
Membrane Computing in Connex Environment

Gheorghe Ştefan

Politehnica University of Bucharest (Romania) & BrightScale, Inc. (CA)
gstefan@brightscale.com

Web page: http://arh.pub.ro/gstefan/

Summary. The Connex technology is presented as a possible way to implement effi-
ciently membrane computations in Silicon environment. The opportunity is offered by
the recent trend of promoting the parallel computation as a real competitor on the
consumer market. The Connex environment has an integral parallel architecture, which
is introduced and its main performances are presented. Some suggestions are provided
about how to use the Connex environment as accelerator for membrane computation.

1 Introduction

The computation model of membrane computing can be supported by a specific
physical environment or by non-specific, on-Silicon parallel architectures. The sec-
ond way is investigated from the view point of the Connex technology: a highly
integrated parallel machine.

Membrane computing summary:

The membrane computing model is based on multi-set rewriting rules applied on
a membrane structure populated with objects belonging to a finite alphabet. The
potential degree of parallelism is very high in P systems because in each step all
possible rules are applied (see details in [Păun ’02]).

Connex environment summary:

The Connex technology has an intensive integral parallel architecture [Ştefan ’06d].
The first embodiment of this technology (see [Ştefan ’06c]) targets the high def-
inition TV market, but the chip CA1024 can be used also as a general purpose
machine for data intensive computing. Application in graphics, data mining, neural
network [Andonie ’07], and communication are efficiently supported by the Connex
technology. Then, why not for membrane computing!



82 Gh. Ştefan

The Intel study:

Because, since 2002 the clock speed of the processor has improved less than
20%/year, after a long period characterized by around 50%/year, the promise
of parallel computing starts to fascinate in a special way. Intel published semi-
nal studies (see [Dubey ’05], [Borkar ’05]) about the next generation of parallel
computers. The future processors will contain multi- or maybe many–processors
optimized for the magic triad of Recognition – Mining – Synthesis (RMS).
The main problem for this promised development is to find the way to program
efficiently the next generation of parallel machines. New programming languages
or more sophisticated computation models are needed to fructify the opportuni-
ties offered by the new coming parallel computation technologies. In this context
membrane computing could play a very promising role.

The Berkeley study:

Rather than starting from the market opportunities, as Intel did with the RMS do-
mains, the Berkeley approach [Asanovic ’06] starts from their “13 dwarfs” (dense
linear algebra, sparse linear algebra, spectral methods, . . . finite state machines)
identified as parallel computational patterns able to cover almost all the appli-
cations for the next few decades. While Intel takes into consideration a continuous
transition from multi- to many-processors, the Berkeley approach is oriented from
the start toward the many-processor systems working on data-intensive compu-
tation applications. Here is also the place for membrane computation if a good
representation will be developed.

Application oriented vs. functionally oriented parallel architectures:

A complex, intense and general purpose application means usually a multi-
threaded approach. In contrast with it, there are functions involving data intense
computations. By the rule, multi-processors are involved in the first case (because
they are able to exploit thread-level parallelism), and many-processors are needed
in the second case. A multi-processor has usually a MIMD architecture, rarely a
SIMD architecture, and never a MISD type one. For a many-processor machine
the architecture must be shaped starting from a functional approach, and by the
rule involves all the special forms of possible parallelism.

Our functional approach:

The integral parallel architecture (IPA) is a parallel architecture derived start-
ing from the computational model of partial recursive functions [Kleene ’36]. The
Turing machine model has been successfully used to ground various sequential
computing architectures. Because the functional approach of Kleene is more re-
lated with circuits (which are intrinsic parallel structures) we consider there is a



Membrane Computing in Connex Environment 83

better fit between the functional recursive model and the parallel computation.
The composition rule provides the best starting point to develop parallel architec-
tures able to support efficiently the other two rules: the primitive recursion and the
minimalization. If the 13 dwarfs will be able to cover the RMS domains, maybe
then an IPA will be enough powerful to cover efficiently the 13 computational
patterns emphasized by the seminal work done at Berkeley. A three level hierar-
chy results. It is topped by application domains (RMS), mediated by computational
patterns (the 13 dwarfs), and grounded on various IPAs.

In the following sections the idea of IPA and the Connex environment are
introduced in order to offer various suggestions for a membrane computing accel-
erator. Membrane computing being an intrinsic parallel computational model has
the chance to open new ways toward the efficient use of parallel machines.

2 Integral Parallel Architecture (IPA)

Various taxonomies were proposed for parallel computations (see [Flynn ’72]
[Xavier & Iyengar ’98]). All of them tell us about different forms of parallelism. We
can discuss about many forms only when we use the parallel approach to accelerate
specific computations. But, when a real complex and intensive computation must
pe done, sometimes we can not use only one form of parallelism. Actual compu-
tations involve usually all possible forms. For example, using Flynn’s taxonomy,
MIMD or SIMD machines can be defined, but it is not so easy to define MIMD or
SIMD application domains.

General purpose or even application domain oriented parallel machines must
be able to perform all the forms of parallelism, no matter how these forms are
segregated. We propose in the following a new taxonomy and a way to put together
all the resulting forms of parallelism in order to solve efficiently data intensive
computations.

2.1 Parallelism and Partial Recursiveness

We claim that the most suggestive classic computational model for defining par-
allel architectures is the model of partial recursive functions, because the rules
defining it have direct correspondences in circuits – the intrinsic parallel support
for computation.

Composition & basic parallel structures

The first rule, of composition, provides the basic parallel structures to be used
in defining all the forms of parallelism. Let be m n-ary functions hi(x0, . . . xn−1),
for i = 0, 1, . . . m − 1, and an m-ary function g(y0, . . . ym−1). Using them the the
composition rule is defined as computing the following function:

f(x0, . . . xn−1) = g(h0(x0, . . . xn−1), . . . hm−1(x0, . . . xn−1))



84 Gh. Ştefan

The associated physical structure (containing simple circuits or simple program-
mable machines) is represented in Figure 1.

h0 h1 hm−1

g

?? ?

?

? ? ?

x0, x1, . . . xn−1

out = f(x0, x1, . . . xn−1)

Fig. 1. The physical structure associated to the composition rule. The compo-
sition of the function g with the functions h0, . . . , hm−1 implies a two-level system. The
first level, performing in parallel m computations, is serially connected with the second
level which performs a reduction function.

The following four particular, but meaningful forms (see Figure 2) can be
emphasized:

1. data parallel composition: with n = m, each function hi = h depends on
a single input variable xi, for i = 0, 1, . . . n − 1, and g performs the identity
function (see Figure 2a). Being given an input vector containing n scalars:

X = {x0, x1, . . . , xn−1}

the result is another vector:

{h(x0), h(x1), . . . , h(xn−1)}

2. speculative composition: with n = 1, i.e. x0 = x, (see Figure 2b), and g
performs the identity function. It computes a vector of functions:

H = [h0(x), . . . hn−1(x)]

on the same scalar input x, generating a vector of results:

H(x) = {h0(x), h1(x), . . . , hn−1(x)}

3. serial composition: with n = m = 1 (see Figure 2c). A “pipe” of two different
machines receives a stream of n scalars as input:

< X >=< x0, x1, . . . , xn−1 >



Membrane Computing in Connex Environment 85

g(x0, . . . xn−1)

? ? ?

d.
?

x0 x1 xn−1

g(x0, . . . xn−1)

x

f(x)

?

c.

h

?

g

?

h(x0) h(x1) h(xn−1)
? ? ?

h h h

x0 x1

? ? ?
xn−1

a.
? ? ?

h1(x)h0(x) hn−1(x)

h0 h1 hn−1

? ? ?

x

b.

Fig. 2. The four simple forms of composition. a. Data parallel composition. b.
Speculative composition. c. Serial composition. d. Reduction composition.

and provides another stream of scalars

< f(x0), f(x1), . . . , f(xn−1) > .

In the general case the function f(x) is a composition of more than two func-
tions h and g. Thus, the function f can be expressed as a vector of functions
F receiving as input a data stream < X >:

F = [f0, . . . fp−1]

(in Figure 2c F = [h, g])
4. reduction composition: for each hi performing the identity function (see

Figure 2d), receives a vector {x0, . . . , xn−1} as input and provides the scalar,
g(x0, . . . xn−1) (it transforms a stream of vectors into a stream of scalars).

Concluding, the composition rule provides the context of defining computation
using the following basic concepts:

scalar : x
vector : X = {x0, x1, . . . , xn−1}
stream : < X >=< x0, x1, . . . , xn−1 >
function : f(x)
vector of functions :

• F = [f0, . . . fp−1] applied on streams
• F(x) = [f0(x), . . . fp−1(x)] applied on scalars.

Using the previous features all the requirement for the next two rules (primitive
recursion, minimalization) are fulfilled.



86 Gh. Ştefan

Primitive recursive rule

There are two ways to implement in parallel the primitive recursive rule. In both
cases a lot of data is supposed available to be computed, i.e. there are vector or
streams of data as inputs for a primitive recursive function.

The primitive recursive rule computes the function f(x, y) using the rule:

f(x, y) = h(x, f(x, y − 1))

where: f(x, 0) = g(x). This rule can be translated in the following serial composi-
tion:

f(x, y) = h(x, h(x, h(x, . . . h(x, g(x)) . . .)))

If the function f(x, y) must be computed for the vector of scalars X =
{y0, y1, . . . , yn−1}, then a data parallel structure is used. Each machine will com-
pute, using a local data loop, the function f(x, yi) in max(y0, y1, . . . , yn−1) “cy-
cles”.

If the function f(x, y) must be computed for a stream of scalars, a time parallel
structure is used. A “pipe” of n machines will receive in each “cycle” a new scalar
from the stream of scalars. If y > n, then a data loop can be closed from the output
of the pipe to its input.

Minimalization

Minimalization has also two kinds of parallel solutions: one using data parallel
structures and another using time parallel structures.

The minimalization rule assumes

f(x) = min(y)[m(x, y) = 0]

i.e., the value of f(x) is the minimum y for which m(x, y) = 0.
The first, “brute force” implementation uses the speculative structure repre-

sented in Figure 2b, where each block computes a function which returns a pair
containing a predicate and a scalar:

hi = {(m(x, i) = 0), i}
after which reduction step (using a structure belonging to the class represented in
Figure 2d) selects the smallest i from all pairs having the form {1, i}, if any, that
were generated on the previous speculative composition level (all pairs of the form
{0, i} are ignored).

The second implementation occurs in time-parallel environments where spec-
ulation can be used to speed-up the pipe processing. Reconfigurable pipes can
be conceived and implemented using special reduction features distributed along
a pipe. Let be a pipe of functions described by the function vector:

P = [f0(x), . . . fp−1(x)]



Membrane Computing in Connex Environment 87

where yi = fi(x), for i = 0, . . . p− 1. The associated reconfigurable pipe means to
transform the original pipe characterized by:

P = [. . . fi(yi−1), . . .]

into a pipe characterized by:

P = [. . . fi(yi−1, . . . yi−s), . . .]

where: fi(yi−1, . . . yi−s) is a function or a program which decides in each step the
variable to be involved in the current computation, selecting (which is one of the
simplest reduction functions) one variable of {yi−1, . . . yi−s}. The maximum degree
of speculation is s.

2.2 Functional Taxonomy of Parallel Computing

According to the previously identified simple form of compositions (see Figure 2)
we propose a functional taxonomy of parallel computation. We will consider the
following types of parallel processing:

data-parallel computing : uses operators that take vectors as arguments and re-
turns vectors, scalars (by reduction operations) or streams (input values for
time-parallel computations); it is very similar to a SIMD machine

time-parallel computing : uses operators that take streams as arguments and re-
turns streams, scalars, or vectors (input values for data-parallel computations):
it is a kind of MIMD machine which works to compute only one function (while
a true MIMD performs multi-threading)

speculative-parallel computing : with operators that take scalars as arguments and
return vectors reduced to scalars using selection (used mainly to speed up time-
parallel computations); this contains a true MISD-like structure (completely
ignored in the current multi-processing environments).

An IPA is a parallel architecture featured with all kinds of parallelism.

2.3 IPA & Market Tendencies

The market tendencies emphasized in the Intel approach and based on Berke-
ley’s dwarfs demand for an IPA. IPA is a many-core (not multi-core) architecture
designed to support data intensive computations. It is supposed to work as an ac-
celerator in a mono- or multi-core environment. For all the computational patterns
emphasized in the Berkeley’s view an IPA provides efficient solutions. Even for the
13th dwarf – Finite State Machine – the speculative- & time-parallel aspects of an
IPA provides a solution. (Berkeley’s view claims that “nothing helps”.)

The need for solving real hard applications promotes IPA as an efficient actual
solution.



88 Gh. Ştefan

3 The Connex System

3.1 Structural description

The first embodiment of an IPA is the Connex System. It is part of CA1024
chip produced by Connex Technology Inc1. The Connex System contains mainly
an array of 1024 PEs working as a data parallel sub-system, DPS, a stream
accelerator machine containing 8 PEs (the time parallel sub-system, TPS).
DPS is driven by an instruction sequencer, S, used to broadcast in each clock
cycle the same instruction toward each PE from DPS. An input output controller,
IOC, feeds DPS with data and sends out the results from it. An interconnection
fabric allows DPS and TPS to communicate with each other and with the other
components of the chip. S and IOC interact using interrupts. They are both simple
stack machines with their own data and program memory.

The Connex System uses also other components on the chip to be interfaced
with the external world. They are: a MIPS processor acting as a local host, PCI
interface to the external host, and a DDR interface to the external memory.

TPS receives streams of data under the control of the local host, and sends the
results into the external memory. DPS receives the data vectors from the external
memory and sends back the results in the same place. Thus, the two parallel
machines communicate usually through the content of the external memory. A
data stream is converted into a vector of data, and vice versa, by the programs,
run by Host and IOC, used to control the buffers organized in the external memory.

3.2 General performances

The first embodiment of the Connex Architecture is designed for 130nm standard
process technology, and has the following general performances:

• clock frequency: fCK = 200 MHz
• area for the Connex System: ∼ 70 mm2

• 200 GOPS (OP is a 16-bit simple operation; no multiplication, division or
floating point)

• > 60 GOPS/Watt
• > 2 GOPS/mm2

• internal bandwidth: 400 GB/sec
• external bandwidth: 3.2 GB/sec, involving an additional 2 Watt

3.3 Specific performances

The first application domain investigated in the Connex environment is of High
Definition TV (HDTV). We estimated 80% of the computational power of the
Connex System is necessary to decode in real time two H.264 HDTV streams.
Some figures referring to specific functions in HDTV domains follow:
1 From the moment the title of this paper was announced the name of the company

changed in BrightScale Inc..



Membrane Computing in Connex Environment 89

PARALLEL

DATA

SUB-SYSTEM

Sequencer

PARALLEL

TIME

SUB-SYSTEM

Memory
DDR

Interface

Interconnection Fabric

Host PCI

Output

Input

Controller

CONNEX

SYSTEM

Fig. 3. The Connex System.

• 8× 8 DCT: 4.2 clock cycle (0.066 clock cycle/pixel)
• 8× 8 IDCT: 4.9 clock cycle (0.077 clock cycle/pixel)
• 4× 4 SAD: 0.04 clock cycle (0.0025 clock cycle/pixel)

Graphics is another application domain. A preliminary investigation for an
image having the complexity characterized by:

• dynamic images having 10,000 triangles, each covering an average of 100 pixels,
one-half being obscured by other triangles

• ambient and diffuze illumination model
• 1920 x 1080 display screen, at 30 frames per second

provides the following figures:

• uses 6.6 GOPS = 3.3% of the total computational power of the Connex System
• and 390 MB/sec = 12.2% of the total external bandwidth of the CA1024 chip.



90 Gh. Ştefan

For linear algebra domain we present here only the computation of the dot
product for vectors of up to 1024 components. Two cases are estimated:

• for vectors having as components 32-bit floats:
150 clock cycle (> 1.3 MDot Product/sec)

• for vectors having as components 16-bit signed integer:
28 clock cycle (∼ 7 MDot Product/sec)

The neural network domain is also targeted as an application domain. A
preliminary estimation is done in [Andonie ’07]: 5 Giga Connection Updates per
Second (about 17 times faster than the fastest specialized chip on the market:
Hitachi WSI).

All these estimations are very encouraging for those who are looking for using
the Connex environment as an accelerator for membrane computation.

4 An IPA: The Connex Architecture

The IPA of the Connex System is described in the following two subsections. The
vector section describes the architecture of the data parallel sub-system, and the
stream section is devoted to describe the time parallel sub-system.

4.1 Vector section

The main physical resources of the Connex System are represented in Figure 4
and are described also in the following pseudo-Verilog form:

// Scalar vectors & the index veector
reg [15:0] svec_000[0:1023],

svec_001[0:1023],
...
svec_255[0:1023],
ixVect[0:1023] ;

initial
ixVect = {0, 1, 2, ... 1023}; // 16-bit scalars

// Boolean vectors
reg bvec_0[0:1023] ,

bvec_1[0:1023] ,
...
bvec_7[0:1023] ,
selVect[0:1023] ; // it is used only as variable

// Scalars
reg [31:0] scalar[0:1023] ;

// Flag vectors
wire cryFlag[0:1023] ,

zeroFlag[0:1023],



Membrane Computing in Connex Environment 91

0 1 2 1022 1023

svector000

svector001

svector002

svector255

bvector0

bvector1

bvector7

0 1

1 0

11

0

1

10

Fig. 4. The vector variables of the data parallel subsystem. If the execution
is conditioned by AND(bvector0, bvector1), then only column1, ... column1022 of
scalars can be involved in computation.

eqFlag[0:1023] ,
gtFlag[0:1023] ,
... ;

The Boolean vectors are used to select the active components of the scalar
vectors. The where construct is a sort of “spatial if”.

// ’where’ construct
where BooleanOP(booleanVect_i, booleanVect_j, ...) {

svect_k = ScalarOP(svect_p, svect_q, ...),
bvect_r = xxxFlag;

elsew {
...
}
}

Here is an example of how this construct can be used:

where AND(bvect_2, OR(bvect_0, bvect_5)) {
svect_034 = ADD(svect_012, svect_078, svect_002),
bvect_3 = cryVect;
}

elsew {
svect_034 = ADD(svect_022, svect_222),



92 Gh. Ştefan

bvect_3 = cryVect;
}

It is executed by the Connex System as follows:

selVect = OR(bvect_0, bvect_5);
selVect = AND(bvect_2, selVect);
for(i=0; i<1024; i=i+1)
if (selVect[i]) {

svect_034[i] = ADD(svect_012[i], svect_078[i]),
bvect_3[i] = cryVect[i];

svect_034[i] = ADD(svect_034[i], svect_002[i]),
bvect_3[i] = OR(cryVect[i], bvect_3[i]);

}
else {svect_034[i] = ADD(svect_022[i], svect_222[i]),

bvect_3[i] = cryVect[i];
}

There are two distinct ways to generate selections. One is pattern based. It
starts from the index vector. Here is an example:

/* Pattern based selection example (each other of 4 bit in selVect
will be set on 1)*/

svect_000 = ixVect;
svect_000 = AND(svect_000, 16’b11);
svect_000 = XOR(svect_000, 16’b11), selVect = zeroFlag;

The second way to make a selection is to start from the data contained in the
scalar vector.

// Patternless (data dependent) selection example:
svect_070 = SUB(svect_070, 16’b10011001), selVect = gtFlag;

Usually, any operation specified by one line, having the form:

svect_xyz = ScalarOp(...), bvect_q = BooleanOP(...);

is executeable in one clock cycle. (Exceptions are specified. For example MULT(...)
is executed in 9 clock cycles for 16-bit signed integers, and in 10 clock cycles for
unsigned integers.)

4.2 Stream section

The stream section of the Connex System receives the input stream < X > and
sends back the output stream < Z >, where:

<X> = <x_0, ... x_(p-1)>
<Z> = <z_0, ... z_(q-1)>



Membrane Computing in Connex Environment 93

with p = q or p 6= q.
The function of the two-dimension pipe (n × w) is specified by the function

vector F, as follows:

F = [func_0, ... func_7];
func_i(y_(i-1), y_(i-2), ... y_(i-w)) = y_i;

where: func i is the program executed by PEi. It could be a one instruction
looping program, if the pipe “advances” in each clock cycle, or a s-instruction
loop for pipe propagation executed at each s clock cycles. Each PE can have the
associated program using variables generated by the previous w PEs. The degree
of speculation is w.

Let be, as an example, the following partially defined computation:

...
x = ...
y = y[15] ? y + (x + c1) : y + (x + c2);
...

Where c1 and c2 are constants. The associated function vector is:

F = [... func_i(...),
func_(i+1)(y_i),
func_(i+2)(y_i),
func_(i+3)(y_(i-1), y_(i-2)), ...];

where:

...
y_i = ...;
y_(i+1) = y_i + c1;
y_(i+2) = y_i + c2;
y_(i+3) = y_(i+3)[15] ? y_(i+3) + y_(i+1) : y_(i+3) + y_(i+2);
...

The output of the processing element PEi works as input for both, PEi+1 and
PEi+2. The processing element PEi+3 receives the input variables from the previ-
ous two machines PEi+1 and PEi+2. The second constant dimension of the pipe
allows these “shortcuts” which accelerate the computation.

4.3 Putting together the vector section and the stream section

The two sections of the IPA interact through the content of the external memory.
In the external memory a vector or a stream have the same representation. Thus,
depending on the source or on the destination, an array of data can be interpreted
as a vector or as a stream.

Data exchange between the vector section (DPS) and the stream section (TPS)
is done by executing one of the two operation:



94 Gh. Ştefan

X <= <Y>; // stream to vector transfer
<X> <= Y; // vector to stream transfer

where:

X = {x_0, ... x_(n-1)};
<X> = <x_0, ... x_(n-1)>;
Y = {y_0, ... y_(n-1)};
<Y> = <y_0, ... y_(n-1)>;

because the destination and the source must have the same dimension n.

5 How to Use Connex to Accelerate Membrane Computing

The key is the representation. The big amount of parallel resources of the Connex
architecture can be activated only if an appropriate representation of membrane is
adopted. Follow some simple suggestions. The functionality used in these proposals
are described in Appendix A.

The first suggestion:

Using the formal definition from [Pǎun ’0x] (see pag. 11), the content of a mem-
brane system can have associated an n-component vector which contains an m-
component list (with n ≥ m). For example (see Fig. 3 in [Pǎun ’0x]):

[[[<w_3>]<w_2>]<w_1>]... =
[[[a f c] ] ]...

where each symbol is represented by a 2-byte word, (index, ASCII code), as
follows:

(1,[) (2,[) (3,[) (0,a) (0,f) (0,c) (3,]) (2,]) (1,]) ...

For this first suggestion, only the square parenthesis are indexed, and all the objects
are represented with the index having the value 0.

The sets of rules (R1, R2, . . .) are represented inside the program run by the
sequencer S. Thus, the list representing the membrane system will evolve as follows:

(00) [[[a f c] ] ]... =>
(01) [[[a b f f c] ] ]... => // in 11 clock cycles
(02) [[[a b b f f f f c] ] ]... => // in 15 clock cycles
(03) [[b b b f f f f f f f f c ] ]... => // in 27 clock cycles
(04) [[d d d f f f f c ] ]... => // in 10 clock cycles
(05) [[d e d e d e f f c ] ]... => // in 10 clock cycles
(06) [d e d e d e d f c ]... => // in 10 clock cycles
(07) [d d d d f c ] e e e... => // in 15 clock cycles



Membrane Computing in Connex Environment 95

The degree of parallelism is not big enough in each cycle during the previously
described computation. Only in step (04) all the three bs were substituted by ds in
parallel (in 2 clock cycles). The parallelism is also involved in searching different
symbols such as [, ], a, f. On the other hand, all the insertions asked by the
evolution rules are performed sequentially.

The performance of the implementation can be increased only by changing the
representation of the membrane system.

The second suggestion:

Another way to represent the membrane system is to use indexes also for objects.
The most significant byte of each vector component is used to tell us how many ob-
jects of the kind indicated by the other byte are represented. The same membrane
system have now the following content:

(1,[) (2,[) (3,[) (1,a) (1,f) (1,c) (3,]) (2,]) (1,]) ...

For the same rules applied results the following evolution of the system:

[[[1a 1f 1c] ] ]... =>
[[[1a 1b 2f 1c] ] ]... => // in 5 clock cycles
[[[1a 2b 4f 1c] ] ]... => // in 5 clock cycles
[[3b 8f 1c ] ]... => // in 10 clock cycles
[[3d 4f 1c ] ]... => // in 7 clock cycles
[[3d 3e 2f 1c ] ]... => // in 8 clock cycles
[4d 3e 1f 1c ]... => // in 8 clock cycles
[4d 1f 1c ] 3e... => // in 5 clock cycles

Now applying the rule f → ff is executed by simply doubling the index associated
to f. The same for the rule d → de. For the rule ff → f the index is divided.
The main effects are: the representation is kept smaller and the execution time is
reduced more than two times.

The degree of parallelism remains small because the application supposes to
work only in one membrane at a time. It will be improved if many membranes
having the same rules are processed in the same time.

The third suggestion:

The degree of parallelism increases if on the lowest level more similar membranes
are defined. Let us make a little more complex the example presented in [Pǎun 0x]
(see Fig. 3). Suppose on the lowest level there are two membranes ([1a 1f 1c]
and [2a 1f 1c]) with the initial content a little different, but working governed
by the same rules. Results the following evolution:

[[[1a 1f 1c] [2a 1f 1c] ] ]... =>
[[[1a 1b 2f 1c] [2a 2b 2f 1c] ] ]... => // in 5 clock cycles
[[[1a 2b 4f 1c] [2a 4b 4f 1c] ] ]... => // in 5 clock cycles



96 Gh. Ştefan

[[3b 8f 1c 6b 8f 1c ] ]... => // in 10 clock cycles
[[3d 4f 1c 6d 4f 1c ] ]... => // in 7 clock cycles
[[3d 3e 2f 1c 6d 6e 2f 1c ] ]... => // in 8 clock cycles
[4d 3e 1f 1c 7d 6e 1f 1c]... => // in 8 clock cycles
[4d 1f 1c 7d 1f 1c ] 9e... => // in 10 clock cycles

The execution time has very little increased (only in the last step). It is obvious
that having 3 or more low level membranes the degree of parallelism will increase
correspondingly.

The performance can be increased more if the rules are integrated in or as a
vector representation. In the previous examples the rules were applied sequentially
because they were “known” only by the program issued by the sequencer S. The
sequencer must know only to apply rules defined inside the Connex Array in an
appropriate manner.

6 Concluding Remarks

Functional vs. Flynn’s taxonomy

Our functional taxonomy works better in many-processor environment, while
Flynn’s taxonomy fits better the multi-processor environment. The functional tax-
onomy supposes three different types equally involved in defining a high perfor-
mance architecture, while Flynn’s taxonomy proposes also three kinds of parallel
machines, only one of them being (MIMD) considered as an effective efficient so-
lution for real machines (see [Hennessy ’07]).

Limited non-determinism

The physical resources added for the speculative mechanism are used to support
a sort of limited non-deterministic computation inside an IPA.

Can we accelerate molecular computing in vector environment?

The vector section of an IPA can be used to accelerate molecular computation if
appropriate representations are imagined. Molecular computing has a huge poten-
tial for data parallelism and vector processing is a special kind of data parallel
computation. The main problem is to reformulate the molecular approach to fit
with the restrictions and promises imposed/offered by the vector computation.
The Connex System has also some additional features helping the implementa-
tion of specific search functions, very helpful for rewriting rule based processing.
Various insert and delete capabilities can be used for the same purpose.

An efficient P-Architecture is slightly different from the current
Connex Architecture

Although the Connex environment is helpful for investigating molecular computing
based applications, there are needed few specific features in order to obtain a
market efficient environment.



Membrane Computing in Connex Environment 97

Why not a P-language?

A very useful intermediary step toward the definition of a marketable environment
for this new computation model is providing a P-language. Working with the basic
definition of P-systems is not enough flexible for solving real and complex problems.
Using a high level type language and developing for it a specific environment will
speed-up the work for a specific membrane platform.

Acknowledgments

I would like to thank Emanuele Altieri, Frank Ho, Mihaela Maliţa, Bogdan Mı̂ţu,
Tom Thomson, Dominique Thiébaut and Dan Tomescu for their technical contri-
butions in developing the Connex System.

References

[Andonie ’07] R. Andonie, M. Maliţa, The Connex Array as a Neural Network Acceler-
ator, accepted at Third IASTED International Conference on Computational
Intelligence, 2007, Bannf, Alberta, Canada, July2-4, 2007.

[Asanovic ’06] K. Asanovic, et al.: The Landscape of Parallel Computing Research: A
View from Berkeley, Technical Report No. UCB/EECS-2006-183, December
18, 2006.

[Borkar ’05] S.Y. Borkar, et al.: Platform 2015: Intel Processor and Platform Evolution
for the Next decade, Intel Corporation, 2005.

[Dubey ’05] P. Dubey: A Platform 2015 Workload Model: Recognition, Mining and Syn-
thesis Moves Computers to the Era of Tera, Intel Corporation, 2005.

[Flynn ’72] M.J. Flynn: Some computer organization and their affectiveness, IEEE
Trans. Comp. C21:9 (Sept. 1972), pp. 948-960.

[Hennessy ’07] J.L. Hennessy, David A Patterson: Computer Architecture. A Quantita-
tive Approach, Fourth Edition, Morgan Kaufmann, 2007.

[Kleene ’36] S.C. Kleene: General Recursive Functions of Natural Numbers, in Math.
Ann., 112, 1936.

[Maliţa ’06] M. Maliţa, Gh. Ştefan, M. Stoian: Complex vs. Intensive in Parallel Compu-
tation, in International Multi-Conference on Computing in the Global Informa-
tion Technology - Challenges for the Next Generation of IT&C - ICCGI 2006,
Bucharest, Romania, August 1-3, 2006.

[Mı̂ţu ’05] B. Mı̂ţu: private communication.
[Pǎun ’02] Gh. Păun: Membrane Computing. An Introduction, Springer, Berlin, 2002.
[Pǎun ’0x] Gh. Păun: Introduction to Membrane Computing, chapter 1 in Applications

of Membrane Computing (G. Ciobanu, Gh. Păun, M.J.Pérez-Jiménez, eds.),
Springer 2006.

[Ştefan ’06a] Gh. Ştefan: The CA1024: A Massively Parallel Processor for Cost-Effective
HDTV, in SPRING PROCESSOR FORUM: Power-Efficient Design, May 15-
17, 2006, Doubletree Hotel, San Jose, CA. & in SPRING PROCESSOR FO-
RUM JAPAN, June 8-9, 2006, Tokyo.



98 Gh. Ştefan

[Ştefan ’06b] Gh. Ştefan, A. Sheel, B. Mı̂ţu, T. Thomson, D. Tomescu: The CA1024: A
Fully Programable System-On-Chip for Cost-Effective HDTV Media Process-
ing, in Hot Chips: A Symposium on High Performance Chips, Memorial Audi-
torium, Stanford University, August 20 to 22, 2006.

[Ştefan ’06c] Gh. Ştefan: ”The CA1024: SoC with Integral Parallel Architecture for
HDTV Processin, in 4th International System-on-Chip (SoC) Conference &
Exhibit, November 1 & 2, 2006 - Radisson Hotel Newport Beach, CA.

[Ştefan ’06d] Gh. Ştefan: Integral Parallel Computation, in Proceedings of the Romanian
Academy, Series A: Mathematics, Physics, Technical Sciences, Information Sci-
ence, vol. 7, no. 3 Sept-Dec 2006.

[Thiébaut ’06] D. Thiébaut, Gh. Ştefan, M. Maliţa: DNA search and the Connex tech-
nology, in International Multi-Conference on Computing in the Global Informa-
tion Technology - Challenges for the Next Generation of IT&C - ICCGI 2006,
Bucharest, Romania, August 1-3, 2006.

[Thiébaut ’07] D. Thiébaut, M. Maliţa: Pipelining the Connex array, BARC07, Boston,
Jan. 2007.

[Xavier & Iyengar ’98] C. Xavier, S.S. Iyengar: Introduction to Parallel Algorithms, John
Wiley & Sons, Inc, 1998.


