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Summary. We survey the formalism Calculus of Looping Sequences (CLS) and a num-
ber of its variants from the point of view of their use for describing biological membranes.
The formalism CLS is based on term rewriting and allows describing biomolecular sys-
tems. A first variant of CLS, called Stochastic CLS, extends the formalism with stochastic
time, another variant, called LCLS (CLS with links), allows describing proteins interac-
tion at the domain level. A third variant is introduced for easier description of biological
membranes. This extension can be encoded into CLS as well as other formalisms capable
of membrane description such as Brane Calculi and P Systems. Such encodings allow ver-
ifying and simulating descriptions in Brane Calculi and P Systems by means of verifiers
and simulators developed for CLS.

1 Introduction

Cell biology, the study of the morphological and functional organization of cells, is
now an established field in biochemical research. Computer Science can help the
research in cell biology in several ways. For instance, it can provide biologists with
models and formalisms capable of describing and analyzing complex systems such
as cells. In the last few years many formalisms originally developed by computer
scientists to model systems of interacting components have been applied to Biology.
Among these, there are Petri Nets [16], Hybrid Systems [1], and the π-calculus [9,
25]. Moreover, new formalisms have been defined for describing biomolecular and
membrane interactions [2, 7, 8, 11, 21, 23]. Others, such as P Systems [17, 18],
have been proposed as biologically inspired computational models and have been
later applied to the description of biological systems.

The π–calculus and new calculi based on it [21, 23] have been particularly
successful in the description of biological systems, as they allow describing systems
in a compositional manner. Interactions of biological components are modeled as
communications on channels whose names can be passed; sharing names of private
channels allows describing biological compartments. However, these calculi offer
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very low–level interaction primitives, and this causes models to become very large
and difficult to read. Calculi such as those proposed in [7, 8, 11] give a more
abstract description of systems and offer special biologically motivated operators.
However, they are often specialized to the description of some particular kinds
of phenomena such as membrane interactions or protein interactions. Finally, P
Systems have a simple notation and are not specialized to the description of a
particular class of systems, but they are still not completely general. For instance,
it is possible to describe biological membranes and the movement of molecules
across membranes, and there are some variants able to describe also more complex
membrane activities. However, the formalism is not so flexible to allow describing
easily new activities observed on membranes without extending the formalism to
model such activities.

Therefore, we conclude that there is a need for a formalism having a simple
notation, having the ability of describing biological systems at different levels of
abstraction, having some notions of compositionality and being flexible enough to
allow describing new kinds of phenomena as they are discovered, without being
specialized to the description of a particular class of systems. For this reason in
[3] we have introduced the Calculus of Looping Sequences (CLS).

CLS is a formalism based on term rewriting with some features, such as a
commutative parallel composition operator, and some semantic means, such as
bisimulations, which are common in process calculi. This permits to combine the
simplicity of notation of rewriting systems with the advantage of a form of com-
positionality. Actually, in [4] we have defined bisimilarity relations on CLS terms
which are congruences with respect to the operators. The bisimilarity relation may
be used to verify a property of a system by assessing its bisimilarity with a system
one knows to enjoy that property. The fact that bisimilarity is a congruence is
very important for a compositional account of behavioral equivalence.

In [5, 6], we have defined two extensions of CLS. The first, Stochastic CLS,
allows describing quantitative aspects of the modeled systems such as the time
spent by occurrences of chemical reactions. The second, CLS with links, allows
describing protein interaction more precisely at a lower level of abstraction, namely
at the domain level.

In this paper, after recalling CLS and the two mentioned extensions, we focus
on the modeling of biological membranes by means of CLS. Now, CLS does not
offer an easy representation for membranes whose nature is fluid and for proteins
which consequently move freely on membrane surfaces. For this reason, in [15] we
have defined a CLS variant, called CLS+, which introduces a new operator allowing
commutativity on membrane surfaces. We show how CLS+ can be encoded into
CLS.

In [3, 15] we have shown how Brane Calculi [7] and P Systems [18] can be
translated into CLS. Here we recall the ideas on which the translations are based.

CLS appears to allow description and manipulation of biological membranes
and, moreover, offers, via translations, verification and simulation tools to other
formalisms for membrane description.
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2 The Calculus of Looping Sequences (CLS)

In this section we recall the Calculus of Looping Sequences (CLS) and we give
some guidelines for the modeling of biological systems. CLS is essentially based on
term rewriting, hence a CLS model consists of a term and a set of rewrite rules.
The term is intended to represent the structure of the modeled system, and the
rewrite rules to represent the events that may cause the system to evolve.

2.1 Formal Definition

We start with defining the syntax of terms. We assume a possibly infinite alphabet
E of symbols ranged over by a, b, c, . . ..

Definition 1 (Terms). Terms T and sequences S of CLS are given by the fol-
lowing grammar:

T ::= S
�� �

S
�L

⌋ T
�� T | T

S ::= ǫ
�� a

�� S · S

where a is a generic element of E, and ǫ represents the empty sequence. We denote

with T the infinite set of terms, and with S the infinite set of sequences.

In CLS we have a sequencing operator · , a looping operator
( )L

, a parallel
composition operator | and a containment operator ⌋ . Sequencing can be
used to concatenate elements of the alphabet E . The empty sequence ǫ denotes
the concatenation of zero symbols. A term can be either a sequence or a looping
sequence (that is the application of the looping operator to a sequence) containing
another term, or the parallel composition of two terms. By definition, looping and
containment are always applied together, hence we can consider them as a single

binary operator
( )L

⌋ which applies to one sequence and one term.
Brackets can be used to indicate the order of application of the operators,

and we assume
( )L

⌋ to have precedence over | . In Figure 1 we show some
examples of CLS terms and their visual representation.

In CLS we may have syntactically different terms representing the same struc-
ture. We introduce a structural congruence relation to identify such terms.
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Definition 2 (Structural Congruence). The structural congruence relations
≡S and ≡T are the least congruence relations on sequences and on terms, respec-
tively, satisfying the following rules:

S1 · (S2 · S3) ≡S (S1 · S2) · S3 S · ǫ ≡S ǫ · S ≡S S

S1 ≡S S2 implies S1 ≡T S2 and
�
S1

�L
⌋ T ≡T

�
S2

�L
⌋ T

T1 | T2 ≡T T2 | T1 T1 | (T2 | T3) ≡T (T1 | T2) | T3 T | ǫ ≡T T�
ǫ
�L

⌋ ǫ ≡T ǫ
�
S1 · S2

�L
⌋ T ≡T

�
S2 · S1

�L
⌋ T

Rules of the structural congruence state the associativity of · and | , the com-

mutativity of the latter and the neutral role of ǫ. Moreover, axiom
(
S1·S2

)L
⌋ T ≡T(

S2 · S1

)L
⌋ T says that looping sequences can rotate. In the following, for sim-

plicity, we will use ≡ in place of ≡T .
Rewrite rules will be defined essentially as pairs of terms, with the first term

describing the portion of the system in which the event modeled by the rule may
occur, and the second term describing how that portion of the system changes
when the event occurs. In the terms of a rewrite rule we allow the use of variables.
As a consequence, a rule will be applicable to all terms which can be obtained by
properly instantiating its variables. Variables can be of three kinds: two of these
are associated with the two different syntactic categories of terms and sequences,
and one is associated with single alphabet elements. We assume a set of term
variables TV ranged over by X,Y,Z, . . ., a set of sequence variables SV ranged
over by x̃, ỹ, z̃, . . ., and a set of element variables X ranged over by x, y, z, . . .. All
these sets are possibly infinite and pairwise disjoint. We denote by V the set of all
variables, V = TV ∪SV ∪X , and with ρ a generic variable of V. Hence, a pattern
is a term that may include variables.

Definition 3 (Patterns). Patterns P and sequence patterns SP of CLS are
given by the following grammar:

P ::= SP
�� �

SP
�L

⌋ P
�� P | P

�� X

SP ::= ǫ
�� a

�� SP · SP
�� ex �� x

where a is a generic element of E, and X, x̃ and x are generic elements of TV, SV

and X , respectively. We denote with P the infinite set of patterns.

We assume the structural congruence relation to be trivially extended to pat-
terns. An instantiation is a partial function σ : V → T . An instantiation must
preserve the type of variables, thus for X ∈ TV, x̃ ∈ SV and x ∈ X we have
σ(X) ∈ T , σ(x̃) ∈ S and σ(x) ∈ E , respectively. Given P ∈ P, with Pσ we denote
the term obtained by replacing each occurrence of each variable ρ ∈ V appearing
in P with the corresponding term σ(ρ). With Σ we denote the set of all the pos-
sible instantiations and, given P ∈ P, with V ar(P ) we denote the set of variables
appearing in P . Now we define rewrite rules.
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Biomolecular Entity CLS Term

Elementary object Alphabet symbol
(genes, domains,
other molecules, etc...)

DNA strand Sequence of elements repr. genes

RNA strand Sequence of elements repr. transcribed genes

Protein Sequence of elements repr. domains
or single alphabet symbol

Molecular population Parallel composition of molecules

Membrane Looping sequence

Table 1. Guidelines for the abstraction of biomolecular entities into CLS.

Definition 4 (Rewrite Rules). A rewrite rule is a pair of patterns (P1, P2),
denoted with P1 7→P2, where P1, P2 ∈ P, P1 6≡ ǫ and such that V ar(P2) ⊆ V ar(P1).
We denote with ℜ the infinite set of all the possible rewrite rules.

A rewrite rule P1 7→ P2 states that a term P1σ, obtained by instantiating
variables in P1 by some instantiation function σ, can be transformed into the
term P2σ. We define the semantics of CLS as a transition system, in which states
correspond to terms, and transitions correspond to rule applications.

Definition 5 (Semantics). Given a set of rewrite rules R ⊆ ℜ, the semantics of
CLS is the least transition relation → on terms closed under ≡, and satisfying the
following inference rules:

P1 7→P2 ∈ R P1σ 6≡ ǫ σ ∈ Σ

P1σ → P2σ

T1 → T2

T | T1 → T | T2

T1 → T2�
S
�L

⌋ T1 →
�
S
�L

⌋ T2

where the symmetric rule for the parallel composition is omitted.

A model in CLS is given by a term describing the initial state of the system
and by a set of rewrite rules describing all the events that may occur.

2.2 Modeling Guidelines

We describe how CLS can be used to model biomolecular systems analogously to
what done by Regev and Shapiro in [24] for the π–calculus. An abstraction is a
mapping from a real–world domain to a mathematical domain, which may allow
highlighting some essential properties of a system while ignoring other, complicat-
ing, ones. In [24], Regev and Shapiro show how to abstract biomolecular systems
as concurrent computations by identifying the biomolecular entities and events of
interest and by associating them with concepts of concurrent computations such
as concurrent processes and communications. In particular, they give some guide-
lines for the abstraction of biomolecular systems to the π–calculus, and give some
simple examples.
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Biomolecular Event Examples of CLS Rewrite Rule

State change a 7→ bex · a · ey 7→ ex · b · ey
Complexation a | b 7→ cex · a · ey | b 7→ ex · c · ey
Decomplexation c 7→ a | bex · c · ey 7→ ex · a · ey | b

Catalysis c | P1 7→ c | P2

where P1 7→ P2 is the catalyzed event

State change
�
a · ex�L

⌋ X 7→
�
b · ex�L

⌋ X

on membrane

Complexation
�
a · ex · b · ey�L

⌋ X 7→
�
c · ex · ey�L

⌋ X

on membrane a |
�
b · ex�L

⌋ X 7→
�
c · ex�L

⌋ X�
b · ex�L

⌋ (a | X) 7→
�
c · ex�L

⌋ X

Decomplexation
�
c · ex�L

⌋ X 7→
�
a · b · ex�L

⌋ X

on membrane
�
c · ex�L

⌋ X 7→ a |
�
b · ex�L

⌋ X�
c · ex�L

⌋ X 7→
�
b · ex�L

⌋ (a | X)

Catalysis
�
c · ex · SP1 · ey�L

7→
�
c · ex · SP2 · ey�L

on membrane where SP1 7→ SP2 is the catalyzed event

Membrane crossing a |
�ex�L

⌋ X 7→
�ex�L

⌋ (a | X)�ex�L
⌋ (a | X) 7→ a |

�ex�L
⌋ Xex · a · ey |

�ez�L
⌋ X 7→

�ez�L
⌋ (ex · a · ey | X)�ez�L

⌋ (ex · a · ey | X) 7→ ex · a · ey |
�ez�L

⌋ X

Catalyzed a |
�
b · ex�L

⌋ X 7→
�
b · ex�L

⌋ (a | X)

membrane crossing
�
b · ex�L

⌋ (a | X) 7→ a |
�
b · ex�L

⌋ Xex · a · ey |
�
b · ez�L

⌋ X 7→
�
b · ez�L

⌋ (ex · a · ey | X)�
b · ez�L

⌋ (ex · a · ey | X) 7→ ex · a · ey |
�
b · ez�L

⌋ X

Membrane joining
�ex�L

⌋ (a | X) 7→
�
a · ex�L

⌋ X�ex�L
⌋ (ey · a · ez | X) 7→

�ey · a · ez · ex�L
⌋ X

Catalyzed
�
b · ex�L

⌋ (a | X) 7→
�
a · b · ex�L

⌋ X

membrane joining
�ex�L

⌋ (a | b | X) 7→
�
a · ex�L

⌋ (b | X)�
b · ex�L

⌋ (ey · a · ez | X) 7→
�ey · a · ez · ex�L

⌋ X�ex�L
⌋ (ey · a · ez | b | X) 7→

�ey · a · ez · ex�L
⌋ (b | X)

Membrane fusion
�ex�L

⌋ (X) |
�ey�L

⌋ (Y ) 7→
�ex · ey�L

⌋ (X | Y )

Catalyzed
�
a · ex�L

⌋ (X) |
�
b · ey�L

⌋ (Y ) 7→

membrane fusion
�
a · ex · b · ey�L

⌋ (X | Y )

Membrane division
�ex · ey�L

⌋ (X | Y ) 7→
�ex�L

⌋ (X) |
�ey�L

⌋ (Y )

Catalyzed
�
a · ex · b · ey�L

⌋ (X | Y ) 7→

membrane division
�
a · ex�L

⌋ (X) |
�
b · ey�L

⌋ (Y )

Table 2. Guidelines for the abstraction of biomolecular events into CLS.
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The use of rewrite systems, such as CLS, to describe biological systems is
founded on a different abstraction. Usually, entities (and their structures) are
abstracted by terms of the rewrite system, and events by rewriting rules. We have
already introduced the biological interpretation of CLS operators in the previous
section. Here we want to give more general guidelines.

First of all, we select the biomolecular entities of interest. Since we want to
describe cells, we consider molecular populations and membranes. Molecular pop-
ulations are groups of molecules that are in the same compartment of the cell.
Molecules can be of many types: we classify them as DNA and RNA strands, pro-
teins, and other molecules. DNA and RNA strands and proteins can be seen as
non–elementary objects. DNA strands are composed by genes, RNA strands are
composed by parts corresponding to the transcription of individual genes, and pro-
teins are composed by parts having the role of interaction sites (or domains). Other
molecules are considered as elementary objects, even if they are complexes. Mem-
branes are considered as elementary objects, in the sense that we do not describe
them at the level of the lipids they are made of. The only interesting properties
of a membrane are that it may contain something (hence, create a compartment)
and that it may have molecules on its surface.

Now, we select the biomolecular events of interest. The simplest kind of event
is the change of state of an elementary object. Then, we may have interactions be-
tween molecules: in particular complexation, decomplexation and catalysis. These
interactions may involve single elements of non–elementary molecules (DNA and
RNA strands, and proteins). Moreover, we may have interactions between mem-
branes and molecules: in particular a molecule may cross or join a membrane.
Finally, we may have interactions between membranes: in this case there may be
many kinds of interactions (fusion, division, etc. . . ).

The guidelines for the abstraction of biomolecular entities and events into CLS
are given in Table 1 and Table 2, respectively. Entities are associated with CLS
terms: elementary objects are modeled as alphabet symbols, non–elementary ob-
jects as CLS sequences and membranes as looping sequences. Biomolecular events
are associated with CLS rewrite rules. In the figure we give some examples of
rewrite rules for each type of event. The list of examples is not complete: one could
imagine also rewrite rules for the description of complexation/decomplexation
events involving more than two molecules, or catalysis events in which the cat-
alyzing molecule is on a membrane and the catalyzed event occurs in its content,
or more complex interactions between membranes. We remark that in the second
example of rewrite rule associated with the complexation event we have that one
of the two molecules which are involved should be either an elementary object
or a protein modeled as a single alphabet symbol. As before, this is caused by
the problem of modeling protein interaction at the domain level. This problem is
solved by the extension of CLS with links, called LCLS, we shall describe in the
following.
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2.3 Examples

A well–known example of biomolecular system is the epidermal growth factor
(EGF) signal transduction pathway[26, 19]. If EGF proteins are present in the
environment of a cell, they should be interpreted as a proliferation signal from
the environment, and hence the cell should react by synthesizing proteins which
stimulate its proliferation. A cell recognizes the EGF signal because it has on
its membrane some EGF receptor proteins (EGFR), which are transmembrane
proteins (they have some intra–cellular and some extra–cellular domains). One of
the extra–cellular domains binds to one EGF protein in the environment, forming
a signal–receptor complex on the membrane. This causes a conformational change
on the receptor protein that enables it to bind to another one signal–receptor
complex. The formation of the binding of the two signal–receptor complexes (called
dimerization) causes the phosphorylation of some intra–cellular domains of the
dimer. This, in turn, causes the internal domains of the dimer to be recognized by
a protein that is inside the cell (in the cytoplasm), called SHC. The protein SHC
binds to the dimer, enabling a long chain of protein–protein interactions, which
finally activate some proteins, such as one called ERK, which bind to the DNA
and stimulate synthesis of proteins for cell proliferation.

Now, we use CLS to build a model of the first steps of the EGF signaling
pathway up to the binding of the signal-receptor dimer to the SHC protein. In
the following we shall refine the model by using the LCLS extension to describe
interactions at the domain level.

We model the EGFR,EGF and SHC proteins as the alphabet symbols EGFR,
EGF and SHC, respectively. The cell is modeled as a looping sequence (represent-
ing its external membrane), initially composed only by EGFR symbols, containing
SHC symbols and surrounded by EGF symbols. The rewrite rules modeling the
first steps of the pathway are the following:

EGF |
(
EGFR · x̃

)L
⌋ X 7→

(
CMPLX · x̃

)L
⌋ X (R1)

(
CMPLX · x̃ · CMPLX · ỹ

)L
⌋ X 7→

(
DIM · x̃ · ỹ

)L
⌋ X (R2)

(
DIM · x̃

)L
⌋ X 7→

(
DIMp · x̃

)L
⌋ X (R3)

(
DIMp · x̃

)L
⌋ (SHC | X) 7→

(
DIMpSHC · x̃

)L
⌋ X (R4)

Rule R1 describes the binding of a EGF protein to a EGFR receptor protein
on the membrane surface. The result of the binding is a signal-receptor com-
plex denoted CMPLX. Rule R2 describes the dimerization of two signal-receptor
complex, the result is denoted DIM . Rule R3 describes the phosphorylation (and
activation) of a signal-receptor dimer, that is the replacement of a DIM symbol
with a DIMp symbol. Finally, rule R4 describes the binding of an active dimer
DIMp with a SHC protein contained in the cytoplasm. The result is a DIMpSHC

symbol placed on the membrane surface.
A possible initial term for the model in this example is given by a looping

sequence composed by some EGFR symbols, containing some SHC symbols and
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with some EGF symbols outside. A possible evolution of such a term by means of
application of the given rewrite rules is the following (we write on each transition
the name of the rewrite rule applied):

EGF | EGF |
(
EGFR · EGFR · EGFR · EGFR

)L
⌋ (SHC | SHC)

(R1)
−−−→ EGF |

(
EGFR · CMPLX · EGFR · EGFR

)L
⌋ (SHC | SHC)

(R1)
−−−→

(
EGFR · CMPLX · EGFR · CMPLX

)L
⌋ (SHC | SHC)

(R2)
−−−→

(
EGFR · DIM · EGFR

)L
⌋ (SHC | SHC)

(R3)
−−−→

(
EGFR · DIMp · EGFR

)L
⌋ (SHC | SHC)

(R4)
−−−→

(
EGFR · DIMpSHC · EGFR

)L
⌋ SHC

We show another example of modeling of a biomolecular system with CLS,
that is the modeling of a simple gene regulation process. This kind of processes
are essential for cell life as they allow a cell to regulate the production of proteins
that may have important roles for instance in metabolism, growth, proliferation
and differentiation.

The example we consider is as follows: we have a simple DNA fragment con-
sisting of a sequence of three genes. The first, denoted p, is called promoter and
is the place where a RNA polymerase enzyme (responsible for translation of DNA
into RNA) binds to the DNA. The second, denoted o, is called operator and it is
the place where a repressor protein (responsible for regulating the activity of the
RNA polymerase) binds to the DNA. The third, denoted as g, is the gene that
encodes for the protein whose production is regulated by this process.

When the repressor is not bound to the DNA, the RNA polymerase can scan
the sequence of genes and transcribe gene g into a piece of RNA that will be later
translated into the protein encoded by g. When the repressor is bound to the
DNA, it becomes an obstacle for the RNA polymerase that cannot scan any more
the sequence of genes.

The CLS model of this simple regulation process is a follows. The sequence of
genes is represented as the CLS sequence p · o · g, the RNA polymerase enzyme
as polym, the repressor protein as repr, and the piece of RNA obtained by the
translation of gene g as rna. The rewrite rules describing the process are the
following:

polym | p · x̃ 7→ pp · x̃ (R1)

repr | x̃ · o · ỹ 7→ x̃ · ro · ỹ (R2)

pp · o · x̃ 7→ p · po · x̃ (R3)

x̃ · po · g 7→ x̃ · o · pg (R4)

x̃ · pg 7→ polym | rna | x̃ · g (R5)

Rules R1 and R2 describe the binding of the RNA polymerase and of the
repressor to the corresponding genes in the DNA sequences. The results of these
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bindings are that the symbols representing the two genes are replaced by pp and
ro, respectively. Rules R3, R4 and R5 describe the activity of the RNA polymerase
enzyme in the absence of the repressor: it moves from gene p to gene o in rule R3,
then it moves from gene o to gene g in rule R4, and finally it produces the RNA
fragment and leaves the DNA in rule R5. Note that, in order to apply rule R3, the
repressor must be not bound to the DNA.

The only possible evolution of a term representing an initial situation in which
no repressors are present is

polym | p · o · g
(R1)
−−−→ pp · o · g

(R3)
−−−→ p · po · g

(R4)
−−−→ p · o · pg

(R5)
−−−→ polym | rna | p · o · g

that represent the case in which the RNA polymerase enzyme can scan the DNA
sequence and transcribe gene g into a piece of RNA. When the repressor is present,
instead, a possible evolution is

polym | p · o · g
(R1)
−−−→ pp · o · g

(R2)
−−−→ pp · ro · g

and it corresponds to a situation in which the repressor stops the transcription of
the gene by hampering the activity of the RNA polymerase.

3 Two Extensions of CLS

In this section we describe two extensions of CLS. The first, Stochastic CLS, allows
describing quantitative aspects of the modeled systems, such as the time spent by
occurrences of chemical reactions. The second, CLS with links, allows describing
protein interaction more precisely at a lower level of abstraction, namely at the
domain level.

3.1 Stochastic CLS

In CLS only qualitative aspects of biological systems are considered, such as their
structure and the presence (or the absence) of certain molecules. As a consequence,
on CLS models it is only possible to verify properties such as the reachability of
particular states or causality relationships between events. It would be interesting
to verify also properties such as the time spent to reach a particular state, or
the probability of reaching it. To face this problem, in [6] we have developed a
stochastic extension of CLS, called Stochastic CLS, in which quantitative aspects,
such as time and probability are taken into account.

The standard way of extending a formalism to model quantitative aspects
of biological systems is by incorporating the stochastic framework developed by
Gillespie with its simulation algorithm for chemical reactions [12] in the semantics
of the formalism. This has been done, for instance, for the π–calculus [20, 22]. The



The Calculus of Looping Sequences 67

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  10  20  30  40  50  60  70  80  90  100

M
ol

ec
ul

es

Seconds

no repressors
10 repressors
25 repressors
50 repressors

Fig. 2. Simulation result of the regulation process: number of RNA molecules over time.

idea of Gillespie’s algorithm is that a rate constant is associated with each chemical
reaction that may occur in the system. Such a constant is obtained by multiplying
the kinetic constant of the reaction by the number of possible combinations of
reactants that may occur in the system. The resulting rate constant is then used
as the parameter of an exponential distribution modeling the time spent between
two occurrences of the considered chemical reaction.

The use of exponential distributions to represent the (stochastic) time spent
between two occurrences of chemical reactions allows describing the system as a
Continuous Time Markov Chain (CTMC), and consequently it allows verifying
properties of the described system by means of analytic means and by means of
stochastic model checkers.

In Stochastic CLS, incorporating Gillespie’s stochastic framework is not a sim-
ple exercise. The main difficulty is counting the number of possible reactant combi-
nations of the chemical reaction described by a rewrite rule. This means counting
the number of different positions where the rewrite rule can be applied, by taking
into account that rules may contain variables. We have defined the Stochastic CLS
in [6], and showed how to derive a CTMC from the semantics of a system modeled
in Stochastic CLS. This allows performing simulation and verification of properties
of the described systems, for instance by using stochastic model checkers, such as
PRISM [13].
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Let us consider the simple regulation process we modeled with CLS in Sec-
tion 2.3. We now extend the CLS model by including a kinetic constant in each
rewrite rule. The result is a Stochastic CLS model. In order to make the model a
little more realistic we add two rewrite rules describing the unbinding of the RNA
polymerase and of the repressor from the DNA. Hence, the rewrite rules of the
Stochastic CLS model are the following:

polym | p · x̃
0.1
7−→ pp · x̃ (R1)

pp · x̃
2

7−→ polym | p · x̃ (R1’)

repr | x̃ · o · ỹ
1

7−→ x̃ · ro · ỹ (R2)

x̃ · ro · ỹ
10
7−→ repr | x̃ · o · ỹ (R2’)

pp · o · x̃
100
7−→ p · po · x̃ (R3)

x̃ · po · g
100
7−→ x̃ · o · pg (R4)

x̃ · pg
30
7−→ polym | rna | x̃ · g (R5)

We developed a simulator based on Stochastic CLS, and we used it to study
the behavior of the regulation process. In particular, we performed simulations
by varying the quantity of repressors and we observed the production of RNA
fragments in each case. The initial configuration of the system is given by the
following term

repr | . . . | repr︸ ︷︷ ︸
n

| polym | . . . | polym︸ ︷︷ ︸
100

| p · o · g

and we performed simulations with n = 0, 10, 25 and 50. The results of the simu-
lations are shown in Figure 2. By varying the number of repressors from 0 to 50
the rate of transcription of the DNA into RNA molecules decreases.

3.2 CLS with Links (LCLS)

A formalism for modeling proteins interactions at the domain level was developed
in the seminal paper by Danos and Laneve [11], and extended in [14]. This formal-
ism allows expressing proteins by a node with a fixed number of domains; binding
between domains allow complexating proteins. In this section we extend CLS to
represent proteins interaction at the domain level. Such an extension, called Cal-
culus of Linked Looping Sequences (LCLS), is obtained by labeling elementary
components of sequences. Two elements with the same label are considered to be
linked.

To model a protein at the domain level in CLS it would be natural to use a
sequence with one symbol for each domain. However, the binding between two
domains of two different proteins, that is the linking between two elements of two
different sequences, cannot be expressed in CLS. To represent this, we extend CLS
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by labels on basic symbols. If in a term two symbols appear having the same label,
we intend that they represent domains which are bound to each other. If in a term
there is a symbol with a label and no other symbol with the same label, we intend
that the term represents only a part of a system we model, and that the symbol
will be linked to some other symbol in another part of the term representing the
full model.

As membranes create compartments, elements inside a looping sequence cannot
be linked to elements outside. Elements inside a membrane can be linked either
to other elements inside the membrane or to elements of the membrane itself. An
element can be linked at most to another element.

As an example, we model in LCLS the first steps of the EGF pathway described
before. We model the EGFR protein as the sequence RE1 ·RE2 ·RI1 ·RI2 where RE1

and RE2 are two extra–cellular domains and RI1 and RI2 are two intra–cellular
domains. The membrane of the cell is modeled as a looping sequence which could
contain EGFR proteins. Outside the looping sequence (i.e. in the environment)
there could be EGF proteins, and inside (i.e. in the cytoplasm) there could be
SHC proteins. Rewrite rules modeling the pathway are the following:

EGF |
(
RE1 · x̃

)L
⌋ X 7→

(
sRE1 · x̃

)L
⌋ X (R1)

(
sRE1 · RE2 · x · y · x̃ · sRE1 · RE2 · z · w · ỹ

)L
⌋ X 7→

(
sRE1 · R

1
E2 · x · y · sRE1 · R

1
E2 · z · w · x̃ · ỹ

)L
⌋ X (R2)

(
R1

E2 · RI1 · x̃ · R1
E2 · RI1 · ỹ

)L
⌋ X 7→

(
R1

E2 · PRI1 · x̃ · R1
E2 · RI1 · ỹ

)L
⌋ X (R3)

(
R1

E2 · PRI1 · x̃ · R1
E2 · RI1 · ỹ

)L
⌋ X 7→

(
R1

E2 · PRI1 · x̃ · R1
E2 · PRI1 · ỹ

)L
⌋ X (R4)

(
R1

E2 · PRI1 · RI2 · x̃ · R1
E2 · PRI1 · RI2 · ỹ

)L
⌋ (SHC | X) 7→

(
R1

E2 · PRI1 · R
2
I2 · x̃ · R1

E2 · PRI1 · RI2 · ỹ
)L

⌋ (SHC2 | X) (R5)

Rule R1 represents the binding of the EGF protein to the receptor domain RE1

with sRE1 as a result. Rule R2 represents that when two EGFR proteins activated
by proteins EGF occur on the membrane, they may bind to each other to form a
dimer (shown by the link 1). Rule R3 represents the phosphorylation of one of the
internal domains RI1 of the dimer, and rule R4 represents the phosphorylation of
the other internal domain RI1 of the dimer. The result of each phosphorylation is
pRI1. Rule R5 represents the binding of the protein SHC in the cytoplasm to an
internal domain RI2 of the dimer. Remark that the binding of SHC to the dimer
is represented by the link 2, allowing the protein SHC to continue the interactions
to stimulate cell proliferation.
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Let us denote the sequence RE1·RE2·RI1·RI2 by EGFR. By starting from a cell
with some EGFR proteins on its membrane, some SHC proteins in the cytoplasm
and some EGF proteins in the environment, a possible evolution is the following:

EGF | EGF |
(
EGFR·EGFR·EGFR

)L
⌋ (SHC | SHC)

(R1)
−−−→ EGF |

(
sRE1 ·RE2 ·RI1 ·RI2 ·EGFR·EGFR

)L
⌋ (SHC | SHC)

(R1)
−−−→

(
sRE1 ·RE2 ·RI1 ·RI2 ·EGFR·sRE1 ·RE2 ·RI1 ·RI2

)L
⌋ (SHC | SHC)

(R2)
−−−→

(
sRE1 ·R

1
E2 ·RI1 ·RI2 ·sRE1 ·R

1
E2 ·RI1 ·RI2 ·EGFR

)L
⌋ (SHC | SHC)

(R3)
−−−→

(
sRE1 ·R

1
E2 ·pRI1 ·RI2 ·sRE1 ·R

1
E2 ·RI1 ·RI2 ·EGFR

)L
⌋ (SHC | SHC)

(R4)
−−−→

(
sRE1 ·R

1
E2 ·pRI1 ·RI2 ·sRE1 ·R

1
E2 ·pRI1 ·RI2 ·EGFR

)L
⌋ (SHC | SHC)

(R5)
−−−→

(
sRE1 ·R

1
E2 ·pRI1 ·R

2
I2 ·sRE1 ·R

1
E2 ·pRI1 ·RI2 ·EGFR

)L
⌋ (SHC2 | SHC)

4 CLS and Membranes

What could seem strange in CLS is the use of looping sequences for the description
of membranes, as sequencing is not a commutative operation and this do not
correspond to the usual fluid representation of membranes in which objects can
move freely. What one would expect is to have a multiset or a parallel composition
of objects on a membrane. In the case of CLS, what could be used is a parallel
composition of sequences. To address this problem, we define an extension of CLS,
called CLS+, in which the looping operator can be applied to a parallel composition
of sequences, and we show that we can translate quite easily CLS+ models into
CLS ones.

4.1 Definition of CLS+

Terms in CLS+ are defined as follows.

Definition 6 (Terms). Terms T , branes B, and sequences S of CLS+ are given

by the following grammar:

T ::= S
∣∣ (

B
)L

⌋ T
∣∣ T | T

B ::= S
∣∣ S | S

S ::= ǫ
∣∣ a

∣∣ S · S

where a is a generic element of E. We denote with T the infinite set of terms, with

B the infinite set of branes, and with S the infinite set of sequences.

The structural congruence relation of CLS+ is a trivial extension of the one
of CLS. The only difference is that commutativity of branes replaces rotation of
looping sequences.
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Definition 7 (Structural Congruence). The structural congruence relations

≡S, ≡B and ≡T are the least congruence relations on sequences, on branes and

on terms, respectively, satisfying the following rules:

S1 · (S2 · S3) ≡S (S1 · S2) · S3 S · ǫ ≡S ǫ · S ≡S S

S1 ≡S S2 implies S1 ≡B S2

B1 | B2 ≡B B2 | B1 B1 | (B2 | B3) ≡B (B1 | B2) | B3 B | ǫ ≡B B

S1 ≡S S2 implies S1 ≡T S2

B1 ≡B B2 implies
(
B1

)L
⌋ T ≡T

(
B2

)L
⌋ T

T1 | T2 ≡T T2 | T1 T1 | (T2 | T3) ≡T (T1 | T2) | T3 T | ǫ ≡T T
(
ǫ
)L

⌋ ǫ ≡ ǫ

Now, to define patterns in CLS+ we consider an additional type of variables
with respect of CLS, namely brane variables. We assume a set of brane variables
BV ranged over by x, y, z, . . ..

Definition 8 (Patterns). Patterns P , brane patterns BP and sequence patterns
SP of CLS+ are given by the following grammar:

P ::= SP
∣∣ (

BP
)L

⌋ P
∣∣ P | P

∣∣ X

BP ::= SP
∣∣ SP | SP

∣∣ x

SP ::= ǫ
∣∣ a

∣∣ SP · SP
∣∣ x̃

∣∣ x

where a is a generic element of E, and X,x, x̃ and x are generic elements of

TV,BV, SV and X , respectively. We denote with P the infinite set of patterns.

As usual, rewrite rules are pairs of patterns.

Definition 9 (Rewrite Rules). A rewrite rule is a pair of patterns (P1, P2),
denoted with P1 7→ P2, where P1, P2 ∈ PP , P1 6≡ ǫ and such that V ar(P2) ⊆
V ar(P1). We denote with ℜ the infinite set of all the possible rewrite rules.

Now, differently from CLS, we have that a rule such as a | b 7→ c could be
applied to elements of a looping sequence. For instance, a | b 7→ c can be applied

to the term
(
a | b

)L
⌋ d so to obtain the term

(
c
)L

⌋ d. However, a rule such

as
(
a
)L

⌋ b 7→ c still cannot be applied to elements of a looping sequences, as((
a
)L

⌋ b
)L

⌋ c is not a CLS+ term.
The rules that can be applied to elements of a looping sequence are those

having the form (B1, B2) with B1, B2 ∈ B. We call these rules brane rules and
we denote as ℜB ⊂ ℜ their infinite set. Now, in the semantics of CLS+ we have
to take into account brane rules and allow them to be applied also to elements of
looping sequences. Hence, we define the semantics as follows.



72 R. Barbuti et al.

Definition 10 (Semantics). Given a set of rewrite rules R ⊆ ℜ, and a set of

brane rules RB ⊆ R, such that (R \ RB) ∩ ℜB = ∅, the semantics of CLS is the

least transition relation → on terms closed under ≡, and satisfying the following

inference rules:

(P1, P2) ∈ R P1σ 6≡ ǫ σ ∈ Σ

P1σ → P2σ

T1 → T2

T | T1 → T | T2

T1 → T2(
B

)L
⌋ T1 →

(
B

)L
⌋ T2

(BP1, BP2) ∈ RB BP1σ 6≡ ǫ σ ∈ Σ

BP1σ →B BP2σ

B1 →B B2

B | B1 →B B | B2

B1 →B B2(
B1

)L
⌋ T →

(
B2

)L
⌋ T

where →B is a transition relation on branes, and where the symmetric rules for

the parallel composition of terms and of branes are omitted.

In the definition of the semantics of CLS+ we use an additional transition
relation →B on branes. This relation is used to describe the application of a brane
rule to elements of a looping sequence. As usual, a CLS+ model is composed by
a term, representing the initial state of the modeled system, and a set of rewrite
rules.

In the following section we show that CLS+ models can be translated into CLS
models. The translation into CLS is compositional and preserves the semantics of
the model.

4.2 Translating CLS+ into CLS

The first step of the translation of a CLS+ model into CLS is a preprocessing
procedure. For each brane rule (BP1, BP2) in the CLS+ model, we add to the

set of rules of the model a new rule, namely (
(
BP1 | x

)L
⌋ X,

(
BP2 | x

)L
⌋ X).

This new rule is redundant in the model, as every time it can be applied to a
CLS+ term, also the original one can be applied with the same result. However,
the translation we are going to define will translate the original rule into a CLS
rule that will be applicable only inside looping sequences, or at the top level of the
term, and will translate the new rule into a CLS rule applicable only to elements
that compose a looping sequence.

Now, the translation of CLS+ into CLS consists mainly of an encoding func-
tion, denoted {[·]}, which maps CLS+ patterns into CLS patterns. This encoding
function will be used to translate each rewrite rule of the CLS+ model into a
rewrite rule for the corresponding CLS model, and to translate the term repre-
senting the initial state of the system in the CLS+ model into a CLS term for the
corresponding CLS model.

The encoding function for CLS+ patterns is defined as follows. We assume a
total and injective function from brane variables into a subset of term variables
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that are never used in CLS models. More easily, we assume brane variables to
be a subset of the term variables of CLS. Moreover, we assume in and out to be
symbols of the alphabet E never used in CLS models.

The encoding follows the “ball–bearing” technique described by Cardelli in
[7]. Intuitively, every CLS+ looping sequence is translated into a couple of CLS
looping sequences, one contained in the other, with the brane patterns of the CLS+
looping sequence between the two corresponding CLS looping sequences.

Definition 11 (Encoding Function). The encoding function {[·]} maps CLS+

patterns into CLS patterns, and is given by the following recursive definition:

{[SP ]} = SP

{[X]} = X

{[
(
BP

)L
⌋ P ]} =

(
out

)L
⌋ (BP |

(
in

)L
⌋ {[P ]})

{[P1 | P2]} = {[P1]} | {[P2]}

A CLS rewrite rule is obtained from each CLS+ rewrite rule of the trans-
lated model by applying the encoding function to the two patterns of the rule.
More precisely, given a CLS+ rule P1 7→ P2, the corresponding CLS rule is(
in

)L
⌋ ({[P1]} | X) 7→

(
in

)L
⌋ ({[P2]} | X) where X is a term variable

that does not occur in P1 and P2. For example, by applying the encoding to the
two patterns of the CLS+ rewrite rule

R = b · x | c 7→ b · x

we obtain

R{[·]} =
(
in

)L
⌋ (b · x | c | X) 7→

(
in

)L
⌋ (b · x | X) .

The encoding of a CLS+ term into a CLS term is as follows: given a CLS+

term T the corresponding CLS term is
(
in

)L
⌋ {[T ]}. In this case we have that

the encoding function never encounters variables. Consider, as an example, the
following CLS+ term:

T = a |
(
c | d | b · b | d

)L
⌋ d

the corresponding CLS term is as follows:

T{[·]} =
(
in

)L
⌋ (a |

(
out

)L
⌋ (c | d | b · b | d |

(
in

)L
⌋ d))

Now, it is easy to see that R can be applied to T , because parallel components
in the looping sequence can be commuted, and the result of the application is

T ′ = a |
(
b · b | d | d

)L
⌋ d
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but the corresponding CLS rewrite rule R{[·]} cannot be applied to T{[·]}. However,
we have that R ∈ RB, and hence, by the preprocessing phase described above, we
have that also

R′ =
(
b · x | c | x

)L
⌋ X 7→

(
b · x | x

)L
⌋ X

is a rule of the CLS+ model. By translating rule R′ we obtain

R′
{[·]} =

(
in

)L
⌋ (

(
out

)L
⌋ (b · x | c | x |

(
in

)L
⌋ X) | Y ) 7→

(
in

)L
⌋ (

(
out

)L
⌋ (b · x | x |

(
in

)L
⌋ X) | Y )

that can be applied to T{[·]}. The result of the application is

(
in

)L
⌋ (a |

(
out

)L
⌋ (b · b | d | d |

(
in

)L
⌋ d))

that corresponds exactly to the encoding of T ′.

4.3 CLS, Brane Calculi and P Systems

Brane Calculi are a family of process calculi specialized in the description of mem-
brane activity, and they allow associating processes with membranes of a mem-
brane structure. Each process is composed by actions whose execution has an
effect on the membrane structure. Some examples of actions are phagocytosis (a
membrane engulfs another one), exocytosis (a membrane expels another one), and
pinocytosis (a new membrane is created inside another one). These three actions
are enough to define the simplest of Brane Calculi, namely the PEP calculus.
Other actions, such as fusion of membranes and mitosis can be used to define dif-
ferent calculi of the family. Moreover, extensions of Brane Calculi allow describing
interactions with molecules and complexes, such as letting them enter and exit
membranes.

We have given a sound and complete encoding of the PEP calculus into CLS
in [3, 15]. Here, to recall shortly the encoding technique, we give a very simple
example of PEP system and we show its translation into CLS. The PEP system
we consider is the following

φ(| ⋄ |) ◦ φ⊥(0)(| ⋄ |)

representing two adjacent membranes φn(| ⋄ |) and φ⊥
n (0)(| ⋄ |) (◦ denotes juxtapo-

sition) both containing nothing of relevant (what is between brackets (| |) is the
content of the membrane and ⋄ is the null system). The processes associated with
the two membranes are φ and φ⊥(0), respectively, representing two complemen-
tary phagocytosis actions: the first says that the membrane it is associated with
can be engulfed by another membrane, and the second that the membrane it is
associated with can engulf another membrane, that will be surrounded by another
new membrane whose associated process is the parameter of the action (in this
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case it is the idle process 0). Hence, in accordance with the semantics of the PEP
calculus, we have that the only transition that can be performed by the system is
the following, leading to a system that is equivalent to the null system ⋄:

φ(| ⋄ |) ◦ φ⊥(0)(| ⋄ |) → 0(|0(|0(| ⋄ |)|)|) ≡ ⋄

By applying the encoding to the system we obtain the following CLS term T :

act · circ · e · brane · b · φ · a · 0 · a · b · 0 · e · brane · d · φ⊥ · c · 0 · c · 0 · c · d · 0

where act is a sort of program counter that precedes the symbol representing the
next action to be executed, symbol circ represents ◦, symbol brane represents a
membrane (| |), symbols φ and φ⊥ represent the corresponding actions, symbol
0 represents the idle process and symbols a, b, c, d and e are used as separators
of actions and parameters. The translation consists also of a set of CLS rewrite
rules to be applied to terms obtained by the encoding of PEP systems. Such a
set of rewrite rules does not depend on the encoded PEP system, hence it is
always the same. By applying rewrite rules, the long sequence obtained from the
encoding is transformed into a hierarchy of looping sequences corresponding to the
membrane hierarchy in the original PEP system, then rewrite rules are applied that
correspond to the semantics of the actions occurring in the processes associated
with membranes.

Hence, by means of application of rewrite rules, the result of the encoding of
the PEP system may evolve as follows (where →∗ represents a sequence of rewrite
rule applications):

T → act · brane · b · φ · a · 0 · a · b · 0 | act · brane · d · φ⊥ · c · 0 · c · 0 · c · d

→∗
(
act · φ · a · 0 · a

)L
⌋ act · 0 |

(
act · φ⊥ · c · 0 · c · 0 · c

)L
⌋ act · 0

→
(
act · 0

)L
⌋ (act · 0|

(
act · 0

)L
⌋

(
act · 0

)L
⌋ act · 0)

→∗ act · 0

Differently from Brane Calculi, P Systems (in their most common formulation)
do not allow describing complex membrane activities such as phagocytosis and
exocytosis. However, they are specialized in the description of reactions between
molecules which are placed in a compartment of a complex membrane structure.

A P System is a membrane structure (a nesting of membranes) in which there
could be multisets of objects representing molecules. A set of multiset rewrite
rules is associated with each membrane, and describe the reactions that may occur
between the molecules contained in the membrane. The result of the application
of a rewrite rule can either remain in the same membrane, or exit the membrane,
or enter an inner membrane. Priorities can be imposed on rewrite rules, meaning
that some rules can be applied only if some others cannot, and it is possible for a
membrane to dissolve and release its content to in the environment.

A peculiarity of P Systems is that rewrite rules are applied in a fully–parallel
manner, namely in one step of evolution of the system all rules are applied as many
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times as possible (to different molecules), and this is one of the main differences
with respect to CLS in which at each step one only rewrite rule is applied. We
show that P Systems can be translated into CLS, and that the execution of a (fully
parallel) step of a P System is simulated by a sequence of steps in CLS. A variant
of P Systems, called Sequential P Systems, in which rules are applied sequentially
is described in [10]. We do not consider the translation of this variant into CLS as
it would be quite trivial and of little interest.




�

	

�1

abb

r1 : a → (ab, here)

r2 : ab → (c, out)

Fig. 3. A simple example of P System.

To recall the encoding technique, we give a simple example of P System and we
show its translation into CLS. We focus on the translation of multiple parallelism,
hence we consider a P System (depicted in Figure 3) consisting of a single mem-
brane with only two rules, without priorities and without membrane dissolutions.
We give a simplified translation: more details can be found in [15].

The alphabet of objects in the considered P System is {a, b, c}. A multiset of
objects from this alphabet is represented by a CLS term as follows: let na, nb and
nc be the number of occurrences of a, b and c in the multiset, respectively, then

a ·

na︷ ︸︸ ︷
1 · . . . · 1 | b ·

nb︷ ︸︸ ︷
1 · . . . · 1 | c ·

nc︷ ︸︸ ︷
1 · . . . · 1

is the term representing the multiset. We choose this representation as it allows
us checking whether an object is absent, by checking whether the corresponding
symbol if followed by zero 1s. An empty multiset is represented as a | b | c.

The CLS term obtained by the translation of the considered P System is the
following:

(
1
)L

⌋ (Check | a · 1 | b · 1 · 1 | c | r1 | r2 |
(
next

)L
⌋ (a | b | c))

where the membrane of the P System is represented by a looping sequence com-
posed by the membrane label (in this case 1). Inside the looping sequence there
is a Check symbol representing the current state of the system, the translation of
the multiset of objects of the membrane, two symbols r1 and r2 corresponding to
the evolutionary rules of the membrane, and an empty multiset surrounded by a
looping sequence next. This empty multiset is used to store temporary information
on the result of the application of evolutionary rules.
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The CLS rewrite rules obtained by the encoding of the considered P System
are the follwing:

(
1
)L

⌋ (X | Check | a·1·x̃ | r1) 7→
(
1
)L

⌋ (X | Check | a·1·x̃ | r1 ·1) (C1)

(
1
)L

⌋ (X | Check | a | r1) 7→
(
1
)L

⌋ (X | Check | a | r1 ·0) (C2)

(
1
)L

⌋ (X | Check | a·1·x̃ | b·1·ỹ | r1 ·z | r2) 7→
(
1
)L

⌋ (X | Check | a·1·x̃ | b·1·ỹ | r1 ·z | r2 ·1) (C3)

(
1
)L

⌋ (X | Check | a | r1 ·z | r2) 7→
(
1
)L

⌋ (X | Run | a | r1 ·z | r2 ·0) (C4)

(
1
)L

⌋ (X | Check | b | r1 ·z | r2) 7→
(
1
)L

⌋ (X | Run | b | r1 ·z | r2 ·0) (C5)

(
1
)L

⌋ (X | Run | a·1·x̃ | r1 · 1 |
(
next

)L
⌋ (Y | a·ỹ | b·z̃)) 7→

(
1
)L

⌋ (X | Run | a·x̃ | r1 · 1 |
(
next

)L
⌋ (Y | a·1·ỹ | b·1·z̃)) (R1)

(
1
)L

⌋ (X | Run | a·1·x̃ | b·1·ỹ | r2 · 1 |
(
next

)L
⌋ (Y | c·z̃)) 7→

(
1
)L

⌋ (X | Run | a·x̃ | b·ỹ | r2 · 1 |
(
next

)L
⌋ (Y | c·1·z̃)) (R2)

(
1
)L

⌋ (X | Run | a | r1 ·1) 7→
(
1
)L

⌋ (X | Run | a | r1 ·0) (R3)

(
1
)L

⌋ (X | Run | a | r2 ·1) 7→
(
1
)L

⌋ (X | Run | a | r2 ·0) (R4)

(
1
)L

⌋ (X | Run | b | r2 ·1) 7→
(
1
)L

⌋ (X | Run | b | r2 ·0) (R5)

(
1
)L

⌋ (X | Run | r1 ·0 | r2 ·0) 7→
(
1
)L

⌋ (X | Update | r1 ·0 | r2 ·0) (R6)

(
1
)L

⌋ (X | Update | x · x̃ |
(
next

)L
⌋ (Y | x·1 · ỹ)) 7→

(
1
)L

⌋ (X | Update | x·1 · ỹ · x̃ |
(
next

)L
⌋ (Y | x)) (U1)

(
1
)L

⌋ (X | Update |
(
next

)L
⌋ (a | b | c)) 7→

(
1
)L

⌋ (X | Check |
(
next

)L
⌋ (a | b | c)) (U2)

Rules (C1)–(C5) describe the steps performed by the system while it is in
Check state: the objective of this phase is to test whether each evolutionary rule
is applicable or not. When all rules have been tested, the systems moves into a state
called Run, whose steps are given by the application of rules (R1)–(R6). In this
second phase, evolutionary rules previously identified as applicable are actually
applied, and the result of the application is stored inside the looping sequence
next. Finally, when no evolutionary rule is further applicable, the system moves
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into a state called Update, in which the content of the looping sequence next is
used to reset the multiset of objects of the membrane by applying rule (U1)–(U2).
When this update operation has been performed, the system moves back to the
Check state.

5 Conclusions

We have surveyed the formalism CLS and a number of its variants from the point
of view of its use for describing biological membranes. Verification and simulation
tools have been developed for CLS and its variants and can be used to study
properties of membrane systems. Via translations, these tools can be used to study
systems described by other formalisms such as Brane Calculi and P Systems,
capable of describing biological membranes.
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19. M.J. Pérez–Jiménez and F.J. Romero–Campero. “A Study of the Robustness of

the EGFR Signalling Cascade Using Continuous Membrane Systems”. IWINAC’05,
LNCS 3561, pages 268–278, Springer, 2005.

20. C. Priami. “Stochastic π–Calculus”. The Computer Journal, volume 38, number 7,
pages 578–589, 1995.

21. C. Priami and P. Quaglia “Beta Binders for Biological Interactions”. CMSB’04,
LNCS 3082, pages 20–33, Springer, 2005.

22. C. Priami, A. Regev, W. Silvermann, and E. Shapiro. “Application of a Stochastic
Name–Passing Calculus to Representation and Simulation of Molecular Processes”.
Information Processing Letters, volume 80, pages 25–31, 2001.

23. A. Regev, E.M. Panina, W. Silverman, L. Cardelli and E. Shapiro. “BioAmbients:
An Abstraction for Biological Compartments”. Theoretical Computer Science, vol-
ume 325, number 1, pages 141–167, 2004.

24. A. Regev and E. Shapiro. “The π–Calculus as an Abstraction for Biomolecular Sys-
tems”. Modelling in Molecular Biology, pages 219–266, Natural Computing Series,
Springer, 2004.

25. A. Regev, W. Silverman and E.Y. Shapiro. “Representation and Simulation of
Biochemical Processes Using the pi-calculus Process Algebra”. Pacific Symposium
on Biocomputing, World Scientific Press, pages 459–470, 2001.

26. H.S. Wiley, S.Y. Shvartsman and D.A. Lauffenburger. “Computational Modeling
of the EGF–Receptor System: a Paradigm for Systems Biology”. Trends in Cell
Biology, volume 13, number 1, pages 43–50, Elsevier, 2003.




