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2 “A.I.Cuza” University of Iaşi, Faculty of Computer Science
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Summary. We investigate the problem of reaching a configuration from another config-
uration in mobile membranes, and prove that the reachability can be decided by reducing
it to the reachability problem of a version of pure and public ambient calculus without
the capability open.

1 Introduction

Membrane systems (called also P systems) are introduced by Gh.Păun in [8, 9]
as a class of parallel computing devices inspired by biology. The definition of
this computing model starts from the observation that any biological system is
a complex hierarchical structure, with a flow of materials and information which
underlies their functioning. The membrane computing deals with the evolution of
systems composed by objects, rules and membranes nested in other membranes.
The P systems with mobile membranes [5] is a model which expresses mobility by
the movement of membranes in such a system. The movement is given mainly by
two operations: exocytosis and endocytosis.

Ambient calculus is a formalism introduced in [3] to describe concurrent and
mobile computation. In contrast with other formalisms for mobile processes such
as the π-calculus [7] (whose computational model is based on the notion of com-
munication), the ambient calculus is based on the notion of movement. An ambient
is a named location, and represents a unit of movement. Ambients mobility is
controlled by the capabilities in, out, and open; the mobile ambients describe the
migration of processes between certain boundaries.

The membrane systems and mobile ambients have similar structures and com-
mon concepts. Both have a hierarchical structure, work mainly with a notion of
location, and are used to model various aspects on the distributed systems. The
distributed features of mobile ambients are described in [3], and distributed algo-
rithms for membrane systems are presented in [4].
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In this paper we investigate the problem of reaching a certain configuration in
mobile membranes starting from a given configuration. We prove that reachability
in mobile membranes can be decided by reducing it to the reachability problem of
a version of pure and public ambient calculus from which the open capability has
been removed. In [1] it is proven that the reachability for this fragment of ambient
calculus is decidable by reducing it to marking reachability for Petri nets, which
is proven to be decidable in [6].

The structure of the paper is as follows. In Section 2 we present the mobile
membrane systems, whereas in Section 3 we present a version of pure and public
mobile ambients without the capability open. The core of the paper is represented
by Section 4, where we investigate the reachability problem for mobile membranes.
Conclusions and references end the paper.

2 Mobile Membranes Systems

Definition 1. A mobile membrane system is a construct∏
= (V ∪ V , H ∪H, µ, w1, . . . , wn, R), where:

1. n ≥ 1 (the initial degree of the system);
2. V ∪ V is an alphabet (its elements are called objects), where V ∩ V = ∅;
3. H ∪H is a finite set of labels for membranes, where H ∩H = ∅;
4. µ is a membrane structure, consisting of n membranes, labeled (not necessarily

in a one-to-one manner) with elements of H;
5. w1, w2, . . . , wn are multisets of objects placed in the n membranes of the system;
6. R is a finite set of developmental rules, of the following forms:

a) a↓→ a↓ a↓, for a↓∈ V , a↓∈ V ; replication rule
The objects a↓ are used to create new objects a↓ without being consumed.

b) a↑→ a↑ a↑, for a↑∈ V , a↑∈ V ; replication rule
The objects a↑ are used to create new objects a↑ without being consumed.

c) [ a↓ ]h [ ]a → [ [ ]h ]a, for a, h ∈ H, a↓∈ V ; endocytosis
An elementary membrane labeled h enters the adjacent membrane labeled
a, under the control of object a↓. The labels h and a remain unchanged
during this process; however the object a↓ is consumed during the operation.
Membrane a is not necessarily elementary.

d) [ [ a↑ ]h ]a → [ ]h [ ]a, for a, h ∈ H, a↑∈ V ; exocytosis
An elementary membrane labeled h is sent out of a membrane labeled a,
under the control of object a↑. The labels of the two membranes remain
unchanged; the object a↑ of membrane h is consumed during the operation.
Membrane a is not necessarily elementary.

e) [ ]h → [ ]h[ ]h for h ∈ H, h ∈ H division rules

An elementary membrane labeled h is divided into two membranes labeled
by h and h having the same objects.
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In 3, H ∩H = ∅ states that the membranes having labels from the set H can
participate only in rules of type (e). Similarly, V ∩ V = ∅ in 2 states that the
objects from V can participate only in rules of type (a) and (b)

The rules are applied using the following principles:

1. In biological systems molecules are divided into classes of different types. We
make the same decision here and split the objects into four classes: a ↓ - objects
that control the endocytosis, a ↑ - objects that control the exocytosis, and a ↓,
a ↑ - objects that produce new objects from the first two classes without being
consumed.

2. All the rules of type (c), (d) are applied in parallel, non-deterministically choos-
ing the rules, the membranes, and the objects, but in such a way that the
parallelism is maximal; this means that in each step we apply a set of rules
such that no further rule of type (c), (d) can be added to the set, no further
membranes and objects can evolve at the same time.

3. The membrane a from each rules of type (c), (d) is said to be passive, while
the membrane h is said to be active. In any step of a computation, any object
and any active membrane can be involved in at most one rule, but the passive
membranes are not considered involved in the use of rules (hence they can be
used by several rules at the same time as passive membranes).

4. When a membrane is moved across another membrane, by endocytosis or ex-
ocytosis, its whole content (its objects) are moved.

5. If a membrane is divided, then its content is replicated in the two new copies.
6. The skin membrane can never be divided.
7. Not all the rules of type (a), (b), (e) are applied whenever it is possible; we

choose non-deterministically whether the rules of these types are applied.

According to these rules, we get transitions among the configurations of the
system. For two mobile membrane systems M and N we say that M reduces to
N if there is a sequence of rules applicable in the membrane system M in order
to obtain the membrane system N .

3 Mobile Ambients

We describe a variant of pure and public mobile ambients (mobile ambients in
which communication and name restriction are omitted); more details can be found
in [1]. Given an infinite set of names N (ranged over by m,n, . . . ), we define the
set A of mobile ambients (denoted by A, A′, B, . . . ) together with their capabilities
(denoted by C, C ′, . . . ) as follows:

C ::= in n | out n Capabilities
A ::= A | B | C. A | n[ A ] | !A Processes

A movement C. A is provided by the capability C, followed by the execution of
process A. An entry capability in n instructs the surrounding ambient to enter a



114 B. Aman, G. Ciobanu

sibling ambient labeled by n, while an exit capability out n intructs the surround-
ing ambient to exit its parent ambient labeled by n. An ambient n[ A ] represents
a bounded place labeled by n in which a process A is executed. A |B is a par-
allel composition of processes A and B. The process !A denotes the unbounded
replication of process A.

Processes of this calculus are grouped into equivalence classes, up to trivial
syntactic restructuring, by the following structural congruence relation, ≡, which
is the least congruence satisfying the following requirements:

A |B ≡ B |A A ≡ B implies A |A′ ≡ B |A′
(A |B) |A′ ≡ A | (B |A′) A ≡ B implies !A ≡!B
A ≡ A A ≡ B implies n[A] ≡ n[B]
A ≡ B implies B ≡ A A ≡ B implies C.A ≡ C.B
A ≡ B, B ≡ A′ implies A ≡ A′

The operational semantics of the mobile ambients is defined in terms of a reduction
relation ⇒ by the following axioms and rules:
Axioms:
(In) n[ in m.A | A′ ] | m[ B ] ⇒ m[ n[ A | A′ ] | B ] ;
(Out) m[ n[ out m.A | A′ ] | B ] ⇒ n[ A | A′ ] | m[ B ] ;
(Repl) !A ⇒ A | !A .
Rules:

(Comp) A ⇒ A′
A | B ⇒ A′ | B (Amb) A ⇒ A′

n[ A ] ⇒ n[ A′ ]

(Struc) A ≡ A′, A′ ⇒ B′, B′ ≡ B
A ⇒ B .

The Axioms represent the one-step reductions for in and out, and the unfold-
ing of replication. The Rules propagate reduction across ambient nesting, parallel
composition and allow the use of equivalence during reduction. The In and Out
rules are applied as soon as possible in a maximal parallel manner. We denote by
⇒∗ the reflexive and transitive closure of the binary relation ⇒.

4 Reachability Problem

In this section we prove that the problem of reaching a configuration (membranes
and objects) starting from a certain configuration is decidable for the special class
of mobile membranes systems introduced in Section 2.

Theorem 1. For two arbitrary mobile membranes M1 and M2, it is decidable
whether M1 reduces to M2.

The main steps of the proof are as follows:

1. we reduce mobile membranes systems to pure and public mobile ambients
without the capability open.
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2. we show that the reachability problem for two arbitrary mobile membranes
can be expressed as the reachability problem for the corresponding mobile
ambients.

3. we use the result that the reachability problem is decidable for a fragment of
pure and public mobile ambients without the capability open.

The following subsections are devoted to the proof of Theorem 1.

4.1 From Mobile Membranes to Mobile Ambients

We use the following translation steps:

1. any object a↓ is translated into a capability in a;
2. any object a↑ is translated into a capability out a;
3. any object a↓ is translated into a replication !in a
4. any object a↑ is translated into a replication !out a
5. a membrane h is translated into an ambient h
6. an elementary membrane h is translated into a replication !h[ ] where all the

objects inside membrane h are translated into capabilities in ambient h using
the above steps.

A correspondence exists between the rules from mobile membranes and the reduc-
tion rules from mobile ambients as follows:

- rule (c) corresponds to rule (In)
- rule (d) corresponds to rule (Out)
- rules (a), (b), (e) correspond to instances of rule (Repl)

If we start with a mobile membrane system M , we denote by T (M) the mobile
ambient obtained using the above translation steps. For example, starting from the
membrane system M = [m↓ m↑]n[ ]m we obtain T (M) = n[in m | out m] | m[ ].

Proposition 1. For mobile membrane systems M and N , M reduces to N by
applying one rule if and only if T (M) reduces to T (N) by applying only one
reduction rule.

Proof (Sketch). Since M reduces N by applying one rule, then one of the rules
of type (a), . . . , (e) is applied. We treat only the case when a rule of type (a) is
applied, the others being treated in a similar manner.

If a rule a↓→ a↓ a↓ is applied, only one object from the membrane system
M is used, namely a↓, to create a new object a↓, thus obtaining the membrane
system N . By translating the membrane system M into T (M) we have that a↓ is
translated in !in a. By applying the reduction rule corresponding to (a) (namely
the rule (Repl)) to !in m, then we have that !in a ⇒!in a | in a, namely a new
capability in a is created. We observe that T (a↓) = in a, which means that the
obtained mobile ambient is in fact T (N).

According to Proposition 1 the reachability problem for mobile membranes can be
reduced to a similar problem for mobile ambients.
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4.2 From Mobile Ambients to Petri Nets

After translating the mobile membranes into a fragment of mobile ambients known
to be decidable, we present for our fragment of mobile ambients the algorithm used
in [1] to translate mobile ambients into a fragment of Petri nets, which is known
to be decidable from [6]. The fragment of mobile ambients used here is a subset of
the fragment of mobile ambients used in [1] and the difference is provided by the
extra-rule !A ⇒!A | !A used in [1].

We observe that applying a reduction rule over a process either increases the
number of ambients or leaves it unchanged. The only reduction rule that increases
the number of ambients when applied is the rule (Repl), while the other reduction
rules leave the number of ambients unchanged. If we reach process B starting from
process A, then the number of ambients of process B is known. Therefore, we can
use this information to know how many times the reduction rule (Repl) is applied
to replicate ambients. A similar argument does not hold for capabilities as they
can be consumed by the reduction rules (In) and (Out).

An ambient context C is a process in which may occur some holes (denoted by
¤). Starting from this observations we split a process into two parts: one will be
a context containing ambients, whereas the other one will be a process without
ambients.

In order to uniquely identify all the occurrences of replication, ambient, capa-
bility or hole ¤ within an ambient context or a process, we introduce a labeling
system. Using a countable set of labels, we say that a process A or an ambient
context C is well-labeled if any label occurs at most once in A or C . We denote
by Amb(C) the multiset of ambients occurring in an ambient context C.

I) labeled Transition System

For the reachability problem A ⇒∗ B, we denote by CA a well-labeled ambient
context and with θA a mapping from the set of holes in CA to some labeled processes
without replicable ambients such that θA(CA) is well-labeled, and θA(CA) = A
ignoring labels.

A labeled transition system LA,B describes all possible reductions for the con-
text CA: this includes reductions of replications and capabilities contained in CA

and in the processes associated with the holes of the context. The states of the
labeled transition system LA,B are associative-commutative equivalent classes of
ambient contexts, and for simplicity, we often identify a state as one of the repre-
sentatives of its class.

We define a mapping θLA,B
which extends the mapping θA. Initially, LA,B

contains (the equivalence class of) CA as a unique state and we have θLA,B
= θA.

We present in what follows the construction steps of θLA,B
, where cap stands for

in or out:

1. for any ambient context C from LA,B and for any labeled capability capwn in C
if this capability can be executed using one of the rules (In) or (Out) leading
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to some ambient context C′, then the state C′ and a transition from C to C′
labeled by capwn are added to LA,B .

2. for any ambient context C from LA,B and for any labeled replication !w in C
such that the reduction rule (Repl) is applied, we define the ambient context
C′ as follows: C′ is identical to C except that the subcontext !wCa in C is replaced
by !wCa | γ(Ca) in C′; the mapping γ relabels Ca with fresh labels, such that C′
is well-labeled. If Amb(C′) ⊆ Amb(B) then the state C′ and a transition from
C to C′ labeled by !w is added to LA,B . Additionally, we define θ′LA,B

as an
extension of θLA,B

such that for all ¤w′ in Ca we have:
(i) θ′LA,B

(γ(¤w′)) and θLA,B (¤w′) are identical ignoring labels,
(ii) labels in θ′LA,B

(γ(¤w′)) are fresh in the currently built transition sys-
tem LA,B

(iii)θ′LA,B
(γ(¤w′)) is well-labeled.

As a final step, we set θLA,B
to be θ′LA,B

.
3. for any ambient context C from LA,B and for any labeled hole ¤w in C and

for any capability capwn in the process θLA,B
(¤w), we consider the ambient

context Cm identical to C except that ¤w in C has been replaced by ¤w | capwn
in Cm. If this capability capwn can be consumed in Cm using one of the rules
(In) or (Out) leading to some ambient context C′, then the state C′ and a
transition from C to C′ labeled by capwn are added to transition system LA,B .

4. for any ambient context C from LA,B and for any labeled hole ¤w in C asso-
ciated by θLA,B

with a process of the form !w
′
A′, if the replication !w

′
can be

reduced in the process θLA,B
(C) using the rule (Repl), then for any replication

!w
′′

in θLA,B (¤w), a transition from C to itself, labeled by !w
′′

is added to LA,B .

In step 2 the reduction of a replication contained in the ambient context by
means of the rule (Repl) is done only when the number of ambients in the resulting
process is smaller than the number of ambients in the target process B, namely
Amb(C′) ⊆ Amb(B). This requirement is crucial as it implies that the transition
system LA,B has only finitely many states.

As an example, we give in Figure 1 the labeled transition system associated
with the process n[!1in m.!2out m] | m[ ] (we omit in this process unnecessary
labels). We use the labeled replications !1 and !2 to distinguish between different
replication operators which appear in the process.

We observe that the labeled transitions in LA,B for replications and capabilities
from an ambient context correspond to reductions performed on processes. As
shown in steps 3 and 4 the transitions applied for any capabilities or replications
associated with the holes are independently of the fact that they are effectively at
this point available to perform a transition.
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II) From Processes Without Ambients to Petri Nets

In what follows we show how to build a Petri net from a labeled process without
ambients. We denote by E(E) the set of all multisets that can be built with elements
from the set E.

We recall that a Petri net is given by a 5-tuple (P,Pi, T , P re, Post) with

• P a finite set of places;
• P ⊆ Pi a set of initial places;
• T a finite set of transitions;
• Pre, Post : T → E(P) mappings from transitions to multisets of places.

We say that an ambient-free process is rooted if it is of the form capwn.A′ or of
the form !wA′. We define PNA′ the Petri net associated with some rooted process
A′ as follows: places for PNA′ are precisely rooted subprocesses of A′, and A′ itself
is the unique initial place. Transitions are defined as the set of all capabilities inwn,
outw

′
n and replications !w occurring in A′. Finally, Pre and Post are defined for

all transitions as follows:

• Pre(capwn) = {capwn} and Post(capwn) = ∅ if capwn is a place in PNA′ .
• Pre(capwn) = {capwn.(A1 | . . . | Ak)} and Post(capwn) = {A1 | . . . | Ak} if

capwn.(A1 | . . . | Ak) is a place in PNA′ (A1 | . . . | Ak being rooted processes).
• Pre(!w) = Pre(!w) = {!wA′}, Post(!w) = {!wA′, A′} and Post(!w) = {!wA′} if

!wA′ is a place in PNA′ .

For !1in m.!2out m, we obtain the Petri net given in Figure 2.
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We will denote by PN¤w the Petri net PN(θLA,B
(¤w)), that is, the Petri net

corresponding to the rooted ambient-free process associated with ¤w by θLA,B
. In

what follows we show how to combine the transition system LA,B and the Petri
nets PN¤w into one single Petri net.

III) Combining the Transition System and Petri Nets

We first turn the labeled transition system LA,B into a Petri net PNL =
(PL,Pi

L, TL, P reL, PostL) with:

• PL a set of states of LA,B ;
• Pi

L a singleton set containing the state corresponding to CA, the ambient con-
text of A;

• TL the set of transitions of the form (s, l, s′), with
– s and s′ states from LA,B ;
– l transition from s to s′ in LA,B .

• Pre(t) = s and Post(t) = {s′}, for all transitions t = (s, l, s′).

We define the Petri net PNA,B = (PA,B ,Pi
A,B , TA,B , P reA,B , PostA,B) as:

• places (resp. initial places) from PNA,B are the union of places (resp. initial
places) of PNL and of each of the Petri nets PN¤w (for ¤w occurring in one
of the states of LA,B).

• transitions of PNA,B are precisely the transitions of PNL.
• The mappings PreA,B and PostA,B are defined for all transitions t = (a, f, b):

(i) PreA,B(t) = {a} and PostA,B(t) = {b}, if f does not occur as a transition
in any PN¤w (for ¤w occurring in one of the states of LA,B)

(ii) PreA,B(t) = {a} ∪ Pre¤w(f) and PostA,B(t) = {b} ∪ Post¤w(f), if f is a
transition of PN¤w (Pre¤w(resp. Post¤w) being the mapping Pre (resp.
Post) of PN¤w).

4.3 Deciding Reachability

We recall that for a Petri net PN = (P,Pi, T , P re, Post), a marking m is a
multiset from E(P ). A transition t is enabled by a marking m if Pre(t) ⊆ m.
Executing an enabled transition t for a marking m gives a marking m′ defined as
m′ = (m\Pre(t))∪Post(t) (where \ stands for the multiset difference). A marking
m′ is reachable from m if there exists a sequence m0, . . . ,mk of markings such that
m0 = m, mk = m′ and for each mi,mi+1, there exists an enabled transition for
mi whose execution gives mi+1.

Theorem 2 ([6]). For all Petri nets P , for all markings m,m′ for P , one can
decide whether m′ is reachable from m.
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For the reachability problem A ⇒∗ B over ambients, we consider the Petri net
PNA,B and the initial marking mA defined as mA = Pi

A,B . In Figure 3 is depicted
the initial marking for the process n[!1in m.!2out m] | m[ ] as a combination of the
labeled transition system from Figure 1 and the Petri net from Figure 2.

It should be noticed that for any marking m reachable from mA, m contains
exactly one occurrence of a place from PL. Roughly speaking, to any reachable
marking corresponds exactly one ambient context. Moreover, the execution of one
transition in the Petri net PNA,B simulates a reduction from ⇒.

We define now MB , the set of markings of PNA,B corresponding to B. Intu-
itively, a marking m belongs to MB if m contains exactly one occurrence C of a
place from PL (that is, representing some ambient context) and in the context C,
the holes can be replaced with processes without ambients to obtain B. Each of
the processes without replication must correspond to a marking of the sub-Petri
net associated with the hole it fills up. MB is defined as the set of markings m for
PNA,B satisfying:

(i) in m there exists exactly one ambient context Cm;
(ii) ignoring labels, σm(Cm) is equal to B modulo associative-commutative, for the

substitution σm from holes ¤w occurring in Cm to processes without ambients
defined as: σm(¤m) = P1 | . . . | Pk for {P1, . . . , Pk} the multiset corresponding
to the restriction of m to the places of PN¤w

(iii)for all holes ¤w occurring in some state of the transition system LA,B but not
in Cm, the restriction of m to places of PN¤w is precisely the set of initial
places from PN¤w .

We adapt the results presented in [1] to a restricted fragment of mobile ambients.

Proposition 2. For a Petri net PNA,B, there are only finitely many markings
corresponding to the process B, and their set MB can be computed.
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The translation correctness is ensured by the following result.

Proposition 3. For all processes A,B we have that A ⇒ B if and only if there
exists a marking from MB such that mB is reachable from mA in PNA,B.

Using the Proposition 3 and Theorem 2, we can decide whether an ambient A
can be reduced to an ambient B.

Theorem 3. For two arbitrary ambients A and B from our restricted fragment,
it is decidable whether A reduces to B.

5 Conclusions

In this paper we have investigated the problem of reaching a configuration in
mobile membranes starting from another configuration. In order to do this we use
[1] where the reachability problem for a fragment of ambient calculus is proven
to be decidable, namely the pure and public ambient calculus except the open
capability. The same problem is tackled in [2], but the authors do not take into
account the replication of ambients, which is used to simulate the division rules in
mobile membranes. We proved that the reachability can be decided by reducing
this problem to the reachability problem of a version of pure and public ambient
calculus from which the open capability has been removed.
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