ can give n from its value to the value of a conformon having name
β. A rule can be applied only if the value of the conformon with name γ is greater
or equal to n. If, for instance, there are conformons [G, 5] and [R, 9] and the rule
G

3→ R, the application of r leads to [G, 2] and [R, 12].
The (membrane) compartments present in a cP system have a label (it is a name

which makes it easier to refer to a compartment), every label being different. Com-
partments can be unidirectionally connected to each other and for each connection
there is a predicate. A predicate is an element of the set {≥ n,≤ n | n ∈ N0}. Ex-
amples of predicates are: ≥ 5,≤ 2, etc.. A connection and its predicate are referred
as passage rules. If, for instance, there are two compartments (with labels) m1 and
m2 and there is a passage rule from m1 to m2 having predicate ≥ 4, then confor-
mons having value greater or equal to 4 can pass from m1 to m2. In a time unit
any number of conformons can move between two connected membranes as long
as the predicate of the passage rule is satisfied. Notice that we have unidirectional
passage rules that is: m1 connected to m2 does not imply that m2 is connected to
m1. Moreover, each passage rule has its own predicate. If, for instance, m1 is con-
nected to m2 and m2 is connected to m1, the two connections can have different
predicates.

A simple cP system is illustrated in Figure 1.

[X, 3] [C, 0]
[C, 0]

X
2→C C

2→X

conformons

≥ 1

≥ 3

≥ 3

interaction rules

m2

m3

labels
predicates

m1

Fig. 1. A cP system

CP systems do not work under the requirement of maximal parallelism, typical
to the majority of the models of P systems. When used as modeling platform cP
systems can be classified as stochastic descriptive dynamic discrete model based on
a discrete spatial heterogeneity. CP systems have been successfully used to model
biological processes [7, 2].

A grid of cP systems (Figure 2) is composed by cells, each cell being a simple
conformon-P system connected to some other cells, the neighborhood of the cell.

Ongoing research is establishing the computational properties of (models of)
cP systems [8, 9, 5, 6, 4].

CP systems can contain modules: groups of membranes with conformons and
interaction rules able to perform a specific task. The task performed by a module
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Fig. 2. A grid of cP systems

can be considered atomic (i.e., completed in one time unit) in the context of the
cP system containing it. Modules allow cP systems to be scalable.

Some modules are: Splitter, Separator, Decreaser/Increaser [5]. The combina-
tion of Separators and Decreaser/Increaser allows us to define strict interaction
rule: γ(a) c→ β(b) where γ, β ∈ V, a, b, c ∈ N0, meaning that a conformon with
name γ can interact with β passing just c only if the value of γ and β before
the interaction is a and b respectively. Notice that in a strict interaction just c is
passed even if the value of γ could be decreased by any multiple of c. Interactions
of the kind γ

c→ β(b) (before the interaction γ can have any value while β has b as
value) and γ(a) c→ β (before the interaction γ has a as value while β can have any
value) can be defined, too.

3 The Process and the Models

The dynamics observed in HIV infections can be divided into three phases. Initially
the amount of virus in the host grows in an exponential way, then the viral load
drops to what is known as the “set point”. Finally the amount of virus in the host
increases slowly, accelerating near the onset of AIDS. The first two phases occur
in the first weeks following the infection; the third phase can last years. This is
plotted in Figure 3 where each unit in the x axes represent a week in time.

In [14] this process was modeled with a CA in which each cell could be in any
of four possible states: healthy, A-infected, AA-infected, and dead. In the (random)
initial configuration a cell had probability pHIV to be A-infected, otherwise it is
healthy.

The rules used in [14] are:

1. if an healthy cell has at least one A1-infected neighbor, then it becomes A1-
infected;
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Fig. 3. Typical dynamics of HIV infection.

2. if an healthy cell has not A1-infected neighbors but it has at least R A2-infected
neighbors, then it becomes A1-infected;

3. an A1-infected cell becomes A2-infected after τ time steps;
4. A2-infected cells become dead cells;
5. dead cells can become (be replaced by) healthy cells with probability prepl;
6. newly introduced healthy cells can become A1-infected with probability pinfec.

The biological reasoning behind these rules is explained in [14]. Essentially,
rules 1 and 2 model the basic spread of viral infection from cells to neighboring
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cells; rules 3-5 model the short life of an infected cell, and rule 6 models the body’s
continual replenishment of new healthy cells but maintaining a small probability
of infection.

In [14] the following parameters were chosen: pHIV = 0.05, prepl = 0.99, pinfec =
10−5, R = 5 and τ = 4. They experimented with grids of size ranging from 300×300
to 1000 × 1000, and the averaged results of 500 simulations reported in [14] on
toroidal grids ranging from 700× 700 show a qualitative agreement to the density
of healthy and infected cells observed in vivo.

In [15] it is shown that this qualitative agreement is reached only for values of
the parameters close to the ones just indicated. If either pHIV < 10−2 or pinfec is
chosen in the range 10−2 to 10−4, then the CA model of [14] does not follow the
dynamics of what is observed in vivo.

3.1 The CA model

3.2 The grid of cP system model

The main difference that our model has in respect to the one reported in [14] is that
the interaction rules are divided in two subsets:part 1 and part 2 (see Appendix
A). The rules in the two subsets differ in the probabilities associated to them.

Other differences as, for instance, the presence of pre-dead cells, exist in order
to simulate in terms of operations in a cP system some instructions of the CA
presented in [14].

Each cell can be in one of five states: 1-healthy, A-infected, AA-infected, pre-
dead, and dead (in respect to the rules in part 1) identified by the presence of the
conformons: [H, 1], [A, 1], [AA, 1], [PD, 1], and [D, 1] respectively. If, for instance,
a cell is in an healthy state, then it will contain [H, 1], [A, 0], [AA, 0], [PD, 0], and
[D, 0] (similarly for the other cases). In the initial configuration, each cell contains
the conformons [R, 1], [V, 10], [E, 0], and [W, 0] are present in an unbounded number
of copies.

In the following we consider and describe the rules in part 1.
If a cell is A-infected, then it can generate [V, 11] (meaning: if a cell is A-infected

it can generate a virus). This is performed by the rules:

1: R
1→ A(1) 2: A(2) 1→ V(10)

Notice that [V, 10] does not represent a virus, but [V, 11] does.
[V, 11] conformons can pass from a cell to any other in its neighborhood (mean-

ing: viruses can spread between cells).
An 1-healthy cell can become A-infected if it contains a virus. This is performed

by the rules:

3: V
11→ H(1) 4: H(12) 12→ A(0) 5: A(12) 11→ W(0)

An AA-infected cell can generate [E, 1] conformons. These conformons can pass
to other cells and interact such that [E, 4] conformons are created. When a [E, 4]
conformon is present in an healthy cell, then it can become A-infected.
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This process mimics rule II in Section 3 and it is performed by:

6: R
1→ AA(1) 7: AA(2) 1→ E(0) 8: E(1) 1→ E(1) 9: E(2) 2→ E(2)

10: E
4→ H(1) 11: H(5) 5→ A(0) 12: A(5) 4→ W(0)

and by the fact that [E, 1] can pass from one cell to any other in its neighbor-
hood. From the rules 7, 8, and 9 it should be clear that only [E, 1], [E, 2], and [E, 4]
can be present in the system. Because of rule 6 an AA-infected cell can generate
[E, 1]. When two [E, 1] are present in the same cell they can interact to create
[E, 2] (rule 8) and two [E, 2] present in the same cell can interact to create [E, 4]
(rule 9). If the creation of [E, 4] took place in an healthy cell, then this cell can
become A-infected (rules 10, 11 and 12).

An A-infected cell can become AA-infected by the application of the rule:

13: A(1) 1→ AA(0)

An AA-infected cell can become dead. Before doing so it goes into the pre-
dead state in which the [V, 11], [E, 1], [E, 2], and [E, 4] conformons present in it are
removed. This is performed by the rules:

14: AA(11) 1→ PD(0) 15: V (11) 1→ PD(1) 16: E
1→ PD(1) 17: E

2→ PD(1)

18: E
4→ PD(1) 19: PD(1) 1→ D(0) 20: PD(2) 1→ W(0) 21: PD(3) 2→ W(0)

22: PD(5) 4→ W(0)

A dead cell can become 2-healthy cell by the application of the rule

23: D(1) 1→ H2(0)

The R and W conformons do not have a direct relationship with any aspect
of HIV infection. In broad terms, the R conformons can be regarded as ‘food’
molecules needed by a cell in a certain state to perform an action (for instance,
if A-infected to generate a virus). The W conformons can be regarded as ‘waste’
molecules, to which some conformons can pass part of their value. As W confor-
mons only receive values from other conformons, their initial value is not relevant
for the simulation.

The state 2-healthy, together with A2-infected, AA2-infected, 2-pre-dead, and
2-dead are managed by the rules in part 2. The rules in part 2 are similar to the
ones in part 1 but they have H2 instead of H, A2 instead of A, AA2 instead of
AA, PD2 instead of PD, and D2 instead of D.

In the diagrams related to the grid of cP systems the curve of healthy cells is
obtained adding up the number of H and H2 cells; the curve of infected cells is
obtained adding up the number of A, AA, A2 and AA2 cells; the curve of dead
cells is obtained adding up the number of D, PD, D2 and PD2 cells.

The interaction rules indicated in Appendix A can be logically divided in two
sets: state-change and internal dynamics. The state-change rules allow the cells to
pass from a state to another. For instance, rule 4 is a state change rule as when
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it is applied in a cell the state of the cell passed from 1-healthy to A-infected. The
state-change rules are: 4, 11, 13, 14, 19, 23, 27, 32, 34, 35, 40 and 44.

The remaining rules belong to internal dynamics as they do not directly effect
the state of a cell.

Differently than what done in [2], in the present study the probabilities asso-
ciated to the internal dynamics rules in phase 1 are equal to the ones in phase 2.
The probabilities of the state-change rules in phase 1 are higher than then ones in
phase 2.

Considering what we said in Section 3, rules in part 1 model the behavior of
the first two phases of the dynamics of HIV infection, while rules in part 2 model
the behavior of the third phase.

4 Experiments and Results

The simulations performed with the cP system were based on a toroidal 50×50
grid, using a Moore neighborhood (considering Figure 4 the black cell can pass
conformons to any grey cell) and with pHIV = 0.05.

Fig. 4. The Moore neighborhood.

All the 10 simulations (with different random number sequences) run for 16000
iterations and they all show a dynamics very similar to the one observed in vivo.
A typical outcome is depicted in Figure 5.

This outcome (even if run for only one kind of neighborhood and one values
of pHIV ) fits the dynamics observed in vivo better than the outcomes reported in
[2]:

the tempo of the dynamics is constant during the simulation. In [2] the dynamics
was ‘too fast’ in the later years (or ‘too slow’ in the first weeks). In the present
study 1 year corresponds to 1560 iterations. This means that phase I and phase
II (both taking place in at most 10 weeks) should correspond to 300 iterations.
In this way the 16000 iterations of out tests corresponds to a bit more than
10 years.

the percentage of healthy and infected cells in phase III is closer to what observed
in vivo than what reported in [2].

the dynamics of healthy and infected cells in phase III is not flat as in [2] but
shows a concavity similar to the one observed in vivo.
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Fig. 5. Typical outcome for grids of cP systems.

There are two major differences between the dynamics obtained by us and the
one observed in vivo:

in phase III the number of healthy cells should become equal to the one of dead
cells;

the curves followed by the number of healthy and infected cells in phase III do
not change concavity.
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5 Final Remarks

We consider the reported study still in its initial phases. In the future we will try
to better fit the dynamics obtained with grids of cP system to what observer in
vivo and we will run the tests on different neighborhoods and different values of
pHIV (as done in [2]).

Some results obtained by us indicates that the E conformons play a negligible
role in the whole dynamics. On this base we will try to simply our model in the
number of interaction rules and conformons present in it.
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A Rules, links, and probabilities

part 1 part 2
label rule prob. label rule prob.

1 R
1→ A(1) 0.7071 24 R

1→ A2(1) 0.7071
2 A(2) 1→ V(10) 0.7071 25 A2(2) 1→ V(10) 0.7071
3 V

11→ H(1) 0.79 26 V
11→ H2(1) 0.79

4 H(12) 12→ A(0) 0.79 27 H2(12) 12→ A2(0) 0.0001
5 A(12) 11→ W(0) 0.79 28 A2(12) 11→ W(0) 0.79
6 R

1→ AA(1) 0.7071 29 R
1→ AA2(1) 0.7071

7 AA(2) 1→ E(0) 0.7071 30 AA2(2) 1→ E(0) 0.7071
8 E(1) 1→ E(1) 0.07071
9 E(2) 2→ E(2) 0.07071
10 E

4→ H(1) 0.79 31 E
4→ H2(1) 0.79

11 H(5) 5→ A(0) 0.79 32 H2(5) 5→ A2(0) 0.0001
12 A(5) 4→ W(0) 0.79 33 A2(5) 4→ W(0) 0.79
13 A(1) 1→ AA(0) 0.04 34 A2(1) 1→ AA2(0) 0.0001
14 AA(11) 1→ PD(0) 0.1 35 AA2(11) 1→ PD2(0) 0.00075
15 V (11) 1→ PD(1) 0.7071 36 V (11) 1→ PD2(1) 0.7071
16 E

1→ PD(1) 0.7071 37 E
1→ PD2(1) 0.7071

17 E
2→ PD(1) 0.7071 38 E

2→ PD2(1) 0.7071
18 E

4→ PD(1) 0.7071 39 E
4→ PD2(1) 0.7071

19 PD(1) 1→ D(0) 0.2 40 PD2(1) 1→ D2(0) 0.001
20 PD(2) 1→ W(0) 0.7071 41 PD2(2) 1→ W(0) 0.7071
21 PD(3) 2→ W(0) 0.7071 42 PD2(3) 2→ W(0) 0.7071
22 PD(5) 4→ W(0) 0.7071 43 PD2(5) 4→ W(0) 0.7071
23 D(1) 1→ H2(0) 0.1 44 D2(1) 1→ H2(0) 0.001

Links:
[V, 11] can pass with probability 1 from any cell to any of its neighbors; [E, 1] can
pass with probability 0.01 from any cell to any of its neighbors.


