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Summary. This paper investigates a hybrid approach to modelling molecular interac-
tions in biology. Some computer science models are presented, namely, P systems, π-
calculus and Petri nets, and two tools, Daikon, used initially in reverse-engineering, and
PRISM, a probabilistic model checker. All these approaches are investigated for their
complementary role in modelling which is illustrated through a simple case study.

1 Introduction

In the last decade there has been a great interest in using theoretical computer
science models in biology, based on different paradigms (process algebras, cellular
automata, Lindenmayer systems, Petri nets, Boolean functions, P systems, etc.)
with the aim of providing an understandable, extensible and computable mod-
elling framework while keeping the needed formalisation to perform mathematical
analysis. Every such model covers certain aspects of a system and combining two or
more leads to obtaining a better and more powerful modelling approach. In order
to include quantitative and qualitative aspects, there have been suggested various
variants of certain models with new features like: Petri nets [10, 22], stochastic
π-calculus [28] and stochastic P systems [19].

In this paper we investigate the concerted use of different methods that will
reveal a new vision on modelling biological systems by combining different comple-
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mentary approaches. This is quite different from the hybrid approach discussed by
[1] where it is shown how to switch between deterministic and stochastic behaviour.

Section 2 introduces the three modelling approaches used in the paper: P sys-
tems, pi-calculus and Petri nets, as well as Daikon tool and a simple example
involving a regulatory network that will be modelled within each approach. Sec-
tion 3 presents Daikon’s findings and the analysis of the invariants provided. The
following two sections show how PRISM and a Petri net tool are used in order
to confirm some of the properties suggested by Daikon analysis. The final section
summarises our findings.

2 Modelling Paradigms

In this section we will present three modelling approaches, namely P systems, π-
calculus, Petri nets. A simple case study will be used to illustrate the approach.
This example will be written directly into the three modelling paradigms men-
tioned above, P systems, π-calculus and Petri nets and will be executed with a
simulator dedicated to P systems. In this way we will show how the same problem
is modelled with different paradigms and consequently will be able to point out
to specific characteristics of these approaches that are used for the same purpose.
A system of differential equations will be also associated to this example and the
results obtained will be compared to the stochastic behaviour exhibited by the P
system simulator. In the next three sections we will be using a tool called Daikon
to reveal certain properties of our models as they appear through data sets gen-
erated by simulators, and two tools, namely PRISM and PIPE, that are used to
analyse and verify properties identified by Daikon.

The aim of this investigation is not to study the relationships between the
results produced by using differential equations and those generated by P systems.
This has been already considered for a special class of P systems working in a
deterministic manner according to a metabolic algorithm [7]. In this study we
will be using differential equations only as a substitute for real data in order to
illustrate our approach that allows us to ”guess” certain properties of the model
and then to verify whether they hold or not as general properties or just only
happens to be true for the instances generated by simulation.

Nowadays ordinary differential equations (ODE) constitute the most widely
used approach in modelling molecular interaction networks in cell systems. They
have been used successfully to model kinetics of conventional macroscopic chem-
ical reactions. Nevertheless the realisation of a reaction network as a system of
ODEs is based on two assumptions. First, cells are assumed to be well stirred
and homogeneous volumes so that concentrations do not change with respect to
space. Whether or not this is a good approximation depends on the time and
space scales involved. In bacteria it has been shown that molecular diffusion is
sufficiently fast to mix proteins. This is not the case in eukaryotic cells where the
volume is considerably bigger and it is structured in different compartments like
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nucleus, mitochondria, golgi body, etc. The second basic assumption is that chem-
ical concentrations vary continuously over time. This assumption is valid if the
number of molecules of each species in the reaction volume (the cell or the subcel-
lular compartment) are sufficiently large and the reactions are fast. A sufficiently
large number of molecules is considered to be at least thousands of molecules; for
hundreds or fewer molecules the continuous approach is questionable.

Writing and solving numerically a system of ODE describing a chemical reac-
tion network can be largely automated. Each species is assigned a single variable
X(t) which represents the concentration of the species at time t. Then, for each
molecular species, a differential equation is written to describe its concentration
change over time due to interactions with other species in the system. The rate of
each reaction is represented using a kinetic rate law, which commonly depends on
one or more rate constants. Exponential decay law, mass action law and Michaelis-
Menten dynamic are the most widely used kinetic mechanisms. Finally in order to
solve the system of ODEs we must impose a set of initial condition representing
the initial concentration of the species.

Due to the limitations of ODEs to handle cellular systems with low number of
molecules and spatial heterogeneity, some computational approaches have recently
been proposed. In what follows we disccuss three different approaches, P systems,
π-calculus and Petri nets.

2.1 P systems

Membrane computing is an emergent branch of natural computing introduced by
Gh. Păun in [18]. The models defined in this context are called P systems. In the
sequel we will use membrane computing and P systems with the same meaning.
Roughly speaking, a P system consists of a cell-like membrane structure, in the
compartments of which one places multisets of objects and strings which evolve
according to given rules. Recently P systems have been used to model biologi-
cal phenomena within the framework of computational systems biology presenting
models of oscillatory systems [6], signal transduction [19], gene regulation control
[20], quorum sensing [27] and metapopulations [21]. In this respect, P systems
present a formal framework for the specification and simulation of cellular sys-
tems which integrates structural and dynamic aspects in a comprehensive and
relevant way while providing the required formalisation to perform mathematical
and computational analysis.

In the original approach of P systems the rules are applied in a maximally par-
allel way. This produces two inaccuracies: the reactions represented by the rules
do not take place at the correct rate, and all time steps are equal and do not rep-
resent the time evolution of the real system. In order to solve these two problems
stochastic P systems were introduced in [19].

Definition 1. A stochastic P system is a construct
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Π = (O, L, µ,M1,M2, . . . , Mn, R1, . . . , Rn)

where:

• O is a finite alphabet of symbols representing objects;
• L is a finite alphabet of symbols representing labels for the compartments;
• µ is a membrane structure containing n ≥ 1 membranes labelled with elements

from L;
• Mi = (li, wi, si), for each 1 ≤ i ≤ n, is the initial configuration of membrane

i with li ∈ L, the label of this membrane, wi ∈ O∗ a finite multiset of objects
and si a finite set of strings over O;

• Ri, for each 1 ≤ i ≤ n, is a finite set of rewriting rules associated with mem-
brane i, of one of the following two forms:
• Multiset rewriting rules:

obj1 [ obj2 ]l
k−→ obj′1 [ obj′2 ]l (1)

with obj1, obj2, obj
′
1, obj

′
2 ∈ O∗ some finite multisets of objects and l a label

from L. A multiset of objects, obj is represented as obj = o1 + o2 + · · · + om

with o1, . . . , om ∈ O.
These rules are multiset rewriting rules that operate on both sides of mem-
branes, that is, a multiset obj1 placed outside a membrane labelled by l and a
multiset obj2 placed inside the same membrane can be simultaneously replaced
with a multiset obj′1 and a multiset obj′2, respectively.
• String rewriting rules:

[ obj1 + str1; . . . ; objp + strp ]l
k−→

[ obj′1 + str′1,1 + . . . str
′
1,i1 ; . . . ; obj

′
p + str′p,1 + . . . str′p,ip

]l (2)

A string str is represented as follows str = 〈s1.s2. · · · .si〉 where s1, . . . , si ∈ O.
In this case each multiset of objects objj and string strj, 1 ≤ j ≤ p, are replaced
by a multiset of objects obj′j and strings str′j,1 . . . str′j,ij

.
The stochastic constant k is used to compute the propensity of the rule by
multiplying it by the number of distinct possible combinations of the objects
and substrings present on the left-side of the rule with respect to the current
contents of membranes involved in the rule. The propensity associated with each
rule is used to compute the probability and time needed to apply it.

Cellular systems consisting of molecular interactions taking place in different
locations of living cells are specified using stochastic P systems as follows. Different
regions and compartments are specified using membranes. Each molecular species
is represented by an object in the multiset associated with the region or compart-
ment where the molecule is located. The multiplicity of each object represents the
number of molecules of the molecular species represented by the object. Strings
are used to specify the genetic information encoded in DNA and RNA. Molecular
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interactions, compartment translocation and gene expression are specified using
rewriting rules on multisets of objects and strings - see Table 1.

In stochastic P systems [19] constants are associated with rules in order to
compute their probabilities and time needed to be applied according to Gillespie
algorithm. This approach is based on a Monte Carlo algorithm for stochastic simu-
lation of molecular interactions taking place inside a single volume [8]. In contrast
to this, in P systems we have a membrane structure delimiting different compart-
ments (volumes), each one with its own set of rules (molecular interactions) and
multiset of objects and strings (molecules). In this respect, a scheduling algorithm
called the Multicompartmental Gillespie algorithm [19] is used so that each com-
partment evolves according to a different Gillespie algorithm. In this point our
approach differs from other computational approaches which run a single Gillespie
algorithm across the whole system without taking into account the compartmen-
talised cellular structure [10, 28].

Biochemistry P System

Compartment Region defined by a membrane

Molecule Object

Molecular Population Multiset of objects

Biochemical Transformation Rewriting rule

Compartment Translocation Boundary rule

Table 1. Modelling Principles in P Systems

We illustrate our approach with a biomolecular system consisting in positive,
negative and constitutive expression of a gene. Our model includes the specifi-
cation of a gene, its transcribed RNA, the corresponding translated protein and
activator and repressor molecules which bind to the gene producing an increase
in transcription rate or prevent the gene from being transcribed, respectively. The
bacterium where the system is located is represented using a membrane. The sto-
chastic constants used in our model are taken from the gene control system in the
lac operon in E. coli [2, 13, 14]. In this case transcription and translation have been
represented using rewriting rules on multisets of objects, a more detailed descrip-
tion of the concurrent processes of transcription and translation using rewriting
rules on strings is presented in [20]. The P systems model is formally defined in
Figure 1. It consists of one single compartment labelled b, with no strings, and con-
sequently using only multiset rewriting rules. The model refers to three distinct
initial conditions, denoted by multisets M0,i, and corresponding to constitutive
expression, positive and negative regulations, respectively. Simulations of consti-
tutive expression and positive regulation case studies are presented in Figure 2
using a tool available at [30]. A set of ordinary differential equations and their
associated graphs, modelling the same examples, are provided in Figure 3. The
ODE model is not used here to show its relationship to the previous P systems
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approach, but to provide a set of data that normally is taken through biological
experiments. This will only be used to provide data measurements that will help
identifying and validating properties of the P systems model.

Π = ({gene, rna, protein, act, rep, act-gene, rep-gene}, {b}, [ ]b, (b, Mi, ∅),
{r1, . . . , r9})

Initial multisets: M0,1 = gene; M0,2 = gene + act... + act and
M0,3 = gene + rep... + rep where act and rep occur 10 times each.
Rules:

r1 : [ gene ]b
c1−→ [ gene + rna ]b c1 = 0.347 min−1

r2 : [ rna ]b
c2−→ [ rna + protein ]b c2 = 0.174 min−1

r3 : [ rna ]b
c3−→ [ ]b c3 = 0.347 min−1

r4 : [ protein ]b
c4−→ [ ]b c4 = 0.0116 min−1

r5 : [ act + gene ]b
c5−→ [ act-gene ]b c5 = 6.6412087 molec−1min−1

r6 : [ act-gene ]b
c6−→ [ act + gene ]b c6 = 0.6 s−1

r7 : [ act-gene ]b
c7−→ [ act-gene + rna ]b c7 = 3.47 min−1

r8 : [ rep + gene ]b
c8−→ [ rep-gene ]b c8 = 6.6412087 molec−1min−1

r9 : [ rep-gene ]b
c9−→ [ rep + gene ]b c9 = 0.6 min−1

Fig. 1. P system model of gene expression.
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Fig. 2. Constitutive expression and positive regulation.

2.2 π-calculus

The π-calculus approach was introduced as a formal language to describe mobile
concurrent processes [17]. It is now a widely accepted model for interacting sys-
tems with dynamically evolving communication topology. The π-calculus has a
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dr

dt
= c1 − c3r + c7

act

act + K
where K is the Michaelis-Menten constant

dp

dt
= c2r − c4p
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Fig. 3. Constitutive and positive expression using ODE model.

simple semantics and a tractable algebraic theory. Starting with atomic actions
and simpler processes, complex processes can be then constructed. The process
expressions are defined by guarded processes, parallel composition P |Q, nondeter-
ministic choice P + Q, replication !P , and a restriction operator (νx)P creating a
local fresh channel x for a process P . Different variants have been used to model
molecular interactions [28]. A π-calculus specification of our system is provided by
Figure 4. As usual for this type of modelling approach, each chemical element will
be represented as a process and its definition will refer to all possible interactions
of it. The initial process may be any of S0,i. The process called gene defines all
possible interactions of a constitutive reaction, producing messenger RNA, a posi-
tive regulation, leading to a complex denoted by act-gene, or negative regulation,
that gets the complex rep-gene. This process definition corresponds in a P sys-
tems model to rules r1, r5 and r8. In this way we can see, at least syntactically,
similarities and differences between the two modelling approaches for expressing
chemical interactions. More about the use of both P systems and π-calculus to
model chemical interactions is provided by [26].

Biochemistry π-calculus

Compartment Private communication channel

Molecule Process

Molecular Population Systems of communicating processes

Biochemical Transformation Communication channel

Compartment Translocation Extrusion of a private channel’s scope

Table 2. Modelling Principles in π-calculus
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Initial processes: S0,1 = gene; S0,2 = gene | act | . . . | act and
S0,3 = gene | rep | . . . | rep
Processes:
gene := τc1 .( gene | rna ) + ac5?.act-gene + rc8?.rep-gene
rna := τc2 .( rna | protein ) + τc3 .0
protein := τc4 .0
act := ac5 !.0
act-gene := τc6 .( act | gene ) + τc7 .( act-gene | rna )
rep := rc8 !.0
rep-gene := τc9 .( rep | gene )

Fig. 4. π-calculus model of gene expression.

2.3 Petri nets

Petri nets are a mathematical and computational tool for modelling and analysis
of discrete event systems typically with a concurrent behaviour. Petri nets offer
a formal way to represent the structure of a discrete event system, simulate its
behaviour, and prove certain properties of the system. Petri nets have applications
in many fields of system engineering and computer science. Here we only recall
some basic concepts of Petri nets and refer to the current literature [9, 23, 24, 25]
for details regarding the theory and applications of Petri nets. In particular, we
focus only on a specific class of Petri nets called place-transition nets or PT-nets,
for short.

Informally, a PT-net is a directed graph formed by two kinds of nodes called
places and transitions respectively. Directed edges, called arcs, connect places to
transitions, and transitions to places; each arc has associated a weight. Thus, for
each transition, one identifies a set of input places, the places which have at least
one arc directed to that transition, and a set of output places, the places which
the outgoing arcs of that transitions are directed to. Then, a non-negative integer
number of tokens is assigned to each place; these numbers of tokens define the state
of the PT-net also called the marking of the PT-net. In a PT-net, a transition is
enabled when the number of tokens in each input place is greater than or equal to
the weight of the arc connecting that place to the transition. An enabled transition
can fire by consuming tokens from its input places and producing tokens in its
output places; the number of tokens produced and consumed are determined by
the weights of the arcs involved. The firing of a transition can be understood as
the movement of tokens from some input places to some output places.

More precisely, we give the following definition.

Definition 2. A PT-net is a construct N = (P, T, W,M0) where: P is a finite set
of places, T is a finite set of transitions, with P∩T = ∅, W : (P×T )∪(T×P ) → N
is the weight function, M0 is a multiset over P called the initial marking, and L
is a location mapping.
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PT-nets are usually represented by diagrams where places are drawn as circles,
transitions are drawn as squares, and an arc (x, y) is added between x and y if
W (x, y) ≥ 1. These arcs are then annotated with their weight if this is 2 or more.

Given a PT-net N , the pre- and post-multiset of a transition t are respectively
the multiset preN (t) and the multiset postN (t) such that, for all p ∈ P , |p|preN (t) =
W (p, t) and |p|postN (t) = W (t, p). A configuration of N , which is called a marking,
is any multiset over P ; in particular, for every p ∈ P , |p|M represents the number
of tokens present inside place p. A transition t is enabled at a marking M if the
multiset preN (t) is contained in the multiset M . An enabled transition t at marking
M can fire and produce a new marking M ′ such that M ′ = M−preN (t)+postN (t)
(i.e., for every place p ∈ P , the firing transition t consumes |p|preN (t) tokens and
produces |p|postN (t) tokens).

In order to reason about some basic properties, it is convenient to introduce a
matrix-based representation for PT-nets. Specifically, let N = (P, T, W,M0) be a
PT-net and let π : P → |P | and τ : T → |T | be two bijective functions. We call
place j the place p with π(p) = j, and we call transition i the transition t with
τ(t) = i. Then, a marking M is represented as a |P | vector which contains in each
position j the number of tokens currently present inside place j. The incidence
matrix of N is the |T | × |P | matrix A such that, for every element aij of A,
aij = |π−1(j)|postN (τ−1(i))| − |π−1(j)|preN (τ−1(i))| (i.e., aij denotes the change in
the number of tokens in place j due to the firing of transition i). A control vector
u is a |T | vector containing 1 in position i to denote the firing of transition i, 0
otherwise. Thus, if a particular marking Mn is reached from the initial marking
M0 through a firing sequence u1, u2, . . . , un of enabled transitions, we obtain

Mn = M0 + AT ·
n∑

k=1

uk

which represents the reachable-marking equation.
The aforementioned representation of a PT-net N allows us to introduce the

notions of P-invariants and T-invariants. P-invariants are the positive solutions
of the equation A · y = 0; the non-zero entries of a solution y represents the set
of places whose total number of tokens does not change with any firing sequence
from M0. T-invariants instead are the positive solutions of the equation AT ·x = 0;
a solution vector x represents the set of transitions which have to fire from some
marking M to return to the same marking M . Then, a PT-net is said to be bounded
if there exists a |P | vector B such that, for all marking M reachable from M0, we
have M ≤ B; a PT-net is said to be alive if, for all marking M reachable from
M0, there exists at least one transition enabled at marking M .

As pointed out in [10, 22], a PT-net model for a system of molecular interactions
can be obtained by representing each molecular species as a different place and
each biochemical transformation as a different transition. Tokens inside a place
can then be used to indicate the presence of a molecule in certain proportions.
This modelling approach is summarised in Table 3. Thus, a biochemical system is
represented as a discrete event system whose structural properties are useful for
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Biochemistry PT-net

Molecule Place

Molecular Population Marking

Biochemical Transformation Transition

Reactant Input Place

Product Output Place

Table 3. Modelling Principles in PT-nets.

drawing conclusions about the behaviour and structure of the original biochemical
system [22]. For instance, P-invariants determine the set of molecules whose total
net concentrantions remain unchanged during the application of certain biochem-
ical transformations; T-invariants instead indicate the presence of cyclic reactions
which lead to a condition where some reactions are in a state of continuous opera-
tion. Also, the property of liveness is useful to determine the absence of metabolic
blocks which may hinder the progress of the biochemical system.

Finally, we recall that it was shown in [4, 15, 16] how to transform a P system
into a corresponding PT-net. This is done by considering a transition for each
rule in the P system that has the left-hand side of the rule as pre-multiset and
the right-hand side of the rule as post-multiset. In particular, in order to model
the localisation of rules and objects inside the membranes, one considers in the
corresponding PT-net a distinct place for each object possibly present inside a
membrane. Thus, the transformation of objects inside the membranes and the
communication of objects between membranes is mapped into the movement of
tokens between places of a PT-net. This translation is briefly illustrated in Table 4.
Thus, we have a direct way for obtaining a PT-net representation of a given P

P System PT-net

Object a inside membrane i Place ai

Multiplicity of an object Number of tokens inside a place

Rule Transition

Left-hand side of a rule Input places

Right-hand side of a rule Output places

Table 4. Translation of a P system into a PT-net.

system model that offers us the possibility of analysing the P system model in
terms of PT-net properties. We illustrate this approach by showing in Figure 5
the PT-net translation of the P system model of Figure 1.

Clearly, we have that transition ri corresponds to rule ri, 1 ≤ i ≤ 9. For the
PT-net of Figure 5, if we set M0 as intial marking, where M0 contains one token
in the place gene, then we have only consitutive expression; if we set M0 as having
one token in gene and n in act with n ≥ 1, then we have positive regulation; if we
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Fig. 5. PT-net representation of gene positive and negative regulation.

set M0 with one token in gene and m in rep with m ≥ 1, then we have negative
regulation. The incidence matrix for PT-net of Figure 5 is reported in Appendix 1
together with its P-invariants and T-invariants. The relevance of these invariants
with respect to this specifc case study is discussed in Section 5. These are obtained
by using PIPE [29], a freely available Petri net tool. As well as this, PIPE allows us
to check for the properties of boundedness and liveness (i.e, absence of deadlock).

2.4 Daikon tool

Daikon [5] is a tool that was initially developed to reverse-engineer specifications
from software systems. The specifications are in terms of invariants, which are rules
that must hold true at particular points as the program executes. To detect in-
variants the program is executed multiple times and the values of the variables are
recorded at specific points (e.g., the start and end of a program function). Daikon
infers the invariants by attempting to fit sets of predefined rules to the values
of program variables at every recorded program point. Usually the most valuable
invariants are preconditions, postconditions and system invariants. These specify
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the conditions that must hold between variables before a function is executed,
after a function has finished executing, and throughout the program execution
respectively. As a trivial example, a precondition for the function div(a, b) that
divides a by b would be b ≥ 0. Daikon provides about 70 predefined invariants [5],
such as x > y, a < x < b, y = ax + b, and can also be extended to check for new
user-supplied invariants.

The idea of using a set of executions to infer rules that govern system behaviour,
as espoused by Daikon, is particularly useful in the context of biological models.
The ability to automatically infer invariants from model simulations is useful for
the following reasons: (1) obvious invariants will confirm that the model is behaving
as it should, (2) anomalous invariants can indicate a fault in the model and its
parameter values or (3) could even suggest novel, latent relationships between
model variables.

3 Finding functional relationships in raw (wet real) data:
Data analysis using Daikon

This section demonstrates the use of Daikon to discover relationships between vari-
ables in the output from P system simulations of the gene regulation model. The
aim is to identify invariants that govern model behaviour for negative, constitutive
and positive gene regulation. Here we select a sample of the generated invariants
and show how they relate to the high-level functionality of the system, and how
they can be of use for further model analysis. Invariants are only useful if they
are representative of a broad range of model behaviour. A single simulation can
usually not be considered to be representative, especially if the model is non-trivial
and contains stochastic behaviour. For this analysis the model was simulated 30
times, ten times for negative, constitutive and positive regulation respectively.

Using Daikon to generate invariants from simulation output is relatively
straightforward. It takes as input two files, one of which declares the types of
invariants that are of interest, along with the set of relevant variables for each
type of invariant. The other file contains the variable values from model simula-
tions, and lists them under their respective declared invariants. In our case the
output is in the form of a linear time series, where variable values are provided
for t = 0...n time points in the simulation. To analyse this with Daikon, the
declaration file contains the three invariant types described above (preconditions,
postconditions and system invariants), along with the key model variables under
each type (gene, act-gene, rep-gene, rna, prot, rep, act). The data trace file maps
any variable values at t = 0 to the preconditions, the relationship between every
pair of variables t and t−1 to the postconditions, and the variable values for every
value of t to the system invariants. To guarantee accurate invariants, the data
trace has to be constructed from a set of simulations that can be deemed to be
sufficiently representative of the system’s behaviour.

Figure 6 contains a sample of the invariants that were discovered. These provide
a number of insights into the behaviour of the system that would be difficult to
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Positive Negative Constitutive

Pre-conditions gene = 1
rna = prot

= rep-gene
= rep
= act-gene
= 0

act = 10

gene = 1
rna = prot

= rep-gene
= act
= act-gene
= 0

rep = 10

gene = 1
rna = prot

= rep-gene
= rep
= act-gene
= act

= 0

Post-condtions (prot = 0) →
(orig(prot) = 0)
(rna = 0) → (gene = 0)
(orig(rna) = 0) → (gene =
0)
gene ≤ rna
(prot = 0) → (gene = 0)

(rna = 0) → (orig(act-

gene = 0)

act = orig(act)
= orig(act-gene)

rna < orig(rep)
rep > orig(prot)

(prot = 0) →
(orig(prot) = 0)
gene = orig(gene)
rep = orig(rep)

Invariants gene = one of {0, 1}
rep = rep-gene

= 0
0 ≤ rna ≤ 24
0 ≤ prot ≤ 205
act = one of {9, 10}
act-gene = one of {0, 1}
(gene ∧ act-gene) = 0

(rna = 0) → (prot = 0)

gene = one of {0, 1}
act = act-gene

= 0
rna = one of {0, 1}
rep = one of {9, 10}
rep-gene =
one of {0, 1}
prot =
one of {0, 1, 2, 3}
(gene ∧ rep-gene) = 0
rna < rep

rep > prot

rep = rep-gene
= act
= act-gene
= 0

gene = 1
0 ≤ rna ≤ 7
0 ≤ prot ≤ 32

rna ≥ rep

Fig. 6. Invariants discovered by Daikon

ascertain from passively observing the simulations. Here we provide an overview
of some of these results.

The preconditions show precisely which model parameters are altered for the
positive, negative and constitutive sets of simulations. For all simulations, gene
starts off as active, and all other variables are zero, apart from the activators
variable act for positive and the repressors variable rep for negative regulation.

The postconditions provide a number of insights into the dynamics of the model
because they summarise the rules that govern the change in variable values for
every single time-step. For positive regulation we learn that the number of proteins
will never decrease back to zero throughout the simulation (protein can only be
zero if it was already zero at the previous value of t), and that the gene must
become active to produce rna, which can only happen when act-gene becomes 1.
For negative regulation it shows that the amount of activators remain constantly
zero. For constitutive regulation, similarly to positive regulation, the number of
proteins can never decrease to zero.

The invariants are rules that hold throughout the entire simulation. These
usually cover the range of values a variable can hold, e.g., gene can either be
on or off for positive or negative regulation, but is constantly on for constitutive
regulation, or the number of proteins is always between zero and 205 for positive



152 F. Bernardini et al.

regulation. It also points out rules that can sometimes be fundamental to the
behaviour of the model. For example, in positive regulation act-gene and gene can
never be on at the same time, which makes sense because act-gene is responsible
for activating the gene when it is not active. The same holds for rep-gene and
gene in negative regulation. In positive regulation it also points out that, without
any rna, there can be no proteins.

These rules provide a number of useful insights into the behaviour of the model,
many of which are expected, but some of which may either be anomalous or might
identify relationships that had not been previously considered. As an example,
the preconditions, which simply summarise the input parameters, are obviously
expected, but in practice identified that a small number of our experimental sim-
ulations had been mistakenly executed with the wrong parameter values (the pre-
condition for positive regulations stated act = one of {9, 10, 19, 20} instead of just
9 and 10). Rules such as rna ≥ rep in constitutive regulation and rep > prot in
positive regulation are obviously statistically justified by the simulations, but had
not been considered explicitly. New rules like these are useful seeds for further
experimentation and analysis, and the following section will show how we have
investigated these novel properties with the PRISM model checker.

4 PRISM analysis of the system

Most research in systems biology focuses on the development of models of differ-
ent biological systems in order to be able to simulate them, accurately enough
such as to be able to reveal new properties that can be difficult or impossible to
discover through direct experiments. One key question is what one can do with
a model, other than just simulate trajectories. This question has been considered
in detail for deterministic models, but less for stochastic models. Stochastic sys-
tems defy conventional intuition and consequently are harder to conceive. The
field is widely open for theoretical advances that help us to reason about systems
in greater detail and with finer precision. An attempt in this direction consists
of using model checking tools to analyse in an automatic way various properties
of the model. Probabilistic model checking is a formal verification technique. It is
based on the construction of a precise mathematical model of a system which is to
be analysed. Properties of this system are then expressed formally using temporal
logic and analysed against the constructed model by a probabilistic model checker.
Our current attempt uses a probabilistic symbolic model checking approach based
on PRISM (Probabilistic and Symbolic Model Checker) [11, 12]. PRISM sup-
ports three different types of probabilistic models, discrete time Markov chains
(DTMC), Markov decision processes (MDP) and continuous time Markov chains
(CTMC). PRISM supports systems specifications through two temporal logics,
PCTL (probabilistic computation tree logic) for DTMC and MDP and CSL (con-
tinuous stochastic logic) for CTMC.

In order to construct and analyse a model with PRISM, it must be specified in
the PRISM language, a simple, high level, state-based language. The fundamental
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components of the PRISM language are modules, variables and commands. A
model is composed of a number of modules which can interact with each other. A
module contains a number of local variables and commands.

The values of these variables at any given time constitute the states of the
module. The space of reachable states is computed using the range of each variable
and its initial value. The global state of the whole model is determined by the local
state of all modules.

The behaviour of each module is described by a set of commands. A command
takes the form:

[ action ] g → λ1 : u1 + · · ·+ λn : un;

The guard g is a predicate over all the variables of the model. Each update ui

describes the new values of the variables in the module specifying a transition of
the module. The expressions λi are used to assign probabilistic information, rates,
to transitions.

The label action placed inside the square brackets are used to synchronise
the application of different commands in different modules. This forces two or
more modules to make transitions simultaneously. The rate of this transition is
equal to the product of the individual rates, since the processes are assumed to be
independent.

The main components of a P system are a membrane structure consisting of a
number of membranes that can interact with each other, an alphabet of objects
and a set of rules associated to each membrane. These components can easily be
mapped into the components of the PRISM language using modules to represent
membranes, variables to describe the alphabet and commands to specify the rules.

A PRISM specification of our system is provided in Appendix 2. Appendix 3
shows the probability that some molecules concentrations will reach certain values
at steady state. The ranges of values provided by Daikon represent an indication
of possible levels for various molecular concentrations, but in order to know the
likely values around steady states, PRISM provides a set of properties that help
in this respect. For example, for positive regulation, Daikon provides the range
0 to 24, for rna molecules, but PRISM shows that values between 0 and 15 are
more likely to be obtained than values greater than 15, and values over 20 are very
unlikely to be reached. These values are also confirmed by the graphs provided by
differential equations and P system simulator.

Other properties, suggested by Daikon analysis, like rna < rep, prot < rep,
are also validated by PRISM by showing they take place with a higher probability
for values of rep less than 5 - see Appendix 4. The average or expected behaviour
of the stochastic system is also provided and this is very close to ODE behaviour.
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5 Petri net analysis of the system

In this section we will show how different invariants will emerge from the analysis
of the Petri net and how Daikon hypotheses are formally verified or new problems
are formulated.

T-invariants in Appendix 1 show that:

• If we fire transition r1 and then transition r3, the current marking of the
newtork remains unchanged because we first produce a molecule of rna and
then we consume it; the same happens if we first fire transition r7 and than
transition r3, or if we first fire transition r2 and then transition r4 (i.e., we
first produce a molecule of protein and then we consume it);

• The operation of binding the activator to the gene and its de-binding are one
the reverse of the other, hence firing transition r5 followed by transition r6 (or
vice versa) has no effect on the current marking; these two transitions consitute
a continuous loop;

• The operation of binding the repressor to the gene and its de-binding are one
the reverse of the other, hence firing transition r8 followed by transition r9 (or
vice versa) has no effect on the current marking; these two transitions consitute
a continuous loop.

P-invariants computed by PIPE, in Appendix 1, for some initial marking with
one element in gene, n in act and m in rep, where n,m ≥ 0 show that:

• the gene is always present and it can assume three different states: gene, act-
gene, and rep-gene; these three states are mutually exclusive; in the case of
constitutive expression (i.e, n = m = 0), we have M(gene) = 1 indicating that
the gene is always present - this confirms Daikon invariant gene = 1; in the
case of positive regulation (i.e., n ≥ 1 and m = 0), we have M(gene) + M(act-
gene) = 1 indicating two mutually exclusive states - this confirms Daikon
invariant gene ∧ act-gene = 0; in the case of negative regulation (i.e., m ≥ 1
and n = 0, we have M(gene) + M(rep-gene) = 1 indicating two mutually
exclusive states - this confirms Daikon invariant gene ∧ rep-gene = 0;

• for positive regulation, the number of activator molecules cannot be increased
but can be decreased only by 1 - similar invariant is found by Daikon;

• for negative regulation, the number of repressor molecules cannot be increased
but can be decreased only by 1 - similar invariant is found by Daikon.

PIPE also shows that the network is not bounded but it is alive. In fact, gene
is always present and we can keep firing transition r1 to increase indefinitely the
amount of rna. The liveness here comes from the above invariant and shows that
the system will be working forever. The boundedness instead produces a result that
apparently contradicts PRISM findings, where the probability that the number of
rna’s is greater than 7 is almost 0! This comes from the fact that PIPE uses a non-
deterministic system instead of a probabilistic one considered by PRISM and P
system simulator. It will be interesting to check this property with a probabilistic
Petri net tool.
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6 Conclusions

In this paper we have investigated the concerted use of different methods, and
shown how these can provide complementary insights into different facets of biolog-
ical system behaviour. Individual modelling techniques have their own respective
benefits and usually excel at reasoning about a system from a particular per-
spective. This paper shows how these benefits can be leveraged by using different
modelling techniques in concert.

As a case study, we have constructed a P system model of a small gene expres-
sion system and produced equivalent specifications using Petri net and π-calculus
approaches. Simulations of the P system model were analysed by Daikon (to iden-
tify potential rules that govern model output), and some of the most interesting
suggested rules were checked using the PRISM probabalistic model checker. The
Petri net model was analysed with PIPE, a general Petri net analysis tool. The
results show how analysis results from different models of the same system are
useful for the purposes of both validating and improving each other.

The gene expression model was chosen because it is manageable, and thus
forms a useful basis for a case study to compare different modelling techniques.
Our future work will apply the techniques shown in this paper to a larger and more
realistic case study. This should provide further insights into the benefits that arise
in modelling increasingly complex systems when the modeller is increasingly reliant
upon the use of various automated tools to study the model behaviour.
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APPENDIX 1

Transpose of the incidence matrix for PT-net of Figure 5:

r1 r2 r4 r3 r5 r7 r6 r8 r9
gene 0 0 0 0 -1 0 1 -1 1
rna 1 0 0 -1 0 1 0 0 0
protein 0 1 -1 0 0 0 0 0 0
act 0 0 0 0 -1 0 1 0 0
act-gene 0 0 0 0 1 0 -1 0 0
rep 0 0 0 0 0 0 0 -1 1
rep-gene 0 0 0 0 0 0 0 1 -1

which shows the variations on the number of tokens determined by each transition.
T-invariants obtained in PIPE:

r1 1 0 0 0 0
r2 0 1 0 0 0
r4 0 1 0 0 0
r3 1 0 0 1 0
r5 0 0 1 0 0
r7 0 0 0 1 0
r6 0 0 1 0 0
r8 0 0 0 0 1
r9 0 0 0 0 1

P-invariants computed by PIPE for some initial marking contains one token in
gene n in act and m in rep, with n,m ≥ 0:

gene 1 0 0
rna 0 0 0 M(gene) + M(act-gene) + M(rep-gene) = 1
protein 0 0 0 M(act) + M(act-gene) = n
act 0 1 0 M(rep) + M(rep-gene) = m
act-gene 1 1 0
rep 0 0 1
rep-gene 1 0 1

APPENDIX 3

Ranges of molecules

P = ? [ true U <= T rna > bound ]

P = ? [ true U <= T protein > bound ]
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APPENDIX 2

// Gene expression control

// Model is stochastic

stochastic

// Bounds to the number of molecules

const int rna_bound;

const int protein_bound;

const int number_activators;

const int number_repressors;

const int initact;

const int initrep;

// Stochastics constants associated with each command/rule/molecular interaction

const double c1 = 0.347; // [ gene ]_b -c1-> [ gene + rna ]_b

const double c2 = 0.174; // [ rna ]_b -c2-> [ rna + protein ]_b \\

const double c3 = 0.347; // [ rna ]_b -c3-> [ ]_b

const double c4 = 0.0116; // [ protein ]_b -c4-> [ ]_b

const double c5 = 6.6412087; // [ act + gene ]_b -c5-> [ actgene ]_b

const double c6 = 0.6; // [ actgene ]_b -c6-> [ act + gene ]_b

const double c7 = 3.47; // [ actgene ]_b -c7-> [ actgene + rna ]_b

const double c8 = 6.6412087; // [ rep + gene ]_b -c8-> [ repgene ]_b

const double c9 = 0.6; // [ repgene ]\_b -c9-> [ rep + gene ]_b

// Module representing a bacterium

module bacterium

gene : [ 0 .. 1 ] init 1;

actgene : [ 0 .. 1 ] init 0;

repgene : [ 0 .. 1 ] init 0;

act : [ 0 .. 1 ] init initact;

rep : [ 0 .. 1 ] init initrep;

rna : [ 0 .. rna_bound ] init 0;

protein : [ 0 .. protein_bound ] init 0;

// [ gene ]_b -c1-> [ gene + rna ]_b

[ ] gene = 1 & rna < rna_bound -> c1 : (rna’ = rna + 1);

// [ rna ]_b -c2-> [ rna + protein ]_b

[ ] rna > 0 & protein < protein_bound -> c2*rna : (protein’ = protein + 1);

// [ rna ]_b -c3-> [ ]_b

[ ] rna > 0 -> c3*rna : (rna’ = rna - 1);

// [ protein ]_b -c4-> [ ]_b

[ ] protein > 0 -> c4*protein : (protein’ = protein - 1);

// [ act + gene ]_b -c5-> [ actgene ]_b

[ ] act = 1 & gene = 1 -> c5*number_activators : (gene’ = 0) & (act’ = 0) & (actgene’ = 1);

// [ actgene ]_b -c6-> [ act + gene ]_b

[ ] actgene = 1 & act = 0 -> c6 : (actgene’ = 0) & (act’ = 1) & (gene’ = 1);

// [ actgene ]_b -c7-> [ actgene + rna ]_b

[ ] actgene = 1 & rna < rna_bound -> c7 : (rna’ = rna + 1);

// [ rep + gene ]_b -c8-> [ repgene ]_b

[ ] rep = 1 & gene = 1 -> c8*number_repressors : (gene’ = 0) & (rep’ = 0) & (repgene’ = 1);

// [ repgene ]_b -c9-> [ rep + gene ]_b

[ ] repgene = 1 & rep = 0 -> c9 : (repgene’ = 0) & (rep’ = 1) & (gene’ = 1);

endmodule

Constitutive regulation

rna <= 7

rna >= 0

prot <= 32

prot >= 0



160 F. Bernardini et al.

Positive regulation

rna <= 24

rna >= 0

prot <= 205

prot >= 0
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Negative regulation

rna one of { 0, 1 }

prot one of { 0, 1, 2, 3 }
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APPENDIX 4

Relationship between the number of repressors
and rna and protein molecules.

rna < rep

rep > prot

P = ? [ true U<=T rna > rep ]

P = ? [ true U<=T protein > rep ]
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Expected number of molecules

R = ? [ I = T ]



164 F. Bernardini et al.

Other invariants

P = ? [ true U gene = actgene ] ⇒ Result: 0.0

P = ? [ true U gene = repgene ] ⇒ Result: 0.0


