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Summary. Starting from Shannon theory of information, we present the case of pro-
ducing information in the form of multisets, and encoding information using multisets.
We rewiew the entropy rate of a multiset information source and we derive a formula for
the information content of a multiset. We then study the encoder and channel part of
the system, obtaining some results about multiset encoding length and channel capacity.

1 Motivation

The attempt to study information sources which produce multisets instead of
strings, and ways to encode information on multisets rather than strings, originates
in observing new computational models like membrane systems which employ
multisets [5]. Membrane systems have been studied extensively and there are plenty
of results regarding their computing power, language hierarchies and complexity.
However, while any researcher working with membrane systems (called also P
systems) would agree that P systems process information, and that living cells
and organisms do this too, we are unaware of any attempt to precisely describe
natural ways to encode information on multisets or to study sources of information
which produce multisets instead of strings. One could argue that, while some of
the information in a living organism is encoded in a sequential manner, like in
DNA for example, there might be important molecular information sources which
involve multisets (of molecules) in a non-trivial way.

A simple question: given a P system with one membrane and, say, 2 objects a
and 3 objects b from a known vocabulary V (suppose there are no evolution rules),
how much information is present in that system? Also, many examples of P systems
perform various computational tasks. Authors of such systems encode the input
(usually numbers) in various ways, some by superimposing a string-like structure
on the membrane system [1], some by using the natural encoding or unary numeral
system, that is, the natural number n is represented with n objects, for example,
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an. However, just imagine a gland which uses the bloodstream to send molecules to
some tissue which, in turn, sends back some other molecules. There is for sure an
energy and information exchange. How to describe it? Another, more general way
to pose that question is: what are the natural ways to encode numbers, and more
generally, information on multisets, and how to measure the encoded information?

If membrane systems, living cells and any other (abstract or concrete) multiset
processing machines are understood as information processing machines, then we
believe that such questions should be investigated. According to our knowledge,
this is the first attempt of such an investigation. We start from the idea that a
study of multiset information theory might produce interesting, useful results at
least in systems biology; if we understand the natural ways to encode information
on multisets, there is a chance that Nature might be using similar mechanisms.

Another way in which this investigation seems interesting to us is that there
is more challenge in efficiently encoding information on multisets, because they
constitute a poorer encoding media compared to strings. Encoding information
on strings or even richer, more organized and complex structures are obviously
possible and have been studied. Removing the symbol order, or their position
in the representation as strings can lead to multisets carrying a certain penalty,
which deserves a precise description. Order or position do not represent essential
aspects for information encoding; symbol multiplicity, a native quality of multisets,
is enough for many valid purposes. We focus mainly on such “natural” approaches
to information encoding over multisets, and present some advantages they have
over approaches that superimpose a string structure on the multiset. Then we
encode information using multisets in a similar way as it is done using strings.

There is also a connection between this work and the theory of numeral systems.
The study of number encodings using multisets can be seen as a study of a class
of purely non-positional numeral systems.

2 Entropy rate of an Information Source

Shannon’s information theory represents one of the great intellectual achievements
of the twentieth century. Information theory has had an important and significant
influence on probability theory and ergodic theory, and Shannon’s mathematics is
a considerable and profound contribution to pure mathematics.

Shannon’s important contribution comes from the invention of the source-
encoder-channel-decoder-destination model, and from the elegant and general solu-
tion of the fundamental problems which he was able to pose in terms of this model.
Shannon has provided significant demonstration of the power of coding with delay
in a communication system, the separation of the source and channel coding prob-
lems, and he has established the fundamental natural limits on communication. As
time goes on, the information theoretic concepts introduced by Shannon become
more relevant to day-to-day more complex process of communication.
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2.1 Short Review of Shannon Information Theory

We use the notions defined in the classical paper [6] where Shannon has formulated
a general model of a communication system which is tractable to a mathematical
treatment.

Consider an information source modelled by a discrete Markov process. For
each possible state i of the source there is a set of probabilities pi(j) associated to
the transitions to state j. Each state transition produces a symbol corresponding to
the destination state, e.g. if there is a transition from state i to state j, the symbol
xj is produced. Each symbol xi has an initial probability pi∈1..n corresponding to
the transition probability from the initial state to each state i.

We can also view this as a random variable X with xi as events with probabil-

ities pi, X =

(

x1 x2 · · · xn

p1 p2 · · · pn

)

.

There is an entropy Hi for each state. The entropy rate of the source is defined
as the average of these Hi weighted in accordance with the probability Pi of
occurrence of the states:

H(X) =
∑

i

PiHi = −
∑

i,j

Pipi(j) log pi(j) (1)

Suppose there are two symbols xi, xj and p(i, j) is the probability of the suc-
cessive occurrence of xi and then xj . The entropy of the joint event is

H(i, j) = −
∑

i,j

p(i, j) log p(i, j)

The probability of symbol xj to appear after the symbol xi is the conditional
probability pi(j).

Remark 1. The quantity H is a reasonable measure of choice or information.

String Entropy

Consider an information source X which produces sequences of symbols selected
from a set of n independent symbols xi with probabilities pi. The entropy formula
for such a source is given in [6]:

H(X) =

n
∑

i=1

pilogb

1

pi
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2.2 Multiset Entropy

We consider a discrete information source which produces multiset messages (as
opposed to string messages). A message is a multiset of symbols, and a multiset is
a string equivalence class. The entropy rate of such a source is proved to be zero
in [7]:

H(Xmultiset) = lim
n→∞

1

n
H({Xi}n

i=1) = 0

Information content

The information content of an outcome (multiset) x is h(x) = log 1
P (x) . See [4].

Let be k ∈ N and X =

(

x1 x2 . . . xn

p1 p2 . . . pn

)

a random variable and x =

xm1
1 xm2

2 . . . xmn
n a multiset over symbols from X, with

∑n

i=1 mi = k, then the
probability of the outcome x is given by the multinomial distribution
(

k
m1,m2, . . . ,mn

)

∏n

i=1 pmi

i :

P [x = (m1,m2, . . . ,mn)] =
(
∑n

i=1 mi)!
∏n

i=1 mi!

n
∏

i=1

pmi

i

So, the information content of the multiset x is:

h(x = xm1
1 xm2

2 . . . xmn
n ) = log

1

P [x]
= log

(

1/
(
∑n

i=1 mi)!
∏n

i=1 mi!

n
∏

i=1

pmi

i

)

=

= log

∏n

i=1 mi!

(
∑n

i=1 mi)!
∏n

i=1 pmi

i

3 Multiset Encoding and Channel Capacity

After exploring the characteristics of a multiset generating information source,
we move to the channel part of the communication system. Properties of previ-
ously developed multiset encodings are analyzed in [2, 3]. The capacity of multiset
communication channel is derived based on Shannon’s definition and also on the
capacity theorem. Please note that one can have a multiset information source and
a usual sequence-based encoder and channel. All the following combinations are
possible:

3.1 String Encoding

We shortly review the results concerning the string encoding.
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Source/Encoder Sequential Multiset

Sequential [6] this paper

Multiset this paper this paper

Table 1. Source/Encoder types

Encoding Length

We have a set of symbols X to be encoded, and an alphabet A. We consider the
uniform encoding. Considering the length l of the encoding, then X = {xi =
a1a2 . . . al|aj ∈ A}.

If pi = P (xi) = 1
n
, then we have

H(X) =
n
∑

i=1

1

n
logb(n) = logb(n) ≤ l

It follows that n ≤ bl. For n ∈ N, n − bx = 0 implies x0 = logbn and so
l = ⌈x0⌉ = ⌈logbn⌉.

Channel Capacity

Definition 1. [6] The capacity C of a discrete channel is given by

C = lim
T→∞

log N(T )

T

where N(T ) is the number of allowed signals of duration T .

Theorem 1. [6] Let b
(s)
ij be the duration of the sth symbol which is allowable in

state i and leads to state j. Then the channel capacity C is equal to log W where
W is the largest real root of the determinant equation:

∣

∣

∣

∣

∣

∑

s

W−b
(s)
ij − δij

∣

∣

∣

∣

∣

= 0

where δij = 1 if i = j, and zero otherwise.

3.2 Multiset Encoding

We present some results related to the multiset encoding.
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Encoding Length

We consider a set X of N symbols, an alphabet A, and the length of encoding l,
therefore:

X = {xi = an1
1 an2

2 . . . anb

b |
∑b

j=1 nj = l, aj ∈ A}

Proposition 1. Non-uniform encodings over multisets are shorter than uniform
encodings over multisets.

Proof. Over multisets we have
1. for an uniform (all the encoding representation have the same length l)

encoding: N ≤ N(b, l) =

〈

b
l

〉

=

(

b + l − 1
l

)

= (b+l−1)!
l!(b−1)! =

Qb−1
i=1 (l+i)

(b−1)! . If x0 is the

real root of n −
Qb−1

i=1 (x+i)

(b−1)! = 0 then l = ⌈x0⌉.

2. for non-uniform encoding: N ≤ N(b+1, l−1) =

〈

b + 1
l − 1

〉

=

(

b + l − 1
l − 1

)

=

(b+l−1)!
(l−1)!b! =

Qb−1
i=0 (l+i)

b! = l
b

Qb−1
i=1 (l+i)

(b−1)! = l
b
N(b, l). Let x′

0 be the real root of n −Qb−1
i=0 (x+i)

(b−1)! = 0 then l′ = ⌈x′

0⌉.
From n − N(b, x0) = 0 and n − x′

0

b
N(b, x′

0) = 0 we get N(b, x0) =
x′

0

b
N(b, x′

0).
In order to prove l > l′ ⇐⇒ x0 > x′

0, let suppose that x0 ≤ x′

0. We have x′

0 >
b (for sufficiently large numbers), and this implies that N(b, x0) ≤ N(b, x′

0) <
x′

0

b
N(b, x′

0). Since this is false, it follows that x0 > x′

0 implies l ≥ l′.

Channel Capacity

We consider that a sequence of multisets is transmitted along the channel. The
capacity of such a channel is computed for base 4, then some properties of it for
any base are presented.

Multiset channel capacity in base 4

In Figure 1 we have a graph G(V,E) with 4 vertices V = {S1, S2, S3, S4} and
E = {(i, j) | i, j = 1..4, i ≤ j} ∪ {(i, j) | i = 4, j = 1..3}

In Theorem 1 we get b
(ak)
ij = tk because we consider that the duration to

produce ak is the same for each (i, j) ∈ E. The determinant equation is

∣

∣

∣

∣

∣

∣

∣

∣

W−t1 − 1 W−t2 W−t3 W−t4

0 W−t2 − 1 W−t3 W−t4

0 0 W−t3 − 1 W−t4

0 0 0 W−t4 − 1

∣

∣

∣

∣

∣

∣

∣

∣

= 0

If we consider tk = t, then the equation becomes
(

1 − 1

W t

)4

= 0, and Wreal = 1. Therefore C = log4 1 = 0.
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Fig. 1. Multiset channel capacity

Multiset channel capacity in base b

Theorem 2. The multiset channel capacity is zero, C = 0.

Proof. First approach

The first method for computing the capacity is using the definition from [6].

C = lim
T→∞

log N(T )

T
= lim

T→∞

log N(b, T )

T
=

= lim
T→∞

log

〈

b
T

〉

T
= lim

T→∞

1

T
log

(b + T − 1)!

T !(b − 1)!

Using Stirling’s approximation log n! ≈ n log n − n we obtain

C = lim
T→∞

1

T
(log(b + T − 1)! + log T ! + log(b − 1)!) =

= lim
T→∞

1

T
((b + T − 1) log(b + T − 1) − T log T − (b − 1) log(b − 1)) =

= lim
T→∞

b − 1

T
log

(

1 +
T

b − 1

)

+ lim
T→∞

log

(

1 +
b − 1

T

)

= 0

Second approach

Using 1, the determinant equation for a multiset encoder is:
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

W−t1 − 1 W−t2 W−t3 · · · W−tb

0 W−t2 − 1 W−t3 · · · W−tb

0 0 W−t3 − 1 · · · W−tb

...
...

...
...

...
0 · · · 0 W−tb−1 − 1 W−tb

0 0 0 · · · W−tb − 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

Proposition 2. If tk = t, then the determinant equation becomes

(

1 − 1

W t

)b

= 0. (2)

The capacity C is given by C = logb W , where W is the largest real root of the
equation (2). Considering x = W−t, then we have

W =
1

t
√

x
⇒ C = −1

t
logb x. (3)

Since we need the largest real root W then we should find the smallest positive
root x of the equation (1 − x)b = 0 ⇒ x = 1 ⇒ C = 0.

4 Conclusion

Based on Shannon’s classical work, we derive a formula for the information con-
tent of a multiset. Using the definition and the determinant capacity formula, we
compute the multiset channel capacity. As future work we plan to further explore
the properties of multiset-based communication systems, and compare these to
similar results for string-based communication systems.
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