Causality in Membrane Systems

Nadia Busi

Dipartimento di Scienze dell’Informazione, Universita di Bologna,
Mura A. Zamboni 7, 1-40127 Bologna, Italy
busi@cs.unibo.it

Summary. P systems are a biologically inspired model introduced by Gheorghe Paun
with the aim of representing the structure and the functioning of the cell. P systems are
usually equipped with the maximal parallelism semantics; however, since their introduc-
tion, some alternative semantics have been proposed and investigated.

We propose a semantics that describes the causal dependencies occurring between
the reactions of a P system. We investigate the basic properties that are satisfied by such
a semantics. The notion of causality turns out to be quite relevant for biological systems,
as it permits to point out which events occurring in a biological pathway are necessary
for another event to happen.

1 Introduction

Membrane computing is a branch of natural computing, initiated by Gheorghe
Paun with the definition of P systems in [22, 23, 24]. The aim is to provide a formal
modeling of the structure and the functioning of the cell, making use especially of
automata, languages and complexity theoretic tools.

Membrane systems are based upon the notion of membrane structure, which
is a structure composed by several cell-membranes, hierarchically embedded in a
main membrane called the skin membrane. A plane representation of a membrane
structure can be given by means of a Venn diagram, without intersected sets and
with a unique superset. The membranes delimit regions and we associate with
each region a set of objects, described by some symbols over an alphabet, and a
set of evolution rules.

In the basic variant, the objects evolve according to the evolution rules, which
can modify the objects to obtain new objects and send them outside the membrane
or to an inner membrane. The evolution rules are applied in a maximally parallel
manner: at each step, all the objects which can evolve should evolve.

A computation device is obtained: we start from an initial configuration, with
a certain number of objects in certain membranes, and we let the system evolve.
If a computation halts, that is no further evolution rule can be applied, the result

174 N. Busi

of the computation is defined to be the number of objects in a specified membrane
(or expelled through the skin membrane). If a computation never halts (i.e. one
or more object can be rewritten forever), then it provides no output.

Since their introduction, plenty of variants of P systems have been introduced,
and a lot of research effort has been carried out, expecially concerned with the
study of the expressivity and the universality of the proposed models and with the
ability to solve NP-complete problems in polynomial time.

The aim of this work is to start an investigation of the causal dependencies
arising in among reactions occurring in P systems. The main motivation for this
work comes from system biology, as the understanding of the causal relations
occurring between the events of a complex biological pathway could be of precious
help, e.g., for limiting the search space in the case some unpredicted event occurs.

In this paper we concentrate on P systems with cooperative rules, namely
systems whose evolution rules are of the form w — v, representing the fact that
the objects in u are consumed and the objects in v are produced.

The study of causal semantics in concurrency theory is quite old. For example,
the study of a causal semantics for process algebras dates back to the early nineties
for CCS [20] (see, e.g., [13, 11, 18]), and to the mid nineties for the m-calculus [21]
(see, e.g., [3, 5, 14, 15]).

To the best of our knowledge, the only other works that deal with causality in
bio-inspired calculi with membranes and compartments are the following. In [7] a
causal semantics for the Mate/Bud/Drip Brane Calculus [9] is proposed. In [17]
a causal semantics for Beta Binders [26, 27] — based on the 7-calculus semantics
and on the enhanced operational semantics approach of [15] — is defined. One of
the main differences between Beta Binders on one side, and Brane Calculi and P
systems on the other side, is that the membrane structure in Beta Binders is flat,
whereas in Brane Calculi and in P systems the membranes are nested to form a
hierarchical structure.

The paper is organized as follows. After providing some basic definitions in Sec-
tion 2, in Section 3 we define (cooperative) P systems. Section 4 recalls a detailed
definition of maximal parallelism semantics that will be used in the following to
provide a comparison between the causal and the maximal parallelism semantics.
Section 5 is devoted to the definition of the causal semantics; after an informal
introduction, a formal definition is provided, and finally some result on the prop-
erties enjoyed by the causal semantics are given. Section 6 reports some conclusive
remarks.

2 Basic Definitions

In this section we provide some definitions that will be used throughout the paper.

Definition 1. Given a set S, a finite multiset over S is a function m : S — IN
such that the set dom(m) = {s € S|m(s) # 0} is finite. The multiplicity of
an element s in m is given by the natural number m(s). The set of all finite

Causality in Membrane Systems 175

multisets over S, denoted by My, (S), is ranged over by m. A multiset m such
that dom(m) = 0 is called empty. The empty multiset is denoted by ().

Given the multisets m and m', we write m C m’ if m(s) < m/(s) for all s € S
while @ denotes their multiset union, i.e., m&m/(s) = m(s)+m/(s). The operator
\ denotes multiset difference: (m \ m’)(s) = if m(s) > m/(s) then m(s) — m/(s)
else 0. The scalar product, j-m, of a number j with m is (j - m)(s) = j- (m(s)).
The cardinality of a multiset is the number of occurrences of elements contained
in the multiset: |m| =3 _sm(s).

The powerset of a set S is defined as P(S) = {X | X C S}.

Definition 2. Let m be a finite multiset over S and X C S. The multiset m|x
is defined as follows: for all s € S, m|x(s) = m(s) if s € X, and m|x(s) =0
otherwise.

Definition 3. A string over S is a finite (possibly empty) sequence of elements in
S. Given a string u = x1...xy,, the length of u is the number of occurrences of
elements contained in u and is defined by |u| = n.

With S* we denote the set of strings over S, and w,v,w,... range over S.
Given n > 0, with S™ we denote the set of strings of length n over S.

Given a string w = x1 ...z, and i such that 1 <i <n, with (u); we denote the
i-th element of u, namely, (u); = ;.

Given a string u = x1...T,, the multiset corresponding to u is defined as
follows: for all s € S, my(s) = |{i | x; = s A1 < i < n}|. With abuse of notation,
we use u to denote also m,,.

Definition 4. With S x T we denote the Cartesian product of sets S and T, with
XS, n > 1, we denote the Cartesian product of n copies of set S and with x}_,.5;
we denote the Cartesian product of sets Si,...,S,, i.e., S1 X ... x S,. The ith
projection of (x1,...,xy) € X' 1S; is defined as m;(x) = xz;, and lifted to subsets
X C xP185; as follows: mi(X) = {mi(z) | x € X}.

Given a binary relation R over a set S, with R™ we denote the composition of
n instances or R, with RT we denote the transitive closure of R, and with R* we
denote the reflexive and transitive closure of R.

3 P Systems

We recall the definition of catalytic P systems without priorities on rules. For a
thorough description of the model, motivation, and examples see, e.g., [8, 12, 22,
23, 24]. To this aim, we start with the definition of membrane structure:

Definition 5. Given the alphabet {[,]}, the set MS is the least set inductively
defined by the following rules:

o [|eMS

176 N. Busi

o if i, o, ... by €EMS, n>1, then [uy ... un] € MS

We define the following relation over MS: x ~ y iff the two strings can be
written as r = [1. .. [2. . .}2 “e [3. . .}3 . .]1 and Yy = [1. .. [3. . .}3 N [2. . .}2 . .]1 (i.e.,
if two pairs of parentheses that are neighbors can be swapped together with their
contents).

The set M S of membrane structures is defined as the set of equivalence classes
w.r.t. the relation ~*.

We call a membrane each matching pair of parentheses appearing in the mem-
brane structure. A membrane structure i can be represented as a Venn diagram,
in which any closed space (delimited by a membrane and by the membanes imme-
diately inside) is called a region of p.

Definition 6. A P system (of degree d, with d > 1) is a construct
= V,uw?, ..., w5 Ry,...,Rqio), where:

1.V is a finite alphabet whose elements are called objects;

2. p is a membrane structure consisting of d membranes (usually labelled with i
and represented by corresponding brackets [; and];, with 1 < i < d);

3w, 1 <i < d, are strings over V associated with the regions 1,2,...,d of y;
they represent multisets of objects present in the regions of u at the beginning
of computation (the multiplicity of a symbol in a region is given by the number
of occurrences of this symbol in the string corresponding to that region);

4. R;, 1 < i < d, are finite sets of evolution rules over V associated with the
regions 1,2,...,d of u; these evolution rules are of the form u — v, where u
and v are strings from (V x {here,out,in})*;

5.19 € {1,...,d} specifies the output membrane of II.

The membrane structure and the multisets represented by w?, 1 <i < d, in IT
constitute the initial state' of the system. A transition between states is governed
by an application of the evolution rules which is done in parallel; all objects, from
all membranes, which can be the subject of local evolution rules have to evolve
simultaneously.

The application of a rule © — v in a region containing a multiset m results in
subtracting from m the multiset identified by u, and then in adding the multiset
defined by v. The objects can eventually be transported through membranes due
to the targets in and out (we usually omit the target here).

The system continues parallel steps until there remain no applicable rules in
any region of IT; then the system halts. We consider the number of objects from
V contained in the output membrane iy when the system halts as the result of the
underlying computation of II.

! Here we use the term state instead of the classical term configuration because we will
define a (essentially equivalent but syntactically) different notion of configuration in
Section 5.

Causality in Membrane Systems 177

We introduce a couple of functions on membrane structures that will be useful
in the following:

Definition 7. Let p be a membrane structure consisting of d membranes, labelled
with {1,...,d}.

Given two membranes © and j in p, we say that i is contained in j if the
surface delimited by the perimeter of i in the Venn diagram representation of u is
contained inside the perimeter of j.

We say that i is the father of j (and j is a child of i) if the membrane j is
contained in i, and no membrane exists that contains j and is contained in .

The partial function father : {1,...,d} — {1,...,d} returns the father of a
membrane i, or is undefined if i is the external membrane.

The function children : {1,...,d} — P({1,...,d}) returns the set of children
of a membrane.

For example, take p = [1[2[3 |3]2 [4 Ja]1; then, father(2) = father(4) = 1,
father(3) = 2 and father(1l) is undefined; moreover, children(4) = (and
children(1) = {2,4}.

4 Maximal Parallelism Semantics for P Systems

In order to compare the classical maximal parallelism semantics with the causal
semantics, in this section we recall a detailed definition of the computation of a P
system, proposed in [4], where a maximal parallelism evolution step is represented
as a (maximal) sequence of simple evolution steps, which are obtained by the
application of a single evolution rule.

Throughout this section, we let IT = (V,p,w?, ... ,w27R1, ..., Rg4,i0) be a P
system.

To represent the states of the system reached after the execution of a non
maximal sequence of simple evolution rules, we introduce the notion of partial
configuration of a system. In a partial configuration, the contents of each region is
represented by two multisets:

e The multiset of active objects contains the objects that were in the region at
the beginning of the current maximal parallelism evolution step. These objects
can be used by the next simple evolution step.

e The multiset of frozen objects contains the objects that have been produced in
the region during the current maximal parallelism evolution step. These objects
will be available for consumption in the next maximal parallelism evolution
step.

Definition 8. A partial configuration of II is a tuple ((w1,w1),. .., (wq,Wq)) €
Xa(V* x V*).

We use x4 (w;,w;) to denote the partial configuration above.

The set of partial configurations of IT is denoted by Confr;. We use v,v', 71, - ..
to range over Confi.

178 N. Busi

In the above definition, wy,...,wy represent the active multisets, whereas
w1, ..., Wy represent the frozen multisets.

A configuration is a partial configuration containing no frozen objects; config-
urations represent the states reached after the execution of a maximal parallelism
computation step.

Definition 9. A configuration of IT is a partial configuration x%_, (w;,w;) satis-
fying the following: w; =0 fori=1,...,d.
The initial configuration of IT is the configuration x¢_,(w?,0) .

The size of a partial configuration is the number of active objects contained in
the configuration.

Definition 10. Let v = x%_, (w;,w;) be a partial configuration. The size of ~y is
d
#(7) = 2izy [wil-

The execution of a simple evolution rule is formalized by the notion of reaction
relation, defined as follows:

Definition 11. The reaction relation — over Confy; x Conf is defined as fol-

lows:
xL (wi, w;) — xL, (wh,w)) iff there exist k, with 1 < k < d, an evolution
rule w — v € Ry and a migration string p € {1,... ,d}'”‘ such that
o uC wg
o w=wp\u
o Vi:1<i<dandi#k implies w;=w;
o Vj:1<j<|v| the following holds:

- if ma((v);) = here then (p); =k

~ if ma((v);) = out then (p); = father(k)?

~ if ma((v);) =in then (p); € children(k)3
o Vi,1<i<d:w,=wr®Bi<jcp) (p),=k)i

Note that the size of a configuration represents an upper bound to the length
of the sequences of reactions starting from that configuration. Hence, infinite se-
quences of reactions are not possible.

Proposition 1. Let v be a configuration. If v —™ ~" then n < #(7).

The heating function heated transforms the frozen objects of a configuration
in active objects, and will be used in the definition of the maximal parallelism
computation step.

Definition 12. Let xL_, (w;, w;) be a partial configuration of II.
The heating function heated : Conf; — Confr is defined as follows:
heated(x4, (w;, w;)) = x4 (w; © w;, 0)

ZAspedl,..., d}lvl, this implies that father(k) is defined.
3 This implies that children(k) is not empty.

Causality in Membrane Systems 179

Now we are ready to define the maximal parallelism computational step =

Definition 13. The maximal parallelism computational step & over (nonpartial)
configurations of II is defined as follows: v1 = o iff there exists a partial config-
uration v such that y1 —1 ', v v/ and 2 = heated(v').

An operational semantics for P systems with maximal parallelism semantics
has been defined for P systems in [1, 2, 10]. The main difference w.r.t. our ap-
proach is concerned with the fact that, while in this Section a maximal parallelism
computational step is defined as a maximal sequence of reactions, in [1, 2, 10] no
notion of reaction is provided, and the notion equivalent to the maximal parallelism
computational step is defined directly by SOS rules [25]. A detailed comparison of
the two approaches is beyond the scope of the present paper and deserves further
investigation.

5 A Causal Semantics for P Systems

In this section we provide a causal semantics for cooperative P systems. To define
a causal semantics, we follow the approach used in [18] for CCS, and in [3] for the
m-calculus.

5.1 An informal explanation

The idea consists in decorating the reaction relation with two pieces of information:

e a fresh name k, that is associated to the reaction and it is taken from the set
of causes IC;

e a set H C K, containing all the names associated to the already occurred
reactions, that represent a cause for the current reaction.

To keep track of the names of the already occurred reactions that may represent
a cause for the reactions that may happen in the future, we introduce a notion
of causal configuration that associates to each object an information on its causal
dependencies. As in [3], for the sake of clarity we only keep track of the so called
immediate causes, as the set of general causes can be reconstructed by transitive
closure of the immediate causal relation. We will provide more explanation on this
point with an example in the following part of the paper.

Now we start with an informal introduction of causality in P systems. Consider
the following system with a unique membrane:

I, = ({a,b,¢,d,e, f}, 1]1,ae,{a = be,c — d,e — f},1).

If we consider the reaction relation — defined in the previous section, we have
that the system II; can perform either a reaction obtained by the application of
the rule a — bc followed by a reaction obtained by the application of rule e — f,
or a sequence of two reactions where the application the rule e — f is followed by

180 N. Busi

the application of a — bc. The applications of the two rules are independent, in

the sense that all the objects consumed by both the rules are already present in

the initial configuration. Hence, the two rules can be applied in the same maximal

parallelism step, and no one of the rules is causally dependent on the other one.
Consider now the system

I, = ({a,b,¢,d,e, f},[1]1,a,{a = be,c — dye — [}, 1),

obtained from II; by removing object e from the initial state. In this case, only
rule a — bc can be applied. After the application of such a rule, an instance of
object c is created by the application of rule a — bc. Now, a further reduction step
can be performed, consisting in applying rule ¢ — d. However, the applications of
the two rules a — bc and ¢ — d cannot be swapped, and the two rules cannot be
applied in the same maximal parallelism computational step. This is because the
object ¢ consumed by rule ¢ — d has been produced by rule a — be. In this case,
we say that the reduction step consisting in the application of rule ¢ — d causally
depends on the reduction step consisting in the application of rule a — be.

If we consider again system I1;, we have that, after the application of the two
rules a — bc and e — f, the rule ¢ — e can be applied, and it is caused by the
application of rule a — bc.

We would like to note that the causal semantics is in some sense “finer” than the
maximal parallelism step semantics, as it permits to identify exactly which rule(s)
represent a cause for the execution of another rule. Consider, e.g., the system

II5 = ({a,b,c,d,e, f},[1]1,ae,{a = be,cf — d,e — f},1).

According to the maximal parallelism semantics, the two systems cannot be dis-
tinguished, as both can perform a maximal parallelism step containing two rules
(i.e.,, {a — be,e — f}), followed by a maximal parallelism step containing a sin-
gle rule (resp. {¢ — d} for IT; and {cf — d} for II3). On the other hand, if we
consider the causal semantics, we have that the application of rule ¢ — d in II;
causally depends only on one of the two rules applied in the previous maximal
parallelism step, i.e., a — bc, whereas the application fo the rule ¢f — d in I3
causally depends on both the rules applied in the previous maximal parallelism
step.

5.2 The formal definition of causal semantics

In this section we provide a formal definition of the notions introduced in the
previous section.

Let K be a denumerable set of cause names, disjoint from the set V' of objects.

Throughout this section, we let IT = (V,pu,w?, ... ,wg,Rl, ..., Rg4,i0) be a P
system.

To be able to define the set of causes of a reaction, we proceed in the following
way: we associate a fresh (i.e., never used before) cause name to each reaction

Causality in Membrane Systems 181

performed in the system. Then, each instance of object in a configuration of the
system is decorated with the causal name of the reaction that produced it, or with
() if the object is already present in the initial configuration.* To keep track of such
causal information, we introduce the notion of causal configuration fo a system.

Definition 14. A causal configuration of IT is a tuple z1, ..., zq4, where z; € (V x
P(K))* fori=1,...,d.

We use x&_,z; to denote the causal configuration above.

The set of causal configurations of II is denoted by CConfry.

We use v,v',71, ... to range over CConfr.%

Let w? =0i10i2...0ip, fori=1,...,d. The initial causal configuration of II
is the configuration x¢_(0;1,0)(0;2,0)...(0in,,0) .

For example, ((a,0)(e,?)) represents the initial causal configuration of the P
system II; in the previous subsection, and ((b, k1)(c, k1)(e,?)) represents another
configuration of IT;, reached after the firing of rule a — bc (for the sake of clarity
we omit the surrounding braces if the set of causes is a singleton).

Now we are ready to define the causal semantics for P systems. We write

¥ B, ~" to denote the fact that system IT in configuration v performs an action
— to which we associate the cause name h — that is caused by the (previously
occurred) actions whose action names form the set H. The cause name h is a fresh
name: this means that it has not been used yet in the current computation.

The execution of an evolution rule is formalized by the notion of causal reaction
relation.

Before providing the definition of causal reaction relation, we need some aux-
iliary definitions.

Definition 15. The function drop : (V x P(K))* — V* removes the causality
information:

drop(e) =¢

drop((o, H)w) = o drop(w)

The function drop is extended to configurations in the obvious way:
drop(x,z;) = x4 drop(z)

The function causes : V x P(K))* — P(K) produces the set of causal labels in
a string:
causes(e) = ()
causes((o, H)w) = H U causes(w)

4 For homogeneity with other classes of P systems, actually we decorate each object with
a — possibly empty — set of cause names, even if, in the class of P systems considered
in this paper, a single cause name is sufficient.

5 With abuse of notation, we use v,7’,71, ... to denote both partial configurations and
causal configurations. It will be clear from the context to which kind of configuration
we are referring to.

182 N. Busi

The function deco : V* — V x P(K))* decorates each object in a string with a
given set of causal labels:

deco(e, H) =
deco(ow, H) = (o, H)deco(w, H)

S«

Definition 16. The causal reaction relation ~“% over CConfrg x CConfyg is
defined as follows:

x4z mE, xd_, 21 iff there exist k, with 1 < k < d, a stringw € (V x P(K))*,

an evolution rule u — v € Ry and a migration string p € {1,..., d}‘”| such that
e u=drop(w)

e H = causes(w)

o wC z

o 2z =z, \ wddeco(v,{h})

. Vj 1 <4< |v| the followmg holds:

if ma((v);) = here then (p); =k
~ if ma((v);) = out then (p); = father(k)®

if ma((v);) = in then (); € children(k)”
Vi,l<i<dandi#k:z,=2z® @1<J<‘ l (p)]_i((v)j,h)

5.3 Properties of the causal semantics

The causal semantics for the class of P systems considered in this paper enjoys
some nice properties.

The first property is the retrievability of the maximal parallelism step seman-
tics from the causal semantics. According to such a property, there is no loss of
information when moving from the maximal parallelism to the causal semantics,
as we can reconstruct the maximal parallelism semantics of a system by looking
at its causal execution:

Theorem 1. x¢_, (w;,0) & x%_,(w!,0) is a mazimal parallelism computational

step if and only if there exist v,7 € CConf(II), hy,...,hy, Hy,...H, such that
drop(y) = xL; (w;, 0)
drop(v') = x{_; (w},0)
h1;H1 hn;Hn, /
hi & H; forallzg 1<z]<n

e if there esist h, H such that ~' PH then there exists i such that 1 <i<n and
h; e H

The other property is the so-called diamond property, stating that if two non-
causally related actions can happen one after the other, then they can happen also
in the other order, and at the end they reach the same system.

6 As pe{1,...,d}", this implies that father(k) is defined.
" This implies that children(k) is not empty.

Causality in Membrane Systems 183

hasH hios H.)
Theorem 2. If y——", ' —~2%,.7" and hy ¢ Hy then there erists a causal
. hosH h1;H
configuration v such that y—="2,, 4"~ 4"

6 Conclusion

In this paper we tackled the problem of defining a causal semantics for a basic class
of P systems. We think that the study of the causal dependencies that arise between
the actions performed by a system is of primary importance for models inspired by
the biology, because of its possible application to the analysis of complex biological
pathways.

This paper represents a first step in this direction, but a lot of work remains
to be done. For example, if we move to other classes of membrane systems, such
as, e.g., P systems with promoters and inhibitors, we have to deal with more in-
volved causal relations among reactions, and it could happen that some of the
properties enjoyed by the causal semantics for basic P systems presented in this
work no longer hold. Another interesting research topic is the investigation of the
causal semantics for classes of P systems whose membrane structure is dynamically
evolving (e.g., we can consider dissolution rules, duplication, gemmation or either
brane-like operations). Once we have completed the definition of a causal seman-
tics for systems with an evolving structure, we will start investigating the causal
dependencies arising in biological pathways involving membranes, such as, e.g.,
the LDL Cholesterol Degradation Pathway [19], that was modeled in P systems
in [6].

References

1. O. Andrei, G. Ciobanu, and D. Lucanu. Operational semantics and rewriting logic
in membrane computing. Proceedings SOS Workshop, ENTCS, 2005.

2. O. Andrei, G. Ciobanu, and D. Lucanu. A rewriting logic framework for opera-
tional semantics of membrane systems. Theoretical Computer Science, 373(3):163—
181, 2007.

3. M. Boreale and D. Sangiorgi. A Fully Abstract Semantics for Causality in the 7-
Calculus. Acta Inf. 35(5): 353-400, 1998. An extended abstract appeared in Proc.
STACS 1995: 243-254.

4. N. Busi. Using well-structured transition systems to decide divergence for catalytic
P systems. Theoretical Computer Science, 372(2-3): 125-135, 2007.

5. N. Busi and R. Gorrieri. A Petri Net Semantics for 7- calculus. In Proc. Concur’95
, LNCS 962, Springer, 145-159, 1995.

6. N. Busi and C. Zandron. Modeling and analysis of biological processes by mem(brane)
calculi and systems. Proceedings of the Winter Simulation Conference (WSC 2006),
ACM, 2006.

7. N. Busi. Towards a causal semantics for Brane Calculi. Proc. Fifth Brainstorming
Week on Membrane Computing, Sevilla, 2007, to appear.

184

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.
25.

26.

27.

N. Busi

C.S. Calude and G. Paun. Computing with Cells and Atoms. Taylor & Francis,
London, 2001.

L. Cardelli. Brane Calculi - Interactions of biological membranes. Proc. Computa-
tional Methods in System Biology 2004 (CMSB 2004), LNCS 3082, Springer, 2005.
G. Ciobanu, O. Andrei, and D. Lucanu. Structural Operational Semantics of P Sys-
tems. Proc. of Sixth International Workshop on Membrane Computing (WMC6),
LNCS, 2005.

Ph. Darondeau and P. Degano. Causal Trees. in Proc. ICALP’89, LNCS 372,
Springer, 234-248, 1989.

J. Dassow and G. Paun. On the Power of Membrane Computing. J. Univ. Comput.
Sci. 5(2), 1999.

P. Degano, R. De Nicola, and U. Montanari. Partial ordering descriptions and obser-
vations of nondeterministic concurrent processes. in Proc. REX School/Workshop on
Linear Time, Branching Time and Partial Order in Logic and Models of Concurrency,
LNCS 354, 438-466, 1989.

P. Degano and C. Priami. Causality for Mobile Processes. in Proc. ICALP’95, LNCS
944, Springer, 660-671, 1995.

P. Degano and C. Priami. Non Interleaving Semantics for Mobile Processes. Theo-
retical Computer Science 216(1-2): 237-270, 1999.

V. Danos and S. Pradalier. Projective Brane Calculus. Proc. Computational Methods
in System Biology 2004 (CMSB 2004), LNCS 3082, Springer, 2005.

M.L. Guerriero and C. Priami. Causality and Concurrency in Beta-binders TR-01-
2006 The Microsoft Research - University of Trento Centre for Computational and
Systems Biology, 2006.

A. Kiehn. Proof Systems for cause based equivalences. In Proc. MFCS’93, LNCS 711,
Springer, 1993.

H. Lodish, A. Berk, P. Matsudaira, C.A. Kaiser, M. Krieger, M. P. Scott, S. L.
Zipursky and J. Darnell. Molecular cell biology. W.H. Freeman and Company, 4th
edition, 1999.

R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes. Information
and Computation 100, 1-77, 1992.

G. Paun. Computing with membranes: an Introduction. Bull. EATCS 67, 1999.

G. Paun. Computing with membranes. Journal of Computer and System Sciences,
61(1):108-143, 2000.

G. Paun. Membrane Computing. An Introduction. Springer, 2002.

G.D. Plotkin. Structural operational semantics. Journal of Logic and Algebraic Pro-
gramming 60, 17-139, 2004.

C. Priami and P. Quaglia. Beta binders for biological interactions. In Proc. of Com-
putational Methods in Systems Biology, LNCS 3082, 2033, 2005.

C. Priami and P. Quaglia. Operational patterns in beta-binders. T. Comp. Sys. Bi-
ology, 1:5065, 2005.

