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Summary. Quantum UREM P systems constitute an attempt to introduce in Mem-
brane Computing notions and techniques deriving from quantum mechanics. As we will
see, the approach we have adopted is different from what is usually done in Quantum
Computing; in fact, we have been inspired by the functioning of some elementary opera-
tions that are used in quantum mechanics to exchange quanta of energy among quantum
systems: creation and annihilation operators. In this paper we will provide the back-
ground which has led to the current definition of quantum UREM P systems, and we
will recall some results concerning their computational power.

1 The Quest for Quantum P Systems

Membrane systems (also known as P systems) have been introduced by Gheorghe
Păun in 1998 [27] as a new class of distributed and parallel computing devices,
inspired by the structure and functioning of living cells. The basic model consists
of a hierarchical structure composed by several membranes, embedded into a main
membrane called the skin. Membranes divide the Euclidean space into regions,
that contain some objects (represented by symbols of an alphabet) and evolution
rules. Using these rules, the objects may evolve and/or move from a region to a
neighboring one. A computation starts from an initial configuration of the system
and terminates when no evolution rule can be applied. Usually, the result of a
computation is the multiset of objects contained into an output membrane or
emitted from the skin of the system.

In what follows we assume the reader is already familiar with the basic notions
and the terminology underlying P systems. For a layman–oriented introduction to
P systems see [29], whereas for a systematic introduction we refer the reader to
[28]. The latest information about P systems can be found in [32].

At the beginning of 2004, the Membrane Computing community started to
query about the possibility to define a quantum version of P systems, and hence
we started to work on the subject. A first paper [21] was presented in Palma de
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Mallorca in November 2004. There, we proposed two options: either to follow the
steps usually performed in Quantum Computing to define the quantum version
of a given computation device, or to propose a completely new computation de-
vice which is based on the most elementary operation which can be conceived in
physics: the exchange of a quantum of energy among two quantum systems. In
the former case we would have obtained yet another quantum computation device
whose computation steps are defined as the action of unitary operators, whose
computations are logically reversible, and in which there are severe constraints on
the amount of information which can be extracted from the system by measuring
its state. In the latter case, instead, we felt that a new and interesting compu-
tation device could be introduced. Indeed, after a long and careful investigation,
we decided to adopt creation and annihilation operators as the most elementary
operations which can be performed by our computation device.

It was since 2001 that several authors introduced the notion of energy in P
systems [1, 10, 31, 15, 22, 23]. Hence, we looked at the literature to find a model of P
systems that was easily transformable in a quantum computation device. Our first
choice, explored in [21], was to focus on energy–based P systems, in which a given
amount of energy is associated to each object of the system. Moreover, instances of
a special symbol e are used to denote free energy units occurring into the regions of
the system. These energy units can be used to transform objects, using appropriate
rules. The rules are defined according to conservativeness considerations. Indeed, in
[21] we proposed two different versions of quantum P systems based on this classical
model. Both versions were defined just like classical energy–based P systems, but
for objects and rules. Objects were represented as pure states in the Hilbert space
Cd, d ≥ 2, whereas the definition of rules differs between the two models. In
the former, rules are defined as bijective functions — implemented as unitary
operators — which transform the objects from the alphabet. In the latter, rules are
defined as generic functions which map the alphabet into itself. Such functions are
implemented using a generalization of the Conditional Quantum Control technique
[3], and may yield to non unitary operators (a fact which is usually seen with
suspect in traditional Quantum Computing).

However, several problems were pointed out in [21], the most serious being that
it is difficult to avoid unwanted exchanges of energy among the objects, that yield
the system to unintended states. Another difficulty was tied to the assignment of
the amount of energy to every object of the system. In the original definition of
energy–based P system, every object incorporated a different amount of energy; in
other words, the amount of energy uniquely determined the kind of object and, by
acquiring or releasing energy from the environment, one object was transformed
to another kind of object. Under this definition, we were able in [22] to simulate a
single Fredkin gate. However, in order to simulate an entire Fredkin circuit [23, 24]
we were forced to relax the definition, and allow different kinds of objects to have
the same amount of energy, otherwise the number of different kinds of objects
would have become unmanageable. Last, but not the least, we have the problem
of objects localization and control. How do we force an object to stay in a given
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region for a long time, or to move to the desired region? Indeed, one notable
feature of quantum systems is the so called “tunnel effect”, thanks to which at
every moment we have a positive probability that the object spontaneously leaves
the current region. Of course this is a problem which is generally found when
trying to control the behavior of a quantum system, but in the case of energy–
based P systems the problem is exacerbated by the fact that the objects should
move (only) as the effect of the application of a rule. This problem does not occur
with quantum UREM P systems: there the objects interact by exchanging some
amounts of energy, which are stored in quantum harmonic oscillators, but never
move nor cross any membrane.

Looking for some alternatives, we considered the model of P systems introduced
in [11], in which a non–negative integer value is assigned to each membrane. Such
a value can be conveniently interpreted as the energy of the membrane. In these
P systems, rules are assigned to the membranes rather than to the regions of the
system. Every rule has the form (ini : α, ∆e, β) or (outi : α, ∆e, β), where i is
the number of the membrane in a one-to-one labeling, α and β are symbols of the
alphabet and ∆e is a (possibly negative) integer number. The rule (ini : α, ∆e, β)
is interpreted as follows: if a copy of α is in the region immediately surrounding
membrane i, then this object crosses membrane i, is transformed to β, and modifies
the energy of membrane i from the current value ei to the new value ei + ∆e.
Similarly, the rule (outi : α,∆e, β) is interpreted as follows: if a copy of α is in
the region surrounded by membrane i, then this object crosses membrane i, is
transformed to β, and modifies the energy of membrane i from the current value
ei to the new value ei + ∆e. Both kinds of rules can be applied only if ei + ∆e is
non–negative. Since these rules transform one copy of an object to (one copy of)
another object, in [11] they are referred to as unit rules. Hence, for conciseness, this
model of P systems with unit rules and energy assigned to membranes is usually
abbreviated as UREM P systems. An important observation is that in [11] the
rules of UREM P systems are applied in a sequential way: at each computation
step, one rule is selected from the pool of currently active rules, and it is applied.
In [11] it has been proved that if we assign some local (that is, affecting only
the membrane in which they are defined) priorities to the rules then UREM P
systems are Turing complete, whereas if we omit the priorities then we do not get
systems with universal computational power: indeed, we obtain a characterization
of PsMATλ, the family of Parikh sets generated by context-free matrix grammars
(without occurrence checking and with λ-rules).

So, finally, in [20] a quantum version of UREM P systems has been introduced,
and it has been shown that such a model of computation is able to compute
every partial recursive function (that is, it reaches the computational power of
Turing machines) without the need to assign any priority between the rules of
the system. In quantum UREM P systems, the rules (ini : α, ∆e, β) and (outi :
α, ∆e, β) are realized through (not necessarily unitary) linear operators, which can
be expressed as an appropriate composition of a truncated version of creation and
annihilation operators. The operators which correspond to the rules have the form
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|β〉 〈α| ⊗ O, where O is a linear operator which modifies the energy associated
with the membrane (implemented as the state of a truncated quantum harmonic
oscillator).

In [20] also Quantum Register Machines (QRMs, for short) have been intro-
duced. It is our opinion that they could play the same role in proofs concerning
the computational power of quantum computation devices as played by classical
register machines for classical computing devices. Indeed, it has been shown in
[20] that they are able to simulate any classical (deterministic) register machine,
and hence they are (at least) Turing complete. The advantage of quantum UREM
P systems over QRMs is that, due to the locality of interactions, the operators
which correspond to the rules of the former are generally smaller than the operators
corresponding to the instructions of the latter.

Finally, in [19] we have shown that, under the assumption that an external
observer is able to discriminate a null vector from a non–null vector, the NP–
complete problem 3-SAT can be solved using quantum (Fredkin) circuits, quantum
register machines and quantum UREM P systems. Precisely, for each type of com-
putation device we have proposed a brute force technique that exploits quantum
parallelism (as well as the ability to alter quantum states by using creation and
annihilation operators) to explore the whole space of assignments to the boolean
variables of any given instance φ of 3-SAT, in order to determine whether at least
one of such assignments satisfies φ. The solutions are presented in the so-called
semi–uniform setting, which means that for every instance φ of 3-SAT a specific
computation device (circuit, register machine or UREM P system) that solves it
is built. Even if it is not formally proved, it is apparent that the proposed con-
structions can be performed in polynomial time by a classical deterministic Turing
machine (whose output is a “reasonable” encoding of the machine, in the sense
given in [16]).

In the rest of the paper we overview the basic notions of quantum mechanics
which have led to the definition of quantum UREM P systems, and the results
obtained so far about their computational power. Precisely, in section 2 we recall
some basic notions on quantum computers, and we extend them to quantum sys-
tems which are able to assume a generic number d ≥ 2 of base states. We also
introduce some operators which can be used to operate on the states of such sys-
tems; for these operators, we first give a mathematical description and then we
propose some possible physical interpretations. In sections 3 and 4 we give the
precise definitions of both classical and quantum register machines and UREM
P systems, respectively. In section 5 we prove that quantum UREM P systems
are able to compute any partial recursive function, and hence they are (at least)
as powerful as Turing machines. In section 6 we show how to build two families
of quantum register machines and quantum UREM P systems, respectively, that
solve (in the semi–uniform setting) the NP–complete decision problem 3-SAT.
The conclusions, as well as some directions for future research, are given in section
7.
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2 Quantum computers

From an abstract point of view, a quantum computer can be considered as made
up of interacting parts. The elementary units (memory cells) that compose these
parts are two–levels quantum systems called qubits. A qubit is typically imple-
mented using the energy levels of a two–levels atom, or the two spin states of a
spin–1

2 atomic nucleus, or a polarization photon. The mathematical description
— independent of the practical realization — of a single qubit is based on the
two–dimensional complex Hilbert space C2. The boolean truth values 0 and 1 are
represented in this framework by the unit vectors of the canonical orthonormal
basis, called the computational basis of C2:

|0〉 =
[
1
0

]
|1〉 =

[
0
1

]

Qubits are thus the quantum extension of the classical notion of bit, but whereas
bits can only take two different values, 0 and 1, qubits are not confined to their
two basis (also pure) states, |0〉 and |1〉, but can also exist in states which are
coherent superpositions such as ψ = c0 |0〉 + c1 |1〉, where c0 and c1 are complex
numbers satisfying the condition |c0|2 + |c1|2 = 1. Performing a measurement of
the state alters it. Indeed, performing a measurement on a qubit in the above
superposition will return 0 with probability |c0|2 and 1 with probability |c1|2; the
state of the qubit after the measurement (post–measurement state) will be |0〉 or
|1〉, depending on the outcome.

A quantum register of size n (also called an n–register) is mathematically
described by the Hilbert space ⊗nC2 = C2 ⊗ . . .⊗ C2

︸ ︷︷ ︸
n times

, representing a set of n

qubits labeled by the index i ∈ {1, . . . , n}. An n–configuration (also pattern) is
a vector |x1〉 ⊗ . . . ⊗ |xn〉 ∈ ⊗nC2, usually written as |x1, . . . , xn〉, considered as
a quantum realization of the boolean tuple (x1, . . . , xn). Let us recall that the
dimension of ⊗nC2 is 2n and that {|x1, . . . , xn〉 : xi ∈ {0, 1}} is an orthonormal
basis of this space called the n–register computational basis.

Computations are performed as follows. Each qubit of a given n–register is
prepared in some particular pure state (|0〉 or |1〉) in order to realize the required
n–configuration |x1, . . . , xn〉, quantum realization of an input boolean tuple of
length n. Then, a linear operator G : ⊗nC2 → ⊗nC2 is applied to the n–register.
The application of G has the effect of transforming the n–configuration |x1, . . . , xn〉
into a new n–configuration G(|x1, . . . , xn〉) = |y1, . . . , yn〉, which is the quantum
realization of the output tuple of the computer. We interpret such modification
as a computation step performed by the quantum computer. The action of the
operator G on a superposition Φ =

∑
ci1...in |xi1 , . . . , xin〉, expressed as a lin-

ear combination of the elements of the n–register basis, is obtained by linearity:
G(Φ) =

∑
ci1...inG(|xi1 , . . . , xin〉). We recall that linear operators which act on

n–registers can be represented as order 2n square matrices of complex entries.
Usually (but not in this paper) such operators, as well as the corresponding ma-
trices, are required to be unitary. In particular, this implies that the implemented
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operations are logically reversible (an operation is logically reversible if its inputs
can always be deduced from its outputs).

All these notions can be easily extended to quantum systems which have d > 2
pure states. In this setting, the d–valued versions of qubits are usually called qudits
[17]. As it happens with qubits, a qudit is typically implemented using the energy
levels of an atom or a nuclear spin. The mathematical description — independent of
the practical realization — of a single qudit is based on the d–dimensional complex
Hilbert space Cd. In particular, the pure states |0〉 ,

∣∣∣ 1
d−1

〉
,
∣∣∣ 2
d−1

〉
, . . . ,

∣∣∣d−2
d−1

〉
, |1〉

are represented by the unit vectors of the canonical orthonormal basis, called the
computational basis of Cd:

|0〉 =




1
0
...
0
0




,

∣∣∣∣
1

d− 1

〉
=




0
1
...
0
0




, · · · ,

∣∣∣∣
d− 2
d− 1

〉
=




0
0
...
1
0




, |1〉 =




0
0
...
0
1




As before, a quantum register of size n can be defined as a collection of n qudits.
It is mathematically described by the Hilbert space ⊗nCd. An n–configuration is
now a vector |x1〉 ⊗ . . .⊗ |xn〉 ∈ ⊗nCd, simply written as |x1, . . . , xn〉, for xi run-
ning on Ld =

{
0, 1

d−1 , 2
d−1 , . . . , d−2

d−1 , 1
}

. An n–configuration can be viewed as the
quantum realization of the “classical” tuple (x1, . . . , xn) ∈ Ln

d . The dimension of
⊗nCd is dn and the set {|x1, . . . , xn〉 : xi ∈ Ld} of all n–configurations is an ortho-
normal basis of this space, called the n–register computational basis. Notice that
the set Ld can also be interpreted as a set of truth values, where 0 denotes falsity,
1 denotes truth and the other elements indicate different degrees of indefiniteness.

Let us now consider the set Ed =
{

ε0, ε 1
d−1

, ε 2
d−1

, . . . , ε d−2
d−1

, ε1

}
⊆ R of real

values; we can think to such quantities as energy values. To each element v ∈ Ld

we associate the energy level εv; moreover, let us assume that the values of Ed

are all positive, equispaced, and ordered according to the corresponding objects:
0 < ε0 < ε 1

d−1
< · · · < ε d−2

d−1
< ε1. If we denote by ∆ε the gap between two

adjacent energy levels then the following linear relation holds:

εk = ε0 + ∆ε (d− 1) k ∀ k ∈ Ld (1)

Notice that it is not required that ε0 = ∆ε. As explained in [21, 19], the values εk

can be thought of as the energy eigenvalues of the infinite dimensional quantum
harmonic oscillator truncated at the (d− 1)-th excited level (see Figure 1), whose
Hamiltonian on Cd is:

H =




ε0 0 . . . 0
0 ε0 + ∆ε . . . 0
...

...
. . .

...
0 0 . . . ε0 + (d− 1)∆ε


 (2)
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Fig. 1. Energy levels of the infinite dimensional (on the left) and of the truncated (on
the right) quantum harmonic oscillator

The unit vector |H = εk〉 =
∣∣∣ k
d−1

〉
, for k ∈ {0, 1, . . . , d− 1}, is the eigenvector

of the state of energy ε0 +k∆ε. To modify the state of a qudit we can use creation
and annihilation operators on the Hilbert space Cd, which are defined respectively
as:

a† =




0 0 · · · 0 0
1 0 · · · 0 0
0
√

2 · · · 0 0
...

...
. . .

...
...

0 0 · · · √d− 1 0




a =




0 1 0 · · · 0
0 0

√
2 · · · 0

...
...

...
. . .

...
0 0 0 · · · √d− 1
0 0 0 · · · 0




It is easily verified that the action of a† on the vectors of the canonical ortho-
normal basis of Cd is the following:

a†
∣∣∣∣

k

d− 1

〉
=
√

k + 1
∣∣∣∣
k + 1
d− 1

〉
for k ∈ {0, 1, . . . , d− 2}

a† |1〉 = 0

whereas the action of a is:

a

∣∣∣∣
k

d− 1

〉
=
√

k

∣∣∣∣
k − 1
d− 1

〉
for k ∈ {1, 2, . . . , d− 1}

a |0〉 = 0

Using a† and a we can also introduce the following operators:
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N = a†a =




0 0 0 · · · 0
0 1 0 · · · 0
0 0 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · d− 1




aa† =




1 0 · · · 0 0
0 2 · · · 0 0
...

...
. . .

...
...

0 0 · · · d− 1 0
0 0 · · · 0 0




The eigenvalues of the self–adjoint operator N are 0, 1, 2, . . . , d− 1, and the eigen-
vector corresponding to the generic eigenvalue k is |N = k〉 =

∣∣∣ k
d−1

〉
. This corre-

sponds to the notation adopted in [17], where the qudit base states are denoted
by |0〉 , |1〉 , . . . , |d− 1〉, and it is assumed that a qudit can be in a superposition of
the d base states:

c0 |0〉+ c1 |1〉+ . . . + cd−1 |d− 1〉
with ci ∈ C for i ∈ {0, 1, . . . , d− 1}, and |c0|2 + |c1|2 + . . . + |cd−1|2 = 1.

One possible physical interpretation of N is that it describes the number of
particles of physical systems consisting of a maximum number of d − 1 particles.
In order to add a particle to the k particles state |N = k〉 (thus making it switch
to the “next” state |N = k + 1〉) we apply the creation operator a†, while to re-
move a particle from this system (thus making it switch to the “previous” state
|N = k − 1〉) we apply the annihilation operator a. Since the maximum number of
particles that can be simultaneously in the system is d− 1, the application of the
creation operator to a full d − 1 particles system does not have any effect on the
system, and returns as a result the null vector. Analogously, the application of the
annihilation operator to an empty particle system does not affect the system and
returns the null vector as a result.

Another physical interpretation of operators a† and a, by operator N , follows
from the possibility of expressing the Hamiltonian (2) as follows:

H = ε0 I+ ∆εN = ε0 I+ ∆εa†a

In this case a† (resp., a) realizes the transition from the eigenstate of energy
εk = ε0 + k ∆ε to the “next” (resp., “previous”) eigenstate of energy εk+1 =
ε0 + (k + 1) ∆ε (resp., εk−1 = ε0 + (k − 1)∆ε) for any 0 ≤ k < d − 1 (resp.,
0 < k ≤ d − 1), while it collapses the last excited (resp., ground) state of energy
ε0 + (d− 1) ∆ε (resp., ε0) to the null vector.

The collection of all linear operators on Cd is a d2–dimensional linear space
whose canonical basis is:

{Ex,y = |y〉 〈x| : x, y ∈ Ld}
Since Ex,y |x〉 = |y〉 and Ex,y |z〉 = 0 for every z ∈ Ld such that z 6= x, this
operator transforms the unit vector |x〉 into the unit vector |y〉, collapsing all the
other vectors of the canonical orthonormal basis of Cd to the null vector. Each
of the operators Ex,y can be expressed, using the whole algebraic structure of
the associative algebra of operators, as a suitable composition of creation and
annihilation operators, as follows:
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E i
d−1 , j

d−1
=





√
j!

(d−1)!A
d−2,d−1−j,0
a†,a† if i = 0√

j!
(d−1)!A

d−1,d−1−j,0
a,a† if i = 1 and j ≥ 1√

i!
(d−1)!

√
j!

Ad−2−i,d−1,j
a†,a† if (i = 1, j = 0 and d ≥ 3) or

(1 < i < d− 2 and j ≤ i)√
j!

(d−1)!
√

i!
Ai−1,d−1,d−1−j

a,a if (i = d− 2, j = d− 1 and d ≥ 3)
or (1 < i < d− 2 and j > i)

1√
(d−1)!j!(d−1)

Ad−1,j,0
a†,a if i = d− 2 and j ≤ d− 2

1√
(d−1)!j!

Ad−2,j,0
a,a if i = d− 1

Here we just recall, in order to keep the length of the paper under a reasonable
size, that an alternative interpretation of qudits is possible, based on the values
which can be assumed by the z component of the angular momentum of semi–
integer spin quantum systems. Also with this interpretation every linear operator,
and in particular operators Ex,y, can be realized as appropriate compositions of
spin–rising (J+) and spin–lowering (J−) operators, similarly to what we have done
with creation and annihilation operators. For the details, we refer the reader to
[21, 19].

3 Classical and Quantum Register Machines

A (classical, deterministic) n–register machine is a construct M = (n, P, l0, lh),
where n is the number of registers, P is a finite set of instructions injectively labeled
with a given set lab(M), l0 is the label of the first instruction to be executed, and
lh is the label of the last instruction of P . Registers contain non–negative integer
values. Without loss of generality, we can assume lab(M) = {1, 2, . . . ,m}, l0 = 1
and lh = m. The instructions of P have the following forms:

• j : (INC(r), k), with j, k ∈ lab(M)
This instruction increments the value contained in register r, and then jumps
to instruction k.

• j : (DEC(r), k, l), with j, k, l ∈ lab(M)
If the value contained in register r is positive then decrement it and jump
to instruction k. If the value of r is zero then jump to instruction l (without
altering the contents of the register).

• m : Halt
Stop the machine. Note that this instruction can only be assigned to the final
label m.

Register machines provide a simple universal computational model. Indeed, the
results proved in [12] (based on the results established in [25]) as well as in [13]
and [14] immediately lead to the following proposition.

Proposition 1. For any partial recursive function f : Nα → Nβ there exists a
deterministic (max{α, β} + 2)–register machine M computing f in such a way
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that, when starting with (n1, . . . , nα) ∈ Nα in registers 1 to α, M has computed
f(n1, . . . , nα) = (r1, . . . , rβ) if it halts in the final label lh with registers 1 to β
containing r1 to rβ, and all other registers being empty; if the final label cannot be
reached, then f(n1, . . . , nα) remains undefined.

A quantum n–register machine is defined exactly as in the classical case, as a
four–tuple M = (n, P, l0, lh). Each register of the machine can be associated to
an infinite dimensional quantum harmonic oscillator capable to assume the base
states |ε0〉 , |ε1〉 , |ε2〉 , . . ., corresponding to its energy levels, as described in section
2. The program counter of the machine is instead realized through a quantum
system capable to assume m different base states, from the set {|x〉 : x ∈ Lm}.
For simplicity, the instructions of P are denoted in the usual way:

j : (INC(i), k) and j : (DEC(i), k, l)

This time, however, these instructions are appropriate linear operators acting on
the Hilbert space whose vectors describe the (global) state of M . Precisely, the
instruction j : (INC(r), k) is defined as the operator

OINC
j,r,k = |pk〉 〈pj | ⊗

(⊗r−1I
)⊗ a† ⊗ (⊗n−rI

)

with I the identity operator on H (the Hilbert space in which the state vectors of
the infinite dimensional quantum harmonic oscillators associated with the registers
exist), whereas the instruction j : (DEC(r), k, l) is defined as the operator

ODEC
j,r,k,l = |pl〉 〈pj | ⊗

(⊗r−1I
)⊗ |ε0〉 〈ε0| ⊗

(⊗n−rI
)
+

|pk〉 〈pj | ⊗
(⊗r−1I

)⊗ a⊗ (⊗n−rI
)

Hence the program P can be formally defined as the sum OP of all these
operators:

OP =
∑

j,r,k

OINC
j,r,k +

∑

j,r,k,l

ODEC
j,r,k,l

Thus OP is the global operator which describes a computation step of M . The
Halt instruction is simply executed by doing nothing when the program counter
assumes the value |pm〉. For such a value, OP would produce the null vector as a
result; however, in what follows we will add a term to OP that allows us to extract
the solution of the problem from a prefixed register when the program counter
assumes the value |pm〉.

A configuration of M is given by the value of the program counter and the
values contained in the registers. From a mathematical point of view, a configu-
ration of M is a vector of the Hilbert space Cm ⊗ (⊗nH). A transition between
two configurations is obtained by executing one instruction of P (the one pointed
at by the program counter), that is, by applying the operator OP to the current
configuration of M .

As shown in [20], QRMs can simulate any (classical, deterministic) register
machine, and thus they are (at least) computationally complete.
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4 Classical and Quantum UREM P Systems

We are now ready to focus our attention to P systems. As stated in the intro-
duction, quantum UREM P systems have been introduced in [20] as a quantum
version of UREM P systems. Hence, let us start by recalling the definition of the
classical model of computation.

A UREM P system [11] of degree d + 1 is a construct Π of the form:

Π = (A,µ, e0, . . . , ed, w0, . . . , wd, R0, . . . , Rd)

where:

• A is an alphabet of objects;
• µ is a membrane structure, with the membranes labeled by numbers 0, . . . , d

in a one-to-one manner;
• e0, . . . , ed are the initial energy values assigned to the membranes 0, . . . , d. In

what follows we assume that e0, . . . , ed are non–negative integers;
• w0, . . . , wd are multisets over A associated with the regions 0, . . . , d of µ;
• R0, . . . , Rd are finite sets of unit rules associated with the membranes 0, . . . , d.

Each rule has the form (α : a,∆e, b), where α ∈ {in, out}, a, b ∈ A, and |∆e| is
the amount of energy that — for ∆e ≥ 0 — is added to or — for ∆e < 0 — is
subtracted from ei (the energy assigned to membrane i) by the application of
the rule.

By writing (αi : a,∆e, b) instead of (α : a,∆e, b) ∈ Ri, we can specify only one
set of rules R with

R = {(αi : a, ∆e, b) : (α : a, ∆e, b) ∈ Ri, 0 ≤ i ≤ d}

The initial configuration of Π consists of e0, . . . , ed and w0, . . . , wd. The tran-
sition from a configuration to another one is performed by non–deterministically
choosing one rule from some Ri and applying it (observe that here we consider
a sequential model of applying the rules instead of choosing rules in a maximally
parallel way, as it is often required in P systems). Applying (ini : a,∆e, b) means
that an object a (being in the membrane immediately outside of i) is changed into
b while entering membrane i, thereby changing the energy value ei of membrane i
by ∆e. On the other hand, the application of a rule (outi : a,∆e, b) changes object
a into b while leaving membrane i, and changes the energy value ei by ∆e. The
rules can be applied only if the amount ei of energy assigned to membrane i fulfills
the requirement ei + ∆e ≥ 0. Moreover, we use some sort of local priorities: if
there are two or more applicable rules in membrane i, then one of the rules with
max |∆e| has to be used.

A sequence of transitions is called a computation; it is successful if and only if
it halts. The result of a successful computation is considered to be the distribution
of energies among the membranes (a non–halting computation does not produce
a result). If we consider the energy distribution of the membrane structure as
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the input to be analysed, we obtain a model for accepting sets of (vectors of)
non–negative integers.

The following result, proved in [11], establishes computational completeness for
this model of P systems.

Proposition 2. Every partial recursive function f : Nα → Nβ can be computed by
a UREM P system with (at most) max{α, β}+ 3 membranes.

It is interesting to note that the proof of this proposition is obtained by simulat-
ing register machines. In the simulation, a P system is defined which contains one
subsystem for each register of the simulated machine. The contents of the register
are expressed as the energy value ei assigned to the i-th subsystem. A single object
is present in the system at every computation step, which stores the label of the
instruction of the program P currently simulated. Increment instructions are simu-
lated in two steps by using the rules (ini : pj , 1, p̃j) and (outi : p̃j , 0, pk). Decrement
instructions are also simulated in two steps, by using the rules (ini : pj , 0, p̃j) and
(outi : p̃j ,−1, pk) or (outi : p̃j , 0, pl). The use of priorities associated to these last
rules is crucial to correctly simulate a decrement instruction. For the details of the
proof we refer the reader to [11].

On the other hand, by omitting the priority feature we do not get systems
with universal computational power. Precisely, in [11] it is proved that P systems
with unit rules and energy assigned to membranes without priorities and with an
arbitrary number of membranes characterize the family PsMATλ of Parikh sets
generated by context–free matrix grammars (without occurrence checking and with
λ-rules).

In quantum UREM P systems, all the elements of the model (multisets, the
membrane hierarchy, configurations, and computations) are defined just like the
corresponding elements of the classical P systems, but for objects and rules. The
objects of A are represented as pure states of a quantum system. If the alphabet
contains d ≥ 2 elements then, recalling the notation introduced in section 2, with-
out loss of generality we can put A =

{
|0〉 ,

∣∣∣ 1
d−1

〉
,
∣∣∣ 2
d−1

〉
, . . . ,

∣∣∣d−2
d−1

〉
, |1〉

}
, that

is, A = {|a〉 : a ∈ Ld}. As stated above, the quantum system will also be able to
assume as a state any superposition of the kind:

c0 |0〉+ c 1
d−1

∣∣∣∣
1

d− 1

〉
+ . . . + c d−2

d−1

∣∣∣∣
d− 2
d− 1

〉
+ c1 |1〉

with c0, c 1
d−1

, . . . , c d−2
d−1

, c1 ∈ C such that
∑d−1

i=0

∣∣c i
d−1

∣∣2 = 1. A multiset is simply a
collection of quantum systems, each in its own state.

In order to represent the energy values assigned to membranes we must use
quantum systems which can exist in an infinite (countable) number of states.
Hence we assume that every membrane of the quantum P system has an associated
infinite dimensional quantum harmonic oscillator whose state represents the energy
value assigned to the membrane. To modify the state of such harmonic oscillator
we can use the infinite dimensional version of creation (a†) and annihilation (a)
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operators1 described in section 2, which are commonly used in quantum mechanics.
The actions of a† and a on the state of an infinite dimensional harmonic oscillator
are analogous to the actions on the states of truncated harmonic oscillators; the
only difference is that in the former case there is no state with maximum energy,
and hence the creation operator never produces the null vector. Also in this case
it is possible to express operators Ex,y = |y〉 〈x| as appropriate compositions of a†

and a.
As in the classical case, rules are associated to the membranes rather than to

the regions enclosed by them. Each rule of Ri is an operator of the form

|y〉 〈x| ⊗O, with x, y ∈ Ld (3)

where O is a linear operator which can be expressed by an appropriate composition
of operators a† and a. The part |y〉 〈x| is the guard of the rule: it makes the rule
“active” (that is, the rule produces an effect) if and only if a quantum system in
the basis state |x〉 is present. The semantics of rule (3) is the following: If an object
in state |x〉 is present in the region immediately outside membrane i, then the state
of the object is changed to |y〉 and the operator O is applied to the state of the
harmonic oscillator associated with the membrane. Notice that the application of
O can result in the null vector, so that the rule has no effect even if its guard
is satisfied; this fact is equivalent to the condition ei + ∆e ≥ 0 on the energy
of membrane i required in the classical case. Differently from the classical case,
no local priorities are assigned to the rules. If two or more rules are associated to
membrane i, then they are summed. This means that, indeed, we can think to each
membrane as having only one rule with many guards. When an object is present,
the inactive parts of the rule (those for which the guard is not satisfied) produce
the null vector as a result. If the region in which the object occurs contains two
or more membranes, then all their rules are applied to the object. Observe that
the object which activates the rules never crosses the membranes. This means that
the objects specified in the initial configuration can change their state but never
move to a different region. Notwithstanding, transmission of information between
different membranes is possible, since different objects may modify in different
ways the energy state of the harmonic oscillators associated with the membranes.

The application of one or more rules determines a transition between two con-
figurations. A halting configuration is a configuration in which no rule can be
applied. A sequence of transitions is a computation. A computation is successful
if and only if it halts, that is, reaches a halting configuration. The result of a
successful computation is considered to be the distribution of energies among the
membranes in the halting configuration. A non–halting computation does not pro-
duce a result. Just like in the classical case, if we consider the energy distribution
of the membrane structure as the input to be analyzed, we obtain a model for
accepting sets of (vectors of) non–negative integers.

1 We recall that an alternative formulation that uses spin–rising (J+) and spin–lowering
(J−) operators instead of creation and annihilation is also possible.
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5 Computational Completeness of Quantum UREM P
Systems

In this section we prove that quantum P systems with unit rules and energy
assigned to membranes are computationally complete, that is, they are able to
compute any partial recursive function f : Nα → Nβ . As in the classical case, the
proof is obtained by simulating register machines.

Theorem 1. Every partial recursive function f : Nα → Nβ can be computed by
a quantum P system with unit rules and energy assigned to membranes with (at
most) max{α, β}+ 3 membranes.

Proof. Let M = (n, P, 1,m) be a deterministic n–register machine that computes
f . Let m be the number of instructions of P . The initial instruction of P has the
label 1, and the halting instruction has the label m. Observe that, according to
Proposition 1, n = max{α, β}+ 2 is enough.

The input values x1, . . . , xα are expected to be in the first α registers, and the
output values are expected to be in registers 1 to β at the end of a successful
computation. Moreover, without loss of generality, we may assume that at the
beginning of a computation all the registers except (eventually) the registers 1 to
α contain zero.

We construct the quantum P system

Π = (A, µ, e0, . . . , en, w0, . . . , wn, R0, . . . , Rn)

where:

• A = {|j〉 | j ∈ Lm}
• µ = [0[1]1 · · · [α]α · · · [n]n]0

• ei =





|εxi〉 for 1 ≤ i ≤ α

|ε0〉 for α + 1 ≤ i ≤ n

0 (the null vector) for i = 0
• w0 = |0〉
• wi = ∅ for 1 ≤ i ≤ n
• R0 = ∅
• Ri =

∑m
j=1 Oij for 1 ≤ i ≤ n

where the Oij ’s are local operators which simulate instructions of the kind
j : (INC(i), k) and j : (DEC(i), k, l) (one local operator for each increment or
decrement operation which affects register i). The details on how the Oij ’s are
defined are given below.

The value contained into register i, 1 ≤ i ≤ n, is represented by the energy
value ei = |εxi〉 of the infinite dimensional quantum harmonic oscillator associated
with membrane i. Figure 2 depicts a typical configuration of Π. The skin contains
one object of the kind |j〉, j ∈ Lm, which mimics the program counter of machine
M . Precisely, if the program counter of M has the value k ∈ {1, 2, . . . , m} then
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Fig. 2. A configuration of the simulating P system

the object present in region 0 is
∣∣∣ k−1
m−1

〉
. In order to avoid cumbersome notation,

in what follows we denote by |pk〉 the state
∣∣∣ k−1
m−1

〉
of the quantum system which

mimics the program counter.
The sets of rules Ri depend upon the instructions of P . Precisely, the simulation

works as follows.

1. Increment instructions j : (INC(i), k) are simulated by a guarded rule of the
kind |pk〉 〈pj | ⊗ a† ∈ Ri.
If the object |pj〉 is present in region 0, then the rule transforms it into object
|pk〉 and increments the energy level of the harmonic oscillator contained into
membrane i.

2. Decrement instructions j : (DEC(i), k, l) are simulated by a guarded rule of
the kind:

|pl〉 〈pj | ⊗ |ε0〉 〈ε0|+ |pk〉 〈pj | ⊗ a ∈ Ri

In fact, let us assume that the object |pj〉 is present in region 0 (if |pj〉 is not
present then the above rule produces the null operator), and let us denote by
O the above rule. The harmonic oscillator may be in the base state |ε0〉 or in
a base state |εx〉 with x a positive integer.
If the state of the harmonic oscillator is |ε0〉 then the rule produces:

O( |pj〉 ⊗ |ε0〉) =
= (|pl〉 〈pj | ⊗ |ε0〉 〈ε0|)(|pj〉 ⊗ |ε0〉) + (|pk〉 〈pj | ⊗ a)(|pj〉 ⊗ |ε0〉) =
= |pl〉 ⊗ |ε0〉+ |pk〉 ⊗ 0 = |pl〉 ⊗ |ε0〉

that is, the state of the oscillator is unaltered and the program counter is set
to |pl〉.
If the state of the harmonic oscillator is |εx〉, for a positive integer x, then the
rule produces:

O( |pj〉 ⊗ |εx〉) =
= (|pl〉 〈pj | ⊗ |ε0〉 〈ε0|)(|pj〉 ⊗ |εx〉) + (|pk〉 〈pj | ⊗ a)(|pj〉 ⊗ |εx〉) =
= |pl〉 ⊗ 0 + |pk〉 ⊗ a |εx〉 = |pk〉 ⊗ |εx−1〉
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that is, the energy level of the harmonic oscillator is decremented and the
program counter is set to |pk〉.

The set Ri of rules is obtained by summing all the operators which affect (incre-
ment or decrement) register i. The Halt instruction is simply simulated by doing
nothing with the object |pm〉 when it appears in region 0.

It is apparent from the description given above that after the simulation of
each instruction each energy value ei equals the value contained into register i,
with 1 ≤ i ≤ m. Hence, when the halting symbol |pm〉 appears in region 0, the
energy values e1, . . . , eβ equal the output of the program P .

Let us conclude this section by observing that, in order to obtain computational
completeness, it is not necessary that the objects cross the membranes. This fact
avoids one of the problems raised in [21]: the existence of a “magic” quantum
transportation mechanism which is able to move objects according to the target
contained into the rule. In quantum P systems with unit rules and energy assigned
to membranes, the only problem is to keep the object |pj〉 localized in region 0, so
that it never enters into the other regions. In other words, the major problem of
this kind of quantum P systems is to oppose the tunnel effect.

It should also be evident that the proof of Theorem 1 can be modified to show
that quantum P systems are able to simulate quantum register machines. Indeed,
the notable difference between the quantum P systems described above and quan-
tum register machines is that in the latter model we modify the values contained
into registers using global operators (if a given register must not be modified then
the identity operator is applied to its state) whereas in the former model we oper-
ate locally, on a smaller Hilbert space. Hence, as it happens in classical P systems,
membranes are used to divide the site where the computation occurs into indepen-
dent local areas. The effect of each rule is local, in the sense that the rule affects
only the state of one subsystem. Due to the simulations mentioned above, we can
order these computational models with respect to their computational power, as
follows:

deterministic
register
machines

≤
quantum
register
machines

≤
quantum P systems
with unit rules and
energy assigned to
membranes

Quantum register machines can thus be used as a tool to study the computa-
tional power of other quantum models of computation, just like it happens in the
classical case.

6 Solving 3-SAT with QRMs and with Quantum UREM P
Systems

Quantum UREM P systems are not only able to compute all partial recursive
functions, like Turing machines, but they can also be very efficient computation
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devices. Indeed, in this section we show how we can solve in polynomial time
the NP–complete decision problem 3-SAT by quantum register machines and by
quantum UREM P systems. As we will see, the solution provided by quantum
UREM P systems will be even more efficient that the one obtained with QRMs.

It is important to stress that our solutions assume that a specific non–unitary
operator, built using the truncated version of creation and annihilation operators,
can be realized as an instruction of quantum register machines and as a rule of
quantum UREM P systems, respectively. The construction relies also upon the
assumption that an external observer is able to discriminate, as the result of a
measurement, a null vector from a non–null vector.

6.1 The 3-SAT problem

A boolean variable is a variable which can assume one of two possible truth values:
true and false. As usually done in the literature, we will denote true by 1 and
false by 0. A literal is either a directed or a negated boolean variable. A clause
is a disjunction of literals, whereas a 3-clause is a disjunction of exactly three
literals. Given a set X = {x1, x2, . . . , xn} of boolean variables, an assignment is a
mapping a : X → {0, 1} that associates to each variable a truth value. The number
of all possible assignments to the variables of X is 2n. We say that an assignment
satisfies the clause C if, assigned the truth values to all the variables which occur
in C, the evaluation of C (considered as a boolean formula) gives 1 as a result.

The 3-SAT decision problem is defined as follows.

Problem 1. Name: 3-SAT.

• Instance: a set C = {C1, C2, . . . , Cm} of 3-clauses, built on a finite set {x1, x2,
. . . , xn} of boolean variables.

• Question: is there an assignment of the variables x1, x2, . . . , xn that satisfies
all the clauses in C?

Notice that the number m of possible 3-clauses is polynomially bounded with
respect to n: in fact, since each clause contains exactly three literals, we can have
at most (2n)3 = 8n3 clauses.

In what follows we will equivalently say that an instance of 3-SAT is a boolean
formula φn, built on n free variables and expressed in conjunctive normal form,
with each clause containing exactly three literals. The formula φn is thus the
conjunction of the above clauses.

It is well known [16] that 3-SAT is an NP–complete problem.

6.2 Solving 3-SAT with quantum register machines

Let φn be an instance of 3-SAT containing n free variables. We will first show how
to evaluate φn with a classical register machine; then, we will initialize the input
registers with a superposition of all possible assignments, we will compute the
corresponding superposition of output values into an output register, and finally
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we will apply the linear operator 2n |1〉 〈1| to the output register to check whether
φn is a positive instance of 3-SAT.

The register machine that we use to evaluate φn is composed by n+1 registers.
The first n registers correspond (in a one-to-one manner) to the free variables of
φn, while the last register is used to compute the output value. The structure of
the program used to evaluate φn is the following:

φ = 0
if C1 = 0 then goto end
if C2 = 0 then goto end
...
if Cm = 0 then goto end
φ = 1

end:

where φ denotes the output register, and C1, C2, . . . , Cm are the clauses of φn. Let
Xi,j , with j ∈ {1, 2, 3}, be the literals (directed or negated variables) which occur
in the clause Ci (hence Ci = Xi,1 ∨ Xi,2 ∨ Xi,3). We can thus write the above
structure of the program, at a finer grain, as follows:

φ = 0
if X1,1 = 1 then goto end1

if X1,2 = 1 then goto end1

if X1,3 = 1 then goto end1

goto end
end1: if X2,1 = 1 then goto end2

if X2,2 = 1 then goto end2 (4)

if X2,3 = 1 then goto end2

goto end
end2: · · · · · ·

...
endm−1: if Xm,1 = 1 then goto end

if Xm,2 = 1 then goto end
if Xm,3 = 1 then goto end
φ = 1

end:

In the above structure it is assumed that each literal Xi,j , with 1 ≤ i ≤ m
and j ∈ {1, 2, 3}, is substituted with the corresponding variable which occurs in it;
moreover, if the variable occurs negated into the literal then the comparison must
be done with 0 instead of 1:

if Xi,j = 0 then goto endi
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Since the free variables of φn are bijectively associated with the first n registers
of the machine, in order to evaluate φn we need a method to check whether a given
register contains 0 (or 1) without destroying its value. Let us assume that, when
the program counter of the machine reaches the value k, we have to execute the
following instruction:

k: if Xi,j = 1 then goto endi

We translate such instruction as follows (where, instead of Xi,j , we specify the
register which corresponds to the variable indicated in Xi,j):

k: DEC(Xi,j), k + 1, k + 2
k + 1: INC(Xi,j), endi

The instruction:

k: if Xi,j = 0 then goto endi

is instead translated as follows:

k: DEC(Xi,j), k + 1, endi

k + 1: INC(Xi,j), k + 2

Notice that the only difference with the previous sequence of instructions is in the
position of “endi” and “k + 2”. Moreover, the structure of the program is always
the same. As a consequence, given an instance φn of 3-SAT, the program P of
a register machine which evaluates φn can be obtained in a very straightforward
(mechanical) way.

On a classical register machine, this program computes the value of φn for a
given assignment to its variables x1, x2, . . . , xn. On a quantum register machine
we can initialize the registers with the following state:

⊗n−1H1 |0〉 ⊗ |0〉

which sets the output register φ to 0 and the registers corresponding to x1, x2, . . .,
xn to a superposition of all possible assignments. Then, we apply the global opera-
tor OP which corresponds to the program P until the program counter reaches the
value |pend〉, thus computing in the output register a superposition of all classical
results. The operator OP is built as described in section 3, with the only difference
that now it contains also the term:

|pend〉 〈pend| ⊗ idn ⊗ 2n |1〉 〈1| =
|pend〉 〈pend| ⊗ idn ⊗

[
(|1〉 〈1|+ |1〉 〈1|) ◦ . . . ◦ (|1〉 〈1|+ |1〉 〈1|)︸ ︷︷ ︸

n times

]

which extracts the result from the output register when the program counter as-
sumes the value |pend〉. The number of times we have to apply OP is equal to the
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length of P , that is, 2 · 3m + 2 = 6m + 2: two instructions for each literal in every
clause, plus two final instructions.

Now, if φn is not satisfiable then the contents of the output register is |0〉, and
when the program counter reaches the value |pend〉 the operator OP transforms it
to the null vector. On the other hand, if φn is satisfiable then the contents of the
output register will be a superposition α0 |0〉 + α1 |1〉, with α1 6= 0. By applying
the operator OP we obtain (here |ψn〉 denotes the state of the n input registers):

OP

( |pend〉 ⊗ |ψn〉 ⊗ (α0 |0〉+ α1 |1〉)
)

=

=
( |pend〉 〈pend| ⊗ idn ⊗ 2n |1〉 〈1| )·

· ( |pend〉 ⊗ |ψn〉 ⊗ (α0 |0〉+ α1 |1〉)
)

=
= |pend〉 〈pend|pend〉 ⊗ idn |ψn〉 ⊗ 2n |1〉 〈1| (α0 |0〉+ α1 |1〉) =
= |pend〉 ⊗ |ψn〉 ⊗ (2nα0 |1〉 〈1|0〉+ 2nα1 |1〉 〈1|1〉) =
= |pend〉 ⊗ |ψn〉 ⊗ (0 + 2nα1 |1〉) =
= |pend〉 ⊗ |ψn〉 ⊗ 2nα1 |1〉

that is, a non–null vector.
We can thus conclude that if an external observer is able to discriminate be-

tween a null vector and a non–null vector, and it is possible to build and apply
the operator 2n |1〉 〈1| = E1,1 = N = a†a to the output register of a QRM, then
we have a family of QRMs that solve 3-SAT in polynomial time. This solution
is given in a semi–uniform setting: in particular, the program P executed by the
QRM depends upon the instance φn of 3-SAT we want to solve.

6.3 Solving 3-SAT with Quantum UREM P Systems

In this section we finally show how to build a (semi–uniform) family of quantum
UREM P systems that solves 3-SAT. Let φn be an instance of 3-SAT containing
n free variables. The structure and the initial configuration of the P system that
determines whether φn is satisfiable is similar to what shown in Figure 2, the only
difference being that there are n + 1 subsystems instead of n.

As we have done with quantum register machines, let us start by showing how
to evaluate φn for a given assignment of truth values to its variables x1, . . . , xn.
The input values are set as the energies |εxi〉 of the harmonic oscillators associated
with the membranes from 1 to n. The energy (eventually) associated with the skin
membrane is not used. The (n + 1)-th membrane, whose harmonic oscillator will
contain the output at the end of the computation, is initialized with |ε0〉. The
alphabet A consists of all the possible values which can be assumed by the program
counter of the QRM that evaluates φn. In the initial configuration the P system
contains only one copy of the object |p1〉, corresponding to the initial value of the
program counter, in the region enclosed by the skin membrane.

The evaluation of φn could be performed by simulating the QRM obtained
from φn as explained in the previous section. However, we can obtain a slightly
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more efficient P system as follows. We start from the program structure (4), which
can be obtained from φn in a straightforward way. Now, let us suppose we must
execute the following instruction:

k: if Xi,j = 1 then goto endi

As told above, this instruction is performed as follows in a register machine:

k: DEC(Xi,j), k + 1, k + 2
k + 1: INC(Xi,j), endi

If we had to simulate these two instructions using a quantum UREM P system,
we should use the following sum of rules:

(|pendi
〉 〈pk+1| ⊗ a†

)
︸ ︷︷ ︸

k + 1: INC(Xi,j), endi

+
( |pk+2〉 〈pk| ⊗ |ε0〉 〈ε0|+ |pk+1〉 〈pk| ⊗ a

)
︸ ︷︷ ︸

k: DEC(Xi,j), k + 1, k + 2

∈ R`

where ` = 〈i, j〉 is the index of the variable (in the set {x1, x2, . . . , xn}) which
occurs in literal Xi,j . As we can see, this operator produces the vector |pk+2〉⊗|ε0〉
if the harmonic oscillator of membrane ` is in state |ε0〉; otherwise, it produces the
vector |pendi〉 ⊗ |ε1〉. Hence we can simplify the above expression as follows:

|pendi〉 〈pk| ⊗ |ε1〉 〈ε1|+ |pk+2〉 〈pk| ⊗ |ε0〉 〈ε0| =
= |pendi〉 〈pk| ⊗ a†a + |pk+2〉 〈pk| ⊗ aa†

We denote this operator by O
(1)
i,j,k. Analogously, if the instruction to be executed

is:

k: if Xi,j = 0 then goto endi

then we use the operator

O
(0)
i,j,k = |pendi〉 〈pk| ⊗ aa† + |pk+2〉 〈pk| ⊗ a†a ∈ R`

which produces the vector |pk+2〉 ⊗ |ε1〉 if the harmonic oscillator of membrane `
is in state |ε1〉, otherwise it produces the vector |pendi〉 ⊗ |ε0〉.

Since the value |pk+1〉 is no longer used, we can “compact” the program by
redefining the operators O

(0)
i,j,k and O

(1)
i,j,k respectively as:

O
(0)
i,j,k = |pendi〉 〈pk| ⊗ aa† + |pk+1〉 〈pk| ⊗ a†a

O
(1)
i,j,k = |pendi〉 〈pk| ⊗ a†a + |pk+1〉 〈pk| ⊗ aa†

The “goto end” instructions in (4) can be executed as if they were if statements
whose condition is the negation of the condition given in the previous if. Hence
the two instructions:
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7: if X2,3 = 1 then goto end2

8: goto end

can be thought of as:

7: if X2,3 = 1 then goto end2

8: if X2,3 = 0 then goto end

which are realized by the operators O
(1)
2,3,7 and O

(0)
2,3,8 (to be added to membrane

〈2, 3〉). The last instruction (φ = 1) of the program can be implemented as follows:

|pend〉 〈pend−1| ⊗ a†

to be added to membrane n + 1.
For each membrane i ∈ {1, 2, . . . , n}, the set of rules Ri is obtained by summing

all the operators which concern variable xi.
Note that the formulation given in terms of quantum P systems is simpler than

the one obtained with QRMs. As usual, if we consider a single assignment to the
variables of φn then at the end of the computation we will obtain the result of the
evaluation of φn as the energy of the output membrane. Instead, if we initialize the
harmonic oscillators of the n input membranes with a uniform superposition of all
possible classical assignments to x1, x2, . . . , xn, then at the end of the computation
the harmonic oscillator of membrane n + 1 will be in one of the following states:

• |0〉, if φn is not satisfiable;
• a superposition α0 |0〉+ α1 |1〉, with α1 6= 0, if φn is satisfiable.

Once again, we add the rule:

|pend〉 〈pend| ⊗ 2n |1〉 〈1| ∈ Rn+1

to membrane n + 1 to extract the result.
We have thus obtained a family of quantum UREM P systems which solves

3-SAT in polynomial time. Also this scheme works in the semi–uniform setting:
in fact, it is immediately verified that the rules of the system depend upon the
instance φn of 3-SAT to be solved.

7 Conclusions and Directions for Future Research

In this paper we have overviewed the state of the art concerning quantum UREM
P systems. Starting from basic notions of quantum computers and quantum me-
chanics, we have seen how quantum register machines and quantum UREM P
systems can be defined.

Subsequently, we have proved that such quantum models of computation are
computationally complete, that is, they are able to compute any partial recursive
function f : Nα → Nβ . This result has been obtained by simulating classical
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deterministic register machines. Moreover, we have shown a family of QRMs and a
family of quantum UREM P systems that solve (in the semi–uniform setting) the 3-
SAT NP–complete decision problem in polynomial time. Their construction relies
upon the following assumptions: (1) an external observer is able to discriminate, as
the result of a measurement, a null vector from a non–null vector, and (2) a specific
non–unitary operator, which can be expressed using creation and annihilation
operators, can be realized as an instruction of the quantum register machine, and
as a rule of the quantum P system, respectively.

One possible direction for future research is to study the computational prop-
erties of quantum P systems which contain and process entangled objects. Another
line of research is to study the limits of the computational power of quantum P
systems by attacking harder than NP-complete problems. In particular, we conjec-
ture that EXP-complete problems can be solved in polynomial time with quantum
P systems.
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C. Zandron (eds.), Membrane Computing, Proceedings of the International Workshop
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