
Skin Output in P Systems with Minimal
Symport/Antiport and Two Membranes?

Artiom Alhazov1,2 and Yurii Rogozhin1,3

1 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
Str. Academiei 5, Chişinău, MD-2028 Moldova
{artiom,rogozhin}@math.md

2 Åbo Akademi University
Department of Information Technologies
Turku Center for Computer Science, FIN-20520 Turku, Finland
aalhazov@abo.fi

3 Rovira i Virgili University,
Research Group on Mathematical Linguistics,
Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain

Summary. It is known that symport/antiport P systems with two membranes and min-
imal cooperation can generate any recursively enumerable sets of natural numbers using
exactly one superfluous object in the output membrane, where the output membrane is
an elementary membrane. In this paper we consider symport/antiport P systems where
the output membrane is the skin membrane. In this case we prove an unexpected char-
acterization: symport/antiport P systems with two membranes and minimal cooperation
generate exactly the recursively enumerable sets of natural numbers. The question about
power of purely symport P systems with two membranes and minimal cooperation where
the output membrane is the skin membrane is still open.

1 Introduction

P systems with symport/antiport rules, i.e., P systems with pure communication
rules assigned to membranes, first were introduced in [21]; symport rules move
objects across a membrane together in one direction, whereas antiport rules move
objects across a membrane in opposite directions. These operations are very pow-
erful, i.e., P systems with symport/antiport rules have universal computational
power with only one membrane, e.g., see [12], [15], [13].
? The authors acknowledge the project 06.411.03.04P from the Supreme Council for Sci-

ence and Technological Development of the Academy of Sciences of Moldova. The first
author gratefully acknowledges the support by Academy of Finland, project 203667
and the third author gratefully acknowledges the support of European Commission,
project MolCIP, MIF1-CT-2006-021666.

100 A. Alhazov, Y. Rogozhin

A comprehensive overview of the most important results obtained in the area
of P systems and tissue P systems with symport/antiport rules, with respect to
the development of computational completeness results improving descriptional
complexity parameters as the number of membranes and cells, respectively, the
weight of the rules and the number of objects can be found in [1].

For instance, in [3] one obtains the exact characterization of NRE for sym-
port/antiport P systems with three membranes and minimal cooperation and for
corresponding purely symport P systems.

In [5] one shows that if some P system with two membranes and with minimal
cooperation, i.e., a P system with symport/antiport rules of weight one or a P sys-
tem with symport rules of weight two, generates a set of numbers containing zero,
then this set is finite. After that one proves that P systems with symport/antiport
rules of weight one can generate any recursively enumerable set of natural numbers
without zero (i.e., they are computationally complete with just one superfluous
object remaining in the output membrane at the end of a halting computation).
The same result is true also for purely symport P systems of weight two. Therefore,
one superfluous object is both necessary and sufficient in case of two membranes.

The question about precise characterization of computational power of sym-
port/antiport P systems (purely symport P systems) with two membranes and
minimal cooperation is still open.

Interpreting the result of the computation as the sequence of terminal symbols
sent to the environment, one shows that P systems with two membranes and
symport rules of weight two or symport/antiport rules of weight one generate all
recursively enumerable languages [6].

In this paper we show that P systems with minimal symport/antiport with
two membranes characterize NRE when we consider the output in the skin
membrane rather than the elementary membrane.

2 Basic Notations and Definitions

For the basic elements of formal language theory needed in the following, we refer
to [26]. We just list a few notions and notations: N denotes the set of natural
numbers (i.e., of non-negative integers). V ∗ is the free monoid generated by the
alphabet V under the operation of concatenation and the empty string, denoted by
λ, as unit element; by NRE, NREG, and NFIN we denote the family of recursively
enumerable sets, regular sets, and finite sets of natural numbers, respectively. For
k ≥ 1, by NkRE we denote the family of recursively enumerable sets of natural
numbers excluding the initial segment 0 to k − 1. Particularly, N1RE = {N ∈
NRE | 0 /∈ N}. The families of recursively enumerable sets of vectors of natural
numbers are denoted by PsRE.

2.1 Counter Automata

A non-deterministic counter automaton (see [11], [1]) is a construct

Skin Output in Minimal Symport/Antiport P Systems 101

M = (d,Q, q0, qf , P) , where

• d is the number of counters, and we denote D = {1, ..., d};
• Q is a finite set of states, and without loss of generality, we use the notation

Q = {qi | 0 ≤ i ≤ f} and F = {0, 1, ..., f},
• q0 ∈ Q is the initial state,
• qf ∈ Q is the final state, and
• P is a finite set of instructions of the following form:

1. (qi → ql, k+), with i, l ∈ F, i 6= f, k ∈ D (“increment” -instruction). This
instruction increments counter k by one and changes the state of the system
from qi to ql.

2. (qi → ql, k−), with i, l ∈ F, i 6= f, k ∈ D (“decrement” -instruction). If the
value of counter k is greater than zero, then this instruction decrements it by
1 and changes the state of the system from qi to ql. Otherwise (when the value
of counter k is zero) the computation is blocked in state qi.

3. (qi → ql, k = 0), with i, l ∈ F, i 6= f, k ∈ D (“test for zero” -instruction). If
the value of counter k is zero, then this instruction changes the state of the
system from qi to ql. Otherwise (the value stored in counter k is greater than
zero) the computation is blocked in state qi.

4. halt. This instruction stops the computation of the counter automaton, and it
can only be assigned to the final state qf .

A transition of the counter automaton consists in updating/checking the value
of a counter according to an instruction of one of the types described above and
by changing the current state to another one. The computation starts in state q0

with all counters being equal to zero. The result of the computation of a counter
automaton is the value of the first k counters when the automaton halts in state
qf ∈ Q (without loss of generality we may assume that in this case all other
counters are empty). A counter automaton thus (by means of all computations)
generates a set of k-vectors of natural numbers. If k = 1, then by N(M) we denote
the corresponding numeric set generated by M .

2.2 P Systems with Symport/Antiport Rules

The reader is supposed to be familiar with basic elements of membrane computing,
e.g., from [23]; comprehensive information can be found in the P systems web page,
[30].

A P system with symport/antiport rules is a construct

Π = (O,µ, w1, . . . , wk, E, R1, . . . , Rk, i0), where

1. O is a finite alphabet of symbols called objects;
2. µ is a membrane structure consisting of k membranes that are labelled in a

one-to-one manner by 1, 2, . . . , k;

102 A. Alhazov, Y. Rogozhin

3. wi ∈ O∗, for each 1 ≤ i ≤ k, is a finite multiset of objects associated with the
region i (delimited by membrane i);

4. E ⊆ O is the set of objects that appear in the environment in an infinite
number of copies;

5. Ri, for each 1 ≤ i ≤ k, is a finite set of symport/antiport rules associated with
membrane i; these rules are of the forms (x, in) and (y, out) (symport rules)
and (y, out; x, in) (antiport rules), respectively, where x, y ∈ O+;

6. i0 is the label of a membrane of µ that identifies the corresponding output
region.

A P system with symport/antiport rules is defined as a computational device
consisting of a set of k hierarchically nested membranes that identify k distinct
regions (the membrane structure µ), where to each membrane i there are assigned
a multiset of objects wi and a finite set of symport/antiport rules Ri, 1 ≤ i ≤ k.
A rule (x, in) ∈ Ri permits the objects specified by x to be moved into region i
from the immediately outer region. Notice that for P systems with symport rules
the rules in the skin membrane of the form (x, in), where x ∈ E∗, are forbidden. A
rule (x, out) ∈ Ri permits the multiset x to be moved from region i into the outer
region. A rule (y, out; x, in) permits the multisets y and x, which are situated in
region i and the outer region of i, respectively, to be exchanged. It is clear that a
rule can be applied if and only if the multisets involved by this rule are present in
the corresponding regions. The weight of a symport rule (x, in) or (x, out) is given
by |x|, while the weight of an antiport rule (y, out; x, in) is given by max{|x|, |y|}.

As usual, a computation in a P system with symport/antiport rules is ob-
tained by applying the rules in a non-deterministic maximally parallel manner.
Specifically, in this variant, a computation is restricted to moving objects through
membranes, since symport/antiport rules do not allow the system to modify the
objects placed inside the regions. Initially, each region i contains the correspond-
ing finite multiset wi, whereas the environment contains only objects from E that
appear in infinitely many copies.

A computation is successful if starting from the initial configuration, the P
system reaches a configuration where no rule can be applied anymore. The result
of a successful computation is a natural number that is obtained by counting all
objects present in region i0. Given a P system Π, the set of natural numbers
computed in this way by Π is denoted by N(Π). If the multiplicity of each object
is counted separately, then a vector of natural numbers is obtained, denoted by
Ps(Π), see [23].

By NOPm(syms, antit) we denote the family of sets of natural numbers gener-
ated by P systems with symport/antiport rules with at most m > 0 membranes,
symport rules of size at most s ≥ 0, and antiport rules of size at most t ≥ 0. In the
papers on P systems, following [23], i0 is assumed to be an elementary membrane.
In this paper we will write NskinOPm(syms, antit) if i0 is the skin membrane. Any
unbounded parameter m, s, t is replaced by ∗. If t = 0, then we may omit antit.

Skin Output in Minimal Symport/Antiport P Systems 103

3 Main result

Theorem 1. NskinOP2(sym1, anti1) = NRE.

Proof. We simulate a counter automaton M = (d,Q, q0, qf , P). Recall that M
starts with empty counters. We also suppose that all instructions from P are
labeled in a one-to-one manner with elements of {1, . . . , n} = I, n is a label of the
halt instruction and I ′ = I \{n}. We denote by I+, I−, and I=0 the set of labels for
the “increment” -, “decrement” -, and “test for zero” -instructions, respectively.
We also use the following notation: C = {ck}, k ∈ D and Q′ = Q \ {q0}.

We construct the P system Π1 as follows:

Π1 = (O, [1 [2]2]1, w1, w2, E,R1, R2, 1),
O = E ∪ {L, T1, T2, P2, J1, J2, J3} ∪ {bj | j ∈ I} ∪ {dj | j ∈ I ′},
E = Q′ ∪ C ∪ {aj | j ∈ I} ∪ {a′j , ej | j ∈ I ′} ∪ {J0, P1} ∪ {Fi | 0 ≤ i ≤ 9},

w1 = q0LJ1J2J3,

w2 = T1T2P2

∏

j∈I

bj

∏

j∈I′
dj ,

Ri = Ri,s ∪Ri,r ∪Ri,f , i = 1, 2.

We code the counter automaton as follows:
Region 1 will hold the current state of the automaton, represented by a symbol

qi ∈ Q and also the value of all counters, represented by the number of occurrences
of symbols ck ∈ C, k ∈ D, where D = {1, ..., d}.

We split our proof into several parts that depend on the logical separation of
the behavior of the system. We will present the rules and the initial symbols for
each part, but we remark that the system we present is the union of all these parts.
The rules Ri are given by three phases:

1. START: preparation of the system for the computation.
2. RUN: simulation of instructions of the counter automaton.
3. END: terminating the computation.

The parts of the computations illustrated in the following describe different
phases of the evolution of the P system. For simplicity, we focus on explaining
a particular phase and omit the objects that do not participate in the evolution
at that time. Each rectangle represents a membrane, each variable represents a
copy of an object in a corresponding membrane (symbols outside of the outermost
rectangle are found in the environment). In each step, the symbols that will evolve
(will be moved) are written in boldface. The labels of the applied rules are written
above the symbol ⇒.

104 A. Alhazov, Y. Rogozhin

1. START.
We use the following idea: in our system we have a symbol L which moves

from region 1 to the environment and back in an infinite loop. This loop may be
stopped only if all stages are completed correctly.

R1,s = {1s1 : (L, out), 1s2 : (L, in)}.
R2,s = ∅.

Notice that some rules are never executed during a correct simulation: applying
them would lead to an infinite computation. To help the reader, we will underline
the labels of such rules in the description below.

2. RUN.

R1,r = {1r1 : (qi, out; aj , in) | (j : qi → ql, ckγ) ∈ P, γ ∈ {+,−, = 0}}
∪ {1r2 : (qf , out; an, in)}
∪ {1r3 : (bj , out; a′j , in) | j ∈ I ′}
∪ {1r4 : (aj , out;J0, in), 1r5 : (J1, out; bj , in) | j ∈ I}
∪ {1r6 : (J0, out;J1, in)}
∪ {1r7 : (a′j , out; ck, in) | (j : qi → ql, ck+) ∈ P}
∪ {1r8 : (a′j , out) | j ∈ I− ∪ I=0}
∪ {1r9 : (dj , in) | j ∈ I+ ∪ I=0}
∪ {1r10 : (ck, out; dj , in) | (j : qi → ql, ck−) ∈ P}
∪ {1r11 : (J3, out; dj , in) |∈ I−}
∪ {1r12 : (J3, out;J1, in)}
∪ {1r13 : (dj , out; ej , in) | j ∈ I ′}
∪ {1r14 : (ej , out, ql, in) | (j : qi → ql, ckγ) ∈ P, γ ∈ {+,−,= 0}}
∪ {1r15 : (bn, out; F0, in)}
∪ {1r16 : (#, out), 1r17 : (#, in)}.

R2,r = {2r1 : (bj , out; aj , in), 2r2 : (aj , out; J2, in) | j ∈ I}
∪ {2r3 : (aj , out;J1, in) | j ∈ I}
∪ {2r4 : (dj , out; a′j , in) | j ∈ I ′}
∪ {2r5 : (a′j , out; ck, in) | (j : qi → ql, ck = 0) ∈ P}
∪ {2r6 : (a′j , out; ej , in) | j ∈ I=0}
∪ {2r7 : (a′j , out;J1, in) | j ∈ I=0}
∪ {2r8 : (ej , out; dj , in) | j ∈ I=0}

Skin Output in Minimal Symport/Antiport P Systems 105

∪ {2r9 : (ej , out;J1, in) | j ∈ I=0}
∪ {2r10 : (dj , in) | j ∈ I+ ∪ I−}
∪ {2r11 : (a′j , out) | j ∈ I+ ∪ I−}
∪ {2r12 : (J2, out; bj , in) | j ∈ I ′}
∪ {2r13 : (J2, out; J1, in), 2r14 : (#, out;J0, in)}.

First of all, we mention that if during the phase RUN object J3 comes to
the environment by rules 1r11, 1r12 (Scenario 0), it remains there forever and
cannot move object L to region 2 (during the phase END), thus to stop the infinite
loop. So, the computation never halts.

Let us explain the synchronization of aj coming to the environment and bj

leaving the environment: the first one brings J0 into region 1 while the latter
brings J1 into the environment; then rule 1r6 returns J0 and J1 to their original
locations.

If aj comes to the environment without bj leaving it or bj is in region 1 or 2
at that moment (it is possible after applying rules 2r3, 2r7, 2r13), J1 remains in
region 1 (or 2) and J0 comes to region 1 and after that in region 2 by rules 1r4,
2r14 (Scenario 1), thus causing an endless computation since 1r16 and 1r17 are
always applicable.

If bj leaves the environment without aj coming there, J0 remains in the envi-
ronment and J1 comes there (Scenario 2), so 1r12 is applied and J3 comes to
the environment. The computation never halts, see scenario 0.

Scenario 3 takes place when two symbols aj and symbol bj , j ∈ I appear in
region 1 and in the environment accordingly. In this case rules 1r4,1r5 will be
applied, and rule 1r4 two times. Thus, two symbols J0 appear in region 1 and rule
2r14 will be applied eventually. The computation never halts, see scenario 1.

We also mention that applying rule 1r11 causes scenario 0 (this is a case of
modeling a “decrement”-instruction, there is no ck in region 1); applying 2r5 leads
to scenario 3 (this is a case of modeling a “test for zero”-instruction, there is some
ck in region 1), and applying 2r7 and 2r9 eventually causing scenario 1. Therefore,
in order for a computation to halt, no underlined rules should be applied.

We will now consider the “main” line of computation. We explain the behavior
of simulating the instruction (j : qi → ql, ckγ). Index s stands for any possible
instruction associated to state ql.

“Increment” -instruction:

qlajasa
′
jejckJ0 qiJ1J2J3 bjdj# ⇒1r1 qlqiasa

′
jejckJ0 ajJ1J2J3 bjdj# ⇒2r1

qlqiasa′jejckJ0 bjJ1J2J3 ajdj# ⇒1r3,2r2 qlqiasbjejckJ0 a′jJ1ajJ3 J2dj#

⇒1r4,1r5,2r4 qlqiajasejckJ1 bjdjJ0J3 J2a′j# (A)

106 A. Alhazov, Y. Rogozhin

⇒1r6,1r13,2r11,2r12 qlqiajasdjckJ0 J1J2a′jejJ3 bj# ⇒1r7,1r9,1r14

qiajasa
′
jejJ0 qldjJ1J2J3ck bj# ⇒1r1,2r10 qlqiaja

′
jejJ0 asJ1J2J3ck bjdj#

In that way, qi is replaced by ql and ck is moved from the environment into region
1. Notice that symbols aj , bj , a′j , dj , ej , J0, J1, J2 have returned to their original
positions. Symbol dj returns to region 2 in the first step of the simulation of the
next instruction (the last step of the illustration).

“Decrement” -instruction:

(i) There is some ck in region 1:

We consider configuration (A) above with symbol ck in region 1.

qlqiajasejJ1 bjdjJ0J3ck J2a′j# ⇒1r6,1r13,2r11,2r12

qlqiajasdjJ0 J1J2a′jejJ3ck bj# ⇒1r8,1r10,1r14 qiajasa
′
jejckJ0 qlJ1J2J3dj bj#

⇒1r1,2r10 qlqiaja
′
jejckJ0 asJ1J2J3 bjdj#

In the way described above, qi is replaced by ql and ck is removed from region 1
to the environment. Notice that symbols aj , a′j , bj , dj , ej , J0, J1, J2 have returned
to their original positions. Symbol dj returns to region 2 in the first step of the
simulation of the next instruction (the last step of the illustration).

(ii) There is no ck in region 1:

Again we start with configuration (A).

qlqiajasejJ1 bjdjJ0J3 J2a′j#

⇒1r6,1r13,2r11,2r12 qlqiajasdjJ0 J1J2a′jejJ3 bj# ⇒1r8,1r11,1r14

Now rule 1r11 will be applied, leading to an infinite computation (see scenario 0).

“Test for zero” -instruction:
qi is replaced by ql if there is no ck in region 1, otherwise a′j in region 2

exchanges with ck in region 1 and the computation will never stop.
(i) There is no ck in region 1:

We consider configuration (A) above.

Skin Output in Minimal Symport/Antiport P Systems 107

qlqiajasejJ1 bjdjJ0J3 J2a′j# ⇒1r6,1r13,2r12 qlqiajasdjJ0 J1J2ejJ3 a′jbj#

⇒1r9,2r6 qlqiajasJ0 djJ1J2J3a′j ejbj# ⇒1r8,2r8 qlqiajasa
′
jJ0 ejJ1J2J3 bjdj#

⇒1r14 qiajasa
′
jejJ0 qlJ1J2J3 bjdj#

In this case, qi is replaced by ql. Notice that symbols aj , a′j , bj , dj , ej , J0, J1, J2

have returned to their original positions.

(ii) There is some ck in region 1:
Consider configuration (A) with object ck in region 1:

qlqiajasejJ1 bjdjJ0J3ck J2a′j# ⇒1r6,1r13,2r5,2r12

Now applying rule 2r5 leads to an infinite computation.

qlqiajasasa
′
sdjJ0J0 J1J2a′jejJ3 bjbsck# ⇒1r8,1r9,1r14

qiajasasa
′
ja
′
sejJ0J0 qldjJ1J2J3 bjbsck# ⇒1r1,1r13

qlqiajasa
′
ja
′
sdjJ0J0 asejJ1J2J3 bjbs# ⇒1r14,2r1

qiajasa
′
ja
′
sejJ0J0 bsqlJ1J2J3 asdj# ⇒1r1,1r3,2r2

qlqiaja
′
jbsejJ0J0 asasa′sJ1J2J3 dj#

So, scenario 3 takes place and the computation never halts.

3. END.

R1,f = {1f1 : (T1, out; F1, in)} ∪ {1f2 : (Fi, out; Fi+1, in) | 1 ≤ i ≤ 8}
∪ {1f3 : (T2, out; P1), 1f4 : (P2, out), 1f5 : (F0, out; P2, in)}.

R2,f = {2f1 : (T1, out; F0, in), 2f2 : (F0, out), 2f3 : (T2, out;F0, in)}
∪ {2f4 : (P1, in), 2f5 : (P1, out;J1, in), 2f6 : (P1, out;J2, in)}
∪ {2f7 : (P1, out; J3, in), 2f8 : (J3, out;L, in), 2f9 : (P2, out; F9, in)}.

Once the counter automaton reaches the final state, qf is in region 1 and it
exchanges with object an (rule 1r2) and object F0 will be moved to region 1 in
several steps (rules 1r15).

It takes T1 and T2 to region 1, in either order. The duty of T2 is to bring P1

from the environment to region 2, where P1 pumps objects J1, J2, J3 from region 1
to region 2. If on the previous steps of simulation of counter automaton M object

108 A. Alhazov, Y. Rogozhin

J3 was moved to the environment (by rules 1r11, 1r12), scenario 0 takes place
and the computation never halts, as there is only one possibility to stop an infinite
loop with object L, i.e. to move it to region 2 by rule 2f8.

T1 starts a chain of exchanges of objects Fi, as a result object F9 will be
moved to region 1 and then object P2 will be moved to the environment, where
it pumps object F0 to the environment. So, at the end of the computation there
are only objects ck, k ∈ D in region 1. The entire simulation shows the inclusion
N(Π1) ⊇ N(M).

The converse inclusion also holds because the system may only halt if it has
correctly simulated a computation of the counter automaton (according to the
design of the system) from state q0 to state qf , while if behavior of M is not sim-
ulated correctly, then the computation never halts and hence does not contribute
to N(Π1). This shows that P systems with two membranes and symport/antiport
rules of weight one with the output in the skin membrane generate all recursively
enumerable sets of natural numbers. Since the power of such systems cannot exceed
that of Turing machines, the statement of the theorem is an equality. ut

4 Conclusions

In this paper we prove the new result that any recursively enumerable set of nat-
ural numbers is generated by symport/antiport P systems with two membranes
and minimal cooperation where the output membrane is the skin membrane. It
contrasts with the previous result where an elementary membrane is used as the
output membrane, where at least one superfluous object is necessary in the out-
put membrane in order to get universality. Thus we answered the question of
Francesco Bernardini about computational power of symport/antiport P systems
with two membranes and minimal cooperation where the output membrane is
the skin membrane. The question about power of purely symport P systems with
two membranes and minimal cooperation where the output membrane is the skin
membrane is still open.

References

1. A. Alhazov, R. Freund, Yu. Rogozhin: Computational Power of Symport/Antiport:
History, Advances, and Open Problems. Membrane Computing, International Work-
shop, WMC 2005, Vienna, 2005, Revised Selected and Invited Papers (R. Freund,
Gh. Păun, G. Rozenberg, A. Salomaa, Eds.), Lecture Notes in Computer Science
3850 (2006) 1–30.

2. A. Alhazov, R. Freund, Yu. Rogozhin: Some Optimal Results on Communicative
P Systems with Minimal Cooperation. Cellular Computing (Complexity Aspects),
ESF PESC Exploratory Workshop (M.A. Gutiérrez-Naranjo, Gh. Păun, M.J. Pérez-
Jiménez, Eds.), Fénix Editora, Sevilla, (2005) 23–36.

Skin Output in Minimal Symport/Antiport P Systems 109

3. A. Alhazov, M. Margenstern, V. Rogozhin, Yu. Rogozhin, S. Verlan: Communicative
P Systems with Minimal Cooperation. Membrane Computing, International Work-
shop, WMC 2004, Milan, 2004, Revised, Selected, and Invited Papers (G. Mauri,
Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg, A. Salomaa, Eds.) Lecture Notes in
Computer Science 3365 (2005) 161–177.

4. A. Alhazov, Yu. Rogozhin: Minimal Cooperation in Symport/Antiport P Sys-
tems with One Membrane. Third Brainstorming Week on Membrane Computing
(M.A. Gutiérrez-Naranjo, A. Riscos-Núñez, F.J. Romero-Campero, D. Sburlan, Eds.)
RGNC TR 01/2005, University of Seville, Fénix Editora, Sevilla (2005) 29–34.

5. A. Alhazov, Yu. Rogozhin: Towards a Characterization of P Systems with Minimal
Symport/Antiport and Two Membranes. In: Pre-proc. of the 7th Workshop on Mem-
brane Computing, WMC7, 17 – 21 July, 2006, Lorentz Center, Leiden (2006) 102–117,
Revised, Selected, and Invited Papers (H.J. Hoogeboom, Gh. Păun, G. Rozenberg,
A. Salomaa, Eds.) Lecture Notes in Computer Science 4361 (2006) 135–153.

6. A. Alhazov, Yu. Rogozhin: Generating Languages by P Systems with Minimal Sym-
port/Antiport. Computer Science Journal of Moldova, 14, 3(42) (2006) 299–323.

7. A. Alhazov, Yu. Rogozhin, S. Verlan: Symport/Antiport Tissue P Systems with Mini-
mal Cooperation. Cellular Computing (Complexity Aspects), ESF PESC Exploratory
Workshop (M.A. Gutiérrez-Naranjo, Gh. Păun, M.J. Pérez-Jiménez, Eds.), Fénix
Editora, Sevilla (2005) 37–52.

8. A. Alhazov, Yu. Rogozhin and S. Verlan: Minimal Cooperation in Symport/Antiport
Tissue P Systems. International Journal of Foundation of Computer Science, 18, 1
(2007) 163–179.

9. F. Bernardini, M. Gheorghe: On the Power of Minimal Symport/Antiport. Work-
shop on Membrane Computing, WMC 2003 (A. Alhazov, C. Mart́ın-Vide, Gh. Păun,
Eds.), Tarragona, 2003, TR 28/03, Research Group on Mathematical Linguistics,
Universitat Rovira i Virgili, Tarragona (2003) 72–83.

10. F. Bernardini, A. Păun: Universality of Minimal Symport/Antiport: Five Membranes
Suffice. Membrane Computing, International Workshop, WMC 2003, Tarragona, Re-
vised Papers (C. Mart́ın-Vide, G. Mauri, Gh. Păun, G. Rozenberg, A. Salomaa, Eds.),
Lecture Notes in Computer Science 2933 (2004) 43–45.

11. R. Freund, M. Oswald: GP Systems with Forbidding Context. Fundamenta Infor-
maticae 49, 1–3 (2002) 81–102.

12. R. Freund, M. Oswald: P Systems with Activated/Prohibited Membrane Channels.
Membrane Computing International Workshop, WMC-CdeA 02, Curtea de Argeş,
2002. Revised Papers (Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron, Eds.),
Lecture Notes in Computer Science 2597 (2003) 261–268.

13. R. Freund, A. Păun: Membrane Systems with Symport/Antiport: Universality Re-
sults. Membrane Computing International Workshop, WMC-CdeA 02, Curtea de
Argeş, 2002. Revised Papers (Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron,
Eds.), Lecture Notes in Computer Science 2597 (2003) 270–287.

14. P. Frisco: About P Systems with Symport/Antiport. Second Brainstorming Week on
Membrane Computing (Gh. Păun, A. Riscos-Núñez, A. Romero-Jiménez, F. Sancho-
Caparrini, Eds), TR 01/2004, Research Group on Natural Computing, University of
Seville (2004) 224–236.

15. P. Frisco, H.J. Hoogeboom: Simulating Counter Automata by P Systems with
Symport/Antiport. Membrane Computing International Workshop, WMC-CdeA 02,
Curtea de Argeş, 2002. Revised Papers (Gh. Păun, G. Rozenberg, A. Salomaa, C.
Zandron, Eds.), Lecture Notes in Computer Science 2597 (2003) 288–301.

110 A. Alhazov, Y. Rogozhin

16. P. Frisco, H.J. Hoogeboom: P Systems with Symport/Antiport Simulating Counter
Automata. Acta Informatica 41, 2–3 (2004) 145–170.

17. L. Kari, C. Mart́ın-Vide, A. Păun: On the Universality of P Systems with Minimal
Symport/Antiport Rules. Aspects of Molecular Computing - Essays dedicated to Tom
Head on the occasion of his 70th birthday, Lecture Notes in Computer Science 2950
(2004) 254–265.

18. M. Margenstern, V. Rogozhin, Yu. Rogozhin, S. Verlan: About P Systems with Min-
imal Symport/Antiport Rules and Four Membranes. Fifth Workshop on Membrane
Computing (WMC5), (G. Mauri, Gh. Păun, C. Zandron, Eds.), Universitá di Milano-
Bicocca, Milan (2004) 283–294.

19. C. Mart́ın-Vide, A. Păun, Gh. Păun: On the Power of P Systems with Symport
Rules, Journal of Universal Computer Science 8, 2 (2002) 317–331.

20. M.L. Minsky: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs, New
Jersey (1967).

21. A. Păun, Gh. Păun: The Power of Communication: P Systems with Sym-
port/Antiport. New Generation Computing 20 (2002) 295–305.

22. Gh. Păun: Computing with Membranes. Journal of Computer and Systems Science
61 (2000) 108–143.

23. Gh. Păun: Membrane Computing. An Introduction. Springer-Verlag (2002).
24. Gh. Păun: Further Twenty Six Open Problems in Membrane Computing (2005).

Third Brainstorming Week on Membrane Computing (M.A. Gutiérrez-Naranjo, A.
Riscos-Núñez, F.J. Romero-Campero, D. Sburlan, Eds.) RGNC TR 01/2005, Uni-
versity of Seville, Fénix Editora, Sevilla (2005) 249–262.

25. Gh.Păun: 2006 Research Topics in Membrane Computing. Fourth Brainstorming
Week on Membrane Computing, vol. 1 (M.A. Gutiérrez-Naranjo, Gh. Păun, A.
Riscos-Núñez, F.J. Romero-Campero, Eds.), Fénix Edit., Sevilla (2006), 235–251.

26. G. Rozenberg, A. Salomaa (Eds.): Handbook of Formal Languages (3 volumes).
Springer-Verlag, Berlin (1997).

27. Gy. Vaszil: On the Size of P Systems with Minimal Symport/Antiport. Fifth Work-
shop on Membrane Computing (WMC5) (G. Mauri, Gh. Păun, C. Zandron, Eds.),
Universitá di Milano-Bicocca, Milan (2004) 422–431.

28. S. Verlan: Optimal Results on Tissue P Systems with Minimal Symport/ Antiport.
Presented at EMCC meeting, Lorentz Center, Leiden (2004).

29. S. Verlan: Tissue P Systems with Minimal Symport/Antiport. Developments in Lan-
guage Theory, DLT 2004 (C.S. Calude, E. Calude, M.J. Dinneen, Eds), Lecture Notes
in Computer Science 3340, Springer-Verlag, Berlin (2004) 418–430.

30. P Systems Webpage, http://psystems.disco.unimib.it

