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Summary. In this paper we approach the problem of the hierarchical clustering through
membrane computing. A specific P system with external output is designed for each
boolean matrix associated with a finite set of individuals. The computation of the sys-
tem allows us to obtain one of the possible classifications in a non-deterministic way.
The amount of resources required in the constructions is polynomial in the number of
individuals and the number of characteristics analyzed.

1 Introduction

Researchers develop a lot of investigation that depend on many factors and this
makes their study very complex. In order to simplify and make the problems more
tractable it is necessary to group individuals with similar characteristics. The
individuals are characterized by a high number of properties so the grouping is
not a simple task. The clustering methods appear with the purpose of establishing
a methodology with a statistical base in order to obtain the groupings of the
individuals according to their degree of similarity.

There are different methods of ranking the groups of individuals. In order to
simplify it we can consider two types, the nonhierarchical clustering and the hier-
archical clustering. In a nonhierarchical clustering homogenous groups are formed
without establishing relations among them; in the hierarchical clustering the in-
dividuals are grouped in levels. The inferior levels are contained in the superior
levels. The hierarchical clustering is the most used and it is dealt with in this
paper.
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Hierarchical clustering refers to the formation of a recursive clustering of the
individuals by means of the partitions P0, P1, . . . , Pm of the set of N individuals
with 1 ≤ m ≤ N−1. The partition P0 consists of N groups each one of them formed
by a single individual. The groups that form this partition join progressively until
arriving at the last partition, Pm, that consists of a single group formed by all the
individuals. In each step the two most similar groups are joined according to a
previously established criterion.

Researchers use the clustering to characterize and to order a vast amount
of information on the variability of population of individuals. These populations
are grouped in more or less homogenous clusters based on their properties. This
methodology has been applied in fields as diverse as Medicine, Biology, classifica-
tion of words, of the fingerprints, artificial intelligence... Recently the clustering
has been applied to the classification of musical genre [13], to predict essential
hypertension [12], in the classification of material planning and control systems
[9], in the classification of the ocean color [1], in the classification of the plants
gens [14].

The different groups obtained by means of the classification are characterized
by different levels of the measured variables. These values allow us to give com-
mon properties of the individuals belonging to the same group. To have established
groups allows us to identify the most similar cluster of a new individual. The char-
acteristics measured of the individuals can be qualitative variables or quantitative
variables. In most cases we are only interested in the presence or absence of certain
qualitative characteristics. So in this paper we make a hierarchical clustering using
dichotomizing variables by means of membrane computing.

In this paper the problem of hierarchical clustering is approached with the
framework of cellular computing with membranes. It is interesting because allows
us treated some statistics topics with this new models of computation. The amount
of used resources is polynomial in the number of individuals and the number of
characterizes analyzed without increasing the complexity of the classical clustering
algorithms.

In the following, we assume that the reader is familiar with the basic notions
of P systems, and we refer, for details, to [7], [15], [8], [6].

2 Overview

2.1 Hierarchical Clustering

In order to obtain a hierarchical clustering we need a set of observations or indi-
viduals that we define as follows:

Definition 1. A k–set Ω over a metric space (E, d), with d(E × E) ⊆ N, is a
subset of Ek.

The hierarchical clustering needs a finite k-set Ω with N elements, Ω =
{ω1, . . . , ωN}. The elements of the set Ω are called individuals or observations



Hierarchical Clustering with Membrane Computing 187

and their components in the k-tuple are denoted characteristics or variables. The
values of the individuals can be represented in matrix form:

PNk =




ω11 ω12 · · · ω1k

ω21 ω22 · · · ω2k

· · ·
ωN1 ωN2 · · · ωNk




where ωij is the value of the j-th variable of the individual i.
The objective of any clustering is to group the individuals in similar groups

whose members are all close to one another with various dimensions being mea-
sured. It will be necessary to establish criteria in order to measure the similarity
between individuals and similarity between groups. Evidently, the clustering that
is obtained will depend on the similarity function that is chosen. This function is
called similarity and it is defined as follows [10].

Definition 2. A similarity over a finite k–set Ω = {ω1, . . . , ωN} is a function s
of Ω ×Ω in R+ that verifies

• s is symmetric, that is ∀(ωi, ωj) ∈ Ω ×Ω : s(ωi, ωj) = s(ωj , ωi)
• ∀ωi, ωj ∈ Ω with i 6= j : s(ωi, ωi) = s(ωj , ωj) ≥ s(ωi, ωj)

In this paper we work with dichotomizing variables, in particular their val-
ues are denoted by 0 and 1. One of the similarities most used for dichotomizing
variables is the similarity of Sokal and Michener [2] and it is defined by:

∀ωi, ωj ∈ Ω : s′(ωi, ωj) =
1
k
·

k∑
r=1

(1− |ωir − ωjr|) (1)

where ωi = {ωi1, . . . , ωik}.

In this paper the similarity that we use is a modification of the previous one.
This similarity represents the number of coincidences in the number of total char-
acteristics and it is defined as follow:

∀(ωi, ωj) ∈ Ω ×Ω : s(ωi, ωj) =
k∑

r=1

(1− |ωir − ωjr|) (2)

We use this similarity because it is easier to implement with P systems and the
result obtained is the same as we obtain with the similarity of Sokal and Michener.

In the case of the hierarchical clustering the groupings follow a hierarchy formed
by partitions. The partitions are formed in a recursive manner. We start with as
many clusters as individuals, in each iteration the partition is obtained joining the
two closest clusters. This process is done until we obtain a single set formed by
all the individuals. The partitions obtained P0, P1, . . . , Pm verify P0 ⊆ P1 ⊆ P2 ⊆
. . . ⊆ Pm with 1 ≤ m ≤ N − 1 and the sets that form the partitions are called
clusters.
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Next we define the necessary mathematical concepts in the hierarchical clus-
tering [11].

Definition 3. Let Ω = {ω1, . . . , ωN} the k-set of N individuals to classify. A
subset H of the parts of Ω, H ⊆ P(Ω), is a hierarchy over Ω if it verifies:

• Ω ∈ H
• {ω} ∈ H (∀ω ∈ Ω)
• If h ∩ h′ 6= ∅ ⇒ h ⊂ h′ or h′ ⊂ h (∀h, h′ ∈ H)
• ⋃{h′ | h′ ∈ H, h′ ( h} ∈ {h, ∅} (∀h ∈ H)

The elements of H are called clusters.
If h1, . . . , hp ∈ H with Ω = h1 ∪ . . . ∪ hp then the set {h1, . . . , hp} is a clustering.

In order to construct a hierarchy it is necessary to have a similarity between
individuals and another function that measures the similarity between clusters.
The second function is called the aggregation index.

Definition 4. A symmetrical and nonnegative application
δ : P(Ω)× P(Ω) → R is called aggregation index between clusters if it verifies:

• ∀h1, h2 ∈ P(Ω) : δ(h1, h2) ≥ 0
• ∀h1, h2 ∈ P(Ω) : δ(h1, h2) = δ(h2, h1)

There are several aggregation indices [4] that depend on the similarity s chosen.
In this paper we use the aggregation index based on the minimum [5] defined by:

δ(h1, h2) = min{s(ωi, ωj) | ωi ∈ h1, ωj ∈ h2} (3)

If a hierarchy has associated an index that measures the homogeneity degree
between the individuals belonging to the same cluster it is called indexed hierarchy.
We refer to this index by the hierarchical index.

Definition 5. An indexed hierarchy is a pair (H, f) where H is a hierarchy and
f is an application H over R+ such that:

• f({ω}) = k (∀ω ∈ Ω)
• ∀h′ ∈ H : h ( h′ ⇒ f(h) > f(h′)

The hierarchical index is always obtained by means of the aggregation index.
In this paper we define the hierarchical index of a new cluster h obtained from the
union of two clusters h = h1 ∪ h2, by means of f(h) = δ(h1, h2).
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An algorithm for the construction of an indexed hierarchy

The algorithms that are used to obtain an indexed hierarchy have the same struc-
ture, the only differences in them is the way to compute the similarities between
clusters [3].

The input of this algorithm is the k-set Ω and the aggregation index δ. The
output is an indexed hierarchy (H, f).

1 Place each individual of Ω in its own cluster (singleton), creating the list of
clusters L = P0

L = P0 = {S1 = {ω1}, S2 = {ω2}, . . . , SN = {ωN}}

In this moment δ({ωi}, {ωj}) = s(ωi, ωj) and f({ωi}) = k (1 ≤ i < j ≤ N)
2 Find the two closest clusters Si, Sj with 1 ≤ i < j ≤ N , which will form a new

class Si = Si ∪ Sj .
3 Remove Sj from L.
4 Compute the aggregation index, by equation (3), between all the pair of clusters

in L.
5 Go to step 2 until there is only one set remaining.

Remark: If at step 2 there are more than one possibility, then one of them is chosen
at random so the hierarchy obtained is not unique.

3 Hierarchical Clustering of a Group of Individuals

3.1 Designing a P System

The goal of this paper is to obtain one hierarchical clustering of a k-set Ω, of N
different individuals by means of the cellular computing with membranes. We con-
sidered each individual ωi ∈ Ω by a k-tuple of dichotomizing variables, Ω ⊆ {0, 1}k

which is denoted by ωi = (ωi1, ωi2, . . . , ωik). The similarity between individuals
that we use is the following:

s(ωi, ωj) =
k∑

t=1

(1− |ωit − ωjt|)

This similarity measures the number of equal components between two indi-
viduals.

Let PNk = (ωij)1≤i≤N,1≤j≤k be the matrix formed by the k values of N indi-
viduals to classify. We define the P system of degree N with external output,

Π(PNk) = (Γ (PNk), µ(PNk),M1,M2, . . . ,MN−1,MN , R, ρ)

associated with the matrix PNk, as follows:
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• Working alphabet:

Γ (PNk) = {ejs, djs : 1 ≤ j ≤ N, 1 ≤ s ≤ k} ∪ {as, bs : 1 ≤ s ≤ k} ∪
{Sij , Cij : 1 ≤ i < j ≤ N} ∪ {βi : 0 ≤ i ≤ k − 2} ∪
{αijt, Xijt : 1 ≤ i < j ≤ N, 1 ≤ t ≤ k − 1} ∪ {γi : 1 ≤ i ≤ N} ∪
{εi : 0 ≤ i ≤ 3k − 2} ∪ {ηi : 0 ≤ i ≤ (N − 1)(3k − 1)} ∪ {]}

• Membrane structure: µ(PNk) = [N [1 ]1 [2 ]2 . . . [N−1 ]N−1 ]N .
• Initial multisets:

Mi = {a(N−i)ωis
s : 1 ≤ s ≤ k ∧ 1 ≤ i ≤ N − 1} ∪

{b(N−i)(1−ωis)
s : 1 ≤ s ≤ k ∧ 1 ≤ i ≤ N − 1} ∪

{eωjs

js : 1 ≤ s ≤ k ∧ i ≤ j ≤ N} ∪
{d(1−ωjs)

js : 1 ≤ s ≤ k ∧ i ≤ j ≤ N} ; 1 ≤ i ≤ N − 1

MN = {γN , ε0, η0};
• The set R of evolution rules consists of the following rules:

– Rules in the skin membrane labeled N :
r0 = {ε0 → ε1β0} ∪ {εi → εi+1 : 1 ≤ i ≤ 3k − 2 ∧ i 6= k}∪

{ηi → ηi+1 : 0 ≤ i ≤ (N − 1)(3k − 1)− 1}

ru = {βu−1S
k−u
ij → αij(k−u) : 1 ≤ i < j ≤ N} 1 ≤ u ≤ k − 1

r′u = {βu−1 → βu} 1 ≤ u ≤ k − 1

r′k−1 = {η(N−1)(3k−1) → (], out)}

rk = {εkγqαijt → εk+1X
q−2
ijt γq−1(Xijt, out) : 2 ≤ q ≤ N,

1 ≤ i < j ≤ N, 1 ≤ t ≤ k − 1}

r′k = {εk → εk+1}

rk+1 = {XijtSipSjp → CipXijt : 1 ≤ i < j < p ≤ N, 1 ≤ t ≤ k − 1}∪
{XijtSipSpj → CipXijt : 1 ≤ i < p < j ≤ N, 1 ≤ t ≤ k − 1}∪
{XijtSpiSpj → CpiXijt : 1 ≤ p < i < j ≤ N, 1 ≤ t ≤ k − 1}

rk+2 = {XijtSip → Xijt : 1 ≤ i < p < j ≤ N, 1 ≤ t ≤ k − 1}∪
{XijtSjp → Xijt : 1 ≤ i < j < p ≤ N, 1 ≤ t ≤ k − 1}∪
{XijtSpi → Xijt : 1 ≤ p < i < j ≤ N, 1 ≤ t ≤ k − 1}∪
{XijtSpj → Xijt : 1 ≤ p < i < j ≤ N, 1 ≤ t ≤ k − 1}∪
{XijtSpj → Xijt : 1 ≤ i < p < j ≤ N, 1 ≤ t ≤ k − 1}

rk+3 = {Cij → Sij : 1 ≤ i < j ≤ N}∪
{ε3k−1X

q−2
ijt γq−1 → ε1β0γq−1 : 1 ≤ i < j ≤ N, 1 ≤ t ≤ k − 1}

r′k+3 = {ε3k−1 → ε1β0}



Hierarchical Clustering with Membrane Computing 191

– Rules in the membrane labeled i {1 ≤ i ≤ N − 1} :
rk+4 = {asejs → (Sij , out) : 1 ≤ s ≤ k, i + 1 ≤ j ≤ N}

rk+5 = {bsdjs → (Sij , out) : 1 ≤ s ≤ k, i + 1 ≤ j ≤ N}

• The partial order relation ρ over R consists of the following priority relations:
– Priority relation on the membrane labeled i with 1 ≤ i ≤ N − 1: ρi = ∅
– Priority relation on the skin membrane labeled N :

ρN = {r1 > r′1 > r2 > r′2 > . . . > rk−1 > r′k−1} ∪ {rk > r′k}∪
{rk+1 > rk+2 > rk+3 > r′k+3}

3.2 An Overview of Computations

At the beginning of a computation the membrane labeled i, with 1 ≤ i ≤ N − 1,
contains the objects as, bs, ejs, djs with 1 ≤ s ≤ k and i + 1 ≤ j ≤ N . In this
membrane the presence or absence of the objects as, bs encode the values of the
individual ωi. If the value of ωis is equal to 1 we have the object as and if the
value ωis is equal to 0 we have the object bs.

The objects ejs, djs with a ≤ s ≤ k and i < j ≤ N are also in this membrane,
and they codify the values of the k components of the individuals ωj . If the value
of the component s is 1, i.e. ωjs = 1 then the membrane i contains the object ejs,
if ωjs = 0 then the membrane i contains the object djs.

Initially, the skin membrane contains the objects γN , ε0 and η0. The evolution
of the object γN allows us to know the number of clusters in any configuration
of the P system: when the object γi appears, then the individuals are grouped in
i clusters. We use the object ε0 in order to synchronize in 3k − 1 steps the loop,
that allows us to unite two clusters with maximum similarity. The object η0 is a
counter used to stop the P system in the configuration (3k− 1)(N − 1) sending in
the environment the object ].

In the initial configuration the only rules that can be applied in membrane
labeled i with 1 ≤ i ≤ N − 1 are rk+4, rk+5, that send the objects Sij with
1 ≤ i < j ≤ N to the skin membrane. The multiplicity of these objects allows
us to know the similarity between individuals of the set Ω, that is the number
of equal components between these individuals. In this configuration the rule r0

constructs the object β0.

¿From this configuration the computation of the P system is formed by loops
of 3k−1 steps. Each one of these loops is formed by two very differentiated stages.
The first stage is formed by k steps and begins with the object β0. In these steps
the object Sij with maximum multiplicity is selected encoding the maximum sim-
ilarity between the clusters i and j. In the k-th step of the loop the rule rk creates
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the objects Xijt in the skin membrane and sends a copy to the environment. This
object represents the clusters that have the highest similarity, t, that can be joined
to form a new cluster. Moreover, in this step the object γq is transformed in the
object γq−1, encoding the fact that two clusters have been joined.

The second stage is formed by 2k − 1 steps. In the skin membrane there are
the objects Xijt meaning that a new cluster i is formed by the union of the
previous clusters i, j. The rules rk+1, rk+2, rk+3 calculate the similarities between
new cluster i and the other clusters, this information is kept in the multiplicity of
the objects Sip.

In the (3k− 1)-th step of the loop the rule rk+3 transforms the object ε3k−1 in
the objects β0 and ε1 that allow us to go to the top of the loop.

The first partition consist of N singletons; in each loop two clusters are joined
so it is necessary N − 1 loops to obtain the last partition that consists of a cluster
containing all N individuals. Therefore the loop repeats N − 1 times and the rule
r′k−1 is applied finalizing the P system.

3.3 Formal Verification

In this section we are going to show that the P system Π(PNk) is non-deterministic,
but, in spite of this for any computation we will obtain a solution of the clustering
problem.

First of all, let us list the necessary resources to construct the P system Π(PNk)
from the matrix PNk.

• Size of the alphabet: Θ(N2 · k).
• Sum of the sizes of initial multisets: Θ(N · k).
• Maximum of rules’ lengths: Θ(N).
• Number of rules: Θ(k ·N3).
• Number of priority relations: Θ(k2 ·N6).
• Cost of time: Θ(N · k).

Bearing in mind the recursive description of the rules and that the amount of
resources is polynomial in N, k, it is possible to construct the system Π(PNk) from
the matrix PNk by means of a Turing machine working in polynomial time.

Given a computation C of the P system Π(PNk), for each p ∈ N we denote by
Cp the configuration of the P system obtained after the execution of p steps. For
each level l ∈ {1, 2, . . . , N}, we denote by Cp(l) the multiset of objects contained
in the membrane labeled l in the configuration Cp.

The following result proves that in the configuration C1, the multiplicity of
the object Sij , ∀1 ≤ i < j ≤ N , represents the similarity between the individual
ωi = (ωi1, . . . , ωik) and the individual ωj = (ωj1, . . . , ωjk).
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Proposition 1. Let C an arbitrary computation of the P system. If
t
(1)
ij = max{t : St

ij ∈ C1(N)} ∀i, j, t (1 ≤ i < j ≤ N, 1 ≤ t ≤ k − 1)

then t
(1)
ij =

∑k
s=1(1− | ωis − ωjs |).

Proof. In the initial configuration we have

C0(i) = {a(N−i)ωis
s , b(N−i)(1−ωis)

s , e
ωjs

js , d
(1−ωjs)
js | i ≤ j ≤ N, ωis ∈ {0, 1}}

with 1 ≤ i ≤ N − 1.
The only rules that can be applied are rk+4 and rk+5.The rule rk+4 is only

possible to apply when the component s of the individuals ωi and ωj is equal 1.
The rule rk+5 is only applied when the component s of the individuals ωi and ωj

is equal 0.
Whenever one of these rules is applied the object Sij goes out to the skin

membrane. Then in C1(N) the multiplicity of the objects Sij will coincide with the
number of equal components between the individuals ωi and ωj , i.e. | ωis−ωjs |= 0.
Therefore the multiplicity of the objects Sij is

t
(1)
ij =

k∑
s=1

(1− | ωis − ωjs |)

that is, t
(1)
ij corresponds to the similarity between the individuals ωi and ωj . ¤

From now on we denote the maximum multiplicity of the objects Sij in the
step one of the n-th loop of the computation by

t
(n)
ij = max{t : St

ij ∈ C1+(n−1)(3k−1)(N)}
In the following proposition we prove that each 3k − 1 steps is constructing

the object β0 so this object is in the skin of all the configurations of the type
1 + n(3k − 1) with 1 ≤ n ≤ N − 2. Moreover we prove in what configuration the
object εj with 1 ≤ j ≤ 3k − 1 appears.

The objects β0 and ε1 determine the moment that the loop starts and the
object ε3k−1 determines when the loop finishes.

Proposition 2. For each n (0 ≤ n ≤ N − 2), we have:

a) β0 ∈ C1+n(3k−1)(N)

b) If 1 ≤ j ≤ 3k − 1 then εj ∈ C1+n(3k−1)+(j−1)(N)

Proof. We prove this proposition by induction on n.
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• For n = 0, it is necessary to verify that β0 ∈ C1(N), and εj ∈ Cj(N), ∀ 1 ≤ j ≤
3k − 1.
In the initial configuration we have ε0 ∈ C0(N) that allows us to apply one of
the rules r0 in order to obtain ε1, β0 ∈ C1(N), so a) is proved for n = 0.
In the following k−1 steps the rules r0 will be applied transforming the object
ε1 until we obtain the object εk ∈ Ck(N). In this configuration if there are
the objects αijt, γq ∈ Ck(N) the rule rk will be applied, or the rule r′k will be
applied. In both cases εk evolves to εk+1 ∈ Ck+1(N).
In the successive configurations the rule r0 transforms the objects εj ∈ Cj(N),
k + 1 ≤ j ≤ 3k − 2 until we obtain the object ε3k−1 ∈ C3k−1(N).

• Let us suppose the hypothesis for 0 ≤ n < N − 2. Then, we will show that
εj ∈ C1+(n+1)(3k−1)+(j−1)(N), ∀ 1 ≤ j ≤ 3k − 1 and β0 ∈ C1+(n+1)(3k−1)(N).
By induction hypothesis ε3k−1 ∈ C1+n(3k−1)+(3k−1−1)(N) = C(n+1)(3k−1)(N).
If in this configuration there is some object Xijt the rules rk+3 will be applied
and in the other case the rule r′k+3 will be applied. In both cases the object
ε3k−1 is transformed in ε1, β0 ∈ C1+(n+1)(3k−1)(N). So that a) is proved.

Applying k − 1 times the rules r0 we obtain ∀ 1 ≤ j ≤ k that the object
εj ∈ C1+(n+1)(3k−1)+(j−1)(N). In the configuration C1+(n+1)(3k−1)+(k−1)(N) the
object εk is transformed in the object εk+1 ∈ C1+(n+1)(3k−1)+k(N) by means
of one of the rules rk or r′k. Then applying the rules r0 successively we obtain
∀ k + 1 ≤ j ≤ 3k − 1 that the object εj ∈ C1+(n+1)(3k−1)+(j−1)(N).

¤

Remark: According to Proposition 2 we have:
εk ∈ C1+n(3k−1)+k−1(N) = Ck+n(3k−1)(N) ∀n 0 ≤ n ≤ N − 2

Corollary 1. The objects Xijt are sent to the environment at moments of the type
C1+n(3k−1)+k with 0 ≤ n ≤ N − 2.

Proof. The only rule that sends some object Xijt to the environment is the rule
rk. In order to be able to apply this rule the object εk is necessary, that verifies
εk ∈ C1+n(3k−1)+k−1(N) with 0 ≤ n ≤ N − 2 by Proposition 2.

Therefore the objects Xijt can only be sent to the environment in the following
configuration, that is Xijt ∈ C1+n(3k−1)+k(env). ¤

Proposition 3. The configuration C(N−1)(3k−1) sends to the environment the halt
object ].

Proof. Applying (N − 1)(3k− 1) times the rule r0 the object η0 ∈ C0(N) is trans-
formed to η(N−1)(3k−1) ∈ C(N−1)(3k−1)(N). In this configuration the rule r′k−1

sends the halt object ] to the environment. ¤
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In the following result we prove that it is only possible to modify the environ-
ment in the k-th step of the loop.

Corollary 2. Let C be an arbitrary computation of the P system. For each
0 ≤ n ≤ N − 2 the following assertions hold:

a) For each r (1 + n(3k − 1) < r < 1 + n(3k − 1) + k) we have:

Cr(env) = C1+n(3k−1)(env)

b) For each r (1 + n(3k − 1) + k < r < 1 + n(3k − 1) + 3k − 1) we have:

Cr(env) = C1+n(3k−1)+k(env)

Proof. ¿From Proposition 3 the only rule that sends some objects to the envi-
ronment before the halting configuration is the rule rk. From Corollary 1 this
rule sends the objects Xijt to the environment in the configuration C1+n(3k−1)+k.
Therefore, for each r ∀r 1 + n(3k − 1) < r < 1 + n(3k − 1) + k, Cr(env) =
C1+n(3k−1)(env) and ∀r 1 + n(3k − 1) + k < r < 1 + n(3k − 1) + 3k − 1
Cr(env) = C1+n(3k−1)+k(env) concluding the proof of a) and b). ¤

In the following results we will prove that in each loop one object Xijt is
sent to the environment. If a loop exists that doesn’t send any object Xijt to the
environment in all the following loops no more objects are sent to the environment.
Therefore a configuration always exists from which any object Xijt is not sent to
the environment.

Firstly we prove that if in the k-th step of the loop the rule rk is not possible
to be applied then in the following loop it is not possible to apply this rule either.
This is because the objects Sij do not exist in the skin membrane.

Proposition 4. For each n (0 ≤ n ≤ N − 2) if the rule rk cannot be applied in
the configuration C1+n(3k−1)+k−1, then it cannot be applied in the configuration
C1+(n+1)(3k−1)+k−1.

Proof. In order to apply the rule rk it is necessary to have the objects εk, γq and
αijt. According to Proposition 2 εk ∈ C1+n(3k−1)+k−1(N) for any n.

With the object γq only the rules rk and rk+3 are applied, this object never
disappears, so it always remains in the skin membrane.

The object αijt is produced by means of the rule ru (1 ≤ u ≤ k − 1). In order
to apply this rule it is necessary to have the object βu−1 and some object Sij . The
object βu−1 is produced by means of the rules r′1, r

′
2, . . . , r

′
u−1.

Therefore if in the configuration C1+n(3k−1)+k the rule rk cannot be applied, it
is because the object αijt does not exist, then the objects Sij ∈ C1+n(3k−1)(N) do
not exist.

¿From the configuration C1+n(3k−1)+k−1 to the configuration C1+(n+1)(3k−1)+k−1

in the skin membrane the only rule that can produce the objects Sij is the rule
rk+3. To apply this rule, the objects Cij are necessary, that are produced in the
rule rk+1 from the objects Sij . As the objects Sij do not exist the rule rk+1 cannot
be applied. ¤
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The following result proves that if the environment in the k-th step of the loop
n + 1 is equal to the environment in the k-th step of the loop n then the environ-
ment is the same until the halting configuration.

Corollary 3. For each n (0 ≤ n ≤ N − 2) if

C1+n(3k−1)+k(env) = C1+(n+1)(3k−1)+k(env)

then for each n′ (n ≤ n′ ≤ N − 2) we have

C1+n(3k−1)+k(env) = C1+n′(3k−1)+k(env)

Proof. We prove by induction that

C1+(n+j)(3k−1)+k(env) = C1+(n+j+1)(3k−1)+k(env) ∀j(0 ≤ j ≤ N − n− 3)

• The case base, j = 0, corresponds to the hypothesis of the corollary, so
C1+n(3k−1)+k(env) = C1+(n+1)(3k−1)+k(env).

• We suppose true for the cases 0 ≤ j < N − n− 3. Let us show that the result
is true for j + 1.
By induction hypothesis we have

C1+(n+j)(3k−1)+k(env) = C1+(n+j+1)(3k−1)+k(env)

that is, in the previous configuration to these it has not been able to send
any object to the environment, that is the rule rk has not been possible to
apply. By Proposition 4 if in the configuration C1+(n+j+1)(3k−1)+k−1 cannot be
applied the rule rk in the configuration C1+(n+j+2)(3k−1)+k−1 cannot be applied
either. Therefore it is not possible to send any object to the environment and
C1+(n+j+1)(3k−1)+k(env) = C1+(n+j+2)(3k−1)+k(env). ¤

We are going to prove that a loop always exists from any object Xijt is sent to
the environment, so it is not possible to apply the rule rk.

Corollary 4. For each computation C there exists an unique object νC (1 ≤ νC ≤
N − 2) such that in the configuration C1+(νC−1)(3k−1)+k the rule rk is applicable
and in the configuration C1+(νC)(3k−1)+k the rule rk is not applicable.

Proof. By Proposition 4 and by Corollary 3 if in the configuration C1+(νC)(3k−1)+k−1

the rule rk is not applicable, then for each j (νC ≤ j ≤ N − 2) we have
C1+νC(3k−1)+k(env) = C1+j(3k−1)+k(env).
Therefore, the rule rk is not applicable in any configuration of the type C1+j(3k−1)+k−1,
∀j νC ≤ j ≤ N − 2. ¤

The following result allows us to give a meaning to the value t of the object
Xijt.
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Proposition 5. Let C be an arbitrary computation of the P system and let the
object X

injnt
(n)
injn

that is sent to the environment by the rule rk in the configuration
C(k+1)+n(3k−1)−1. Then, we have

t
(n)
injn

= max{t | St
ij ∈ C1+n(3k−1)(N), 1 ≤ i < j ≤ N}

Proof. As the rule rk is applicable in the configuration C(k+1)+n(3k−1)−1 then
α

injnt
(n)
injn

∈ C(k+1)+n(3k−1)−1. The object α
injnt

(n)
injn

is obtained from the applica-

tion of one of the rules r
k−t

(n)
injn

over the object S
t
(n)
injn

ij , where t
(n)
injn

is the maximum

of the multiplicities of the objects Sij . If another t′ > t
(n)
injn

exists then the rule
rk−t′ will be applied and so the rule r

k−t
(n)
injn

has not been applied. ¤

The following result proves that the maximum multiplicity to the objects Sij

pertaining to the skin membrane in any loop n is always greater or equal to the
multiplicity the objects Sij of the following loop n + 1.

Proposition 6. Let wn = max{t : St
ij ∈ C1+n(3k−1)(N), 1 ≤ i < j ≤ N}, with

0 ≤ n ≤ N − 2. Then wn ≥ wn+1, for each n.

Proof. If wn = max{t : St
ij ∈ C1+n(3k−1)(N)}, in the following configura-

tions C1+n(3k−1) the rule r0 is applied successively and the rules with priority
r′1, r

′
2, . . . , r

′
wn−1, rwn until arriving at the configuration C1+n(3k−1)+wn

. The ob-
ject Sij is not used in the rules r′1, r

′
2, . . . , r

′
wn−1. For Proposition 5 in the rule

rwn is used the object Sij that have the maximum multiplicity equal to wn. By
this rule the object Sij is eliminated by the membrane labeled by N , therefore
wn ≥ max{t : St

ij ∈ C1+n(3k−1)+wn
(N)}.

From this configuration the rule r0 is applied k−wn times until we obtain the
object εk. In these configurations the objects Sij do not evolve.

• If wn 6= 0, then in the configuration C1+n(3k−1)+k−1 when the rule rk+1 is
applied the information of some objects Sij is sent to the object Cij and later
this information is transformed in the object Sij by means of the rule rk+3.
The rule rk+2 deletes some objects Sij , so the multiplicity of these objects
never increases, it is only possible to decrease. After that the rule r0 is applied
since to arrive at the configuration C1+(n+1)(3k−1).
So, wn+1 = max{t : St

ij ∈ C1+(n+1)(3k−1)(N)} ≤ wn.
• If wn = 0, then the objects Sij do not belong to the skin membrane and by

Proposition 4 it is not possible to produce any object Sij , so: wn+1 = max{t :
St

ij ∈ C1+(n+1)(3k−1)(N)} = 0. ¤

Remark: According to Proposition 6 we obtain t1 ≥ t2 ≥ . . . ≥ tn.

By the following result we show that if a loop goes out to the environment an
object of the type Xijt, then in the following loop the objects Sij , Si′j , Sji′ ,
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i′ /∈ {i, j} disappears from the skin membrane. That is, at the moment that two
clusters {i, j} are joined a new class i is formed and all the objects Si′j′ that have
subscript j disappear.

Proposition 7. Let C be an arbitrary computation of the P system. Let

X
i1j1t

(1)
i1j1

, X
i2j2t

(2)
i2j2

, . . . , X
injnt

(n)
injn

∈ C1+n(3k−1)(env), with 1 ≤ n ≤ νC

If Sij ∈ C1+n(3k−1)(N) then

a) (i, j) /∈ {(i1, j1), . . . , (in, jn)}.
b) {i, j} ∈ {1, . . . , N} − {j1, . . . , jn}.
Proof. We prove the result by induction on n.

• For n=1.
If in the configuration Ck the rule rk sends the object X

i1j1t
(1)
i1j1

to the environ-

ment, then by Proposition 6 in the configuration C
k−t

(1)
i1j1

with 1 ≤ t
(1)
i1j1

< k the

rule r
k−t

(1)
i1j1

has had to apply so the objects Si1j1 have disappeared. Therefore

the objects Sij ∈ C1+(3k−1)(N) verify that (i, j) /∈ {(i1, j1)}.
In the following configurations when we apply the rule rk+1 the pairs of objects
(Si1p, Sj1p), (Si1p, Spj1), (Spi1 , Spj1) are transformed respectively to the objects
Ci1p, Ci1p, Cpi1 , these objects do not have the subscript j1. After that the rule
rk+2 is applied in order to eliminate the objects
Si1p, Sj1p, Spi1 , Spj1 ∈ C1 that have not been eliminated in the previous con-
figurations. By these rules all the objects Sij with {i, j} ∩ {i1, j1} 6= ∅ have
disappeared.
After that when we apply the rule rk+3 the objects Cij , i1 ∈ {i, j} are trans-
formed in the objects Sij , i1 ∈ {i, j}. Therefore if the objects Sij ∈ C1+(3k−1)

then (i, j) /∈ {(i1j1)}, {i, j} ∈ {1, . . . , N} − {j1}.

• Let us suppose the proposition holds for 1 ≤ n < νC . Let us show that the the
result is held for n + 1.
If the object X

in+1jn+1t
(n+1)
in+1jn+1

∈ Ck+n(3k−1)(env) by Proposition 6 in the

configuration C
k−t

(n+1)
in+1jn+1

+n(3k−1)
with 1 ≤ t

(n+1)
in+1jn+1

< k the rule r
k−t

(n+1)
in+1jn+1

has had to apply and the objects Sin+1jn+1 have disappeared. Therefore the
objects Sij ∈ C1+(n+1)(3k−1)(N) verify that (i, j) /∈ {(in+1, jn+1)}, by induction
hypothesis (i, j) /∈ {(i1, j1), . . . , (in, jn)} then
(i, j) /∈ {(i1, j1), . . . , (in+1, jn+1)}.
In the following configurations when we apply the rule rk+1 the pairs of objects
(Sin+1p, Sjn+1p), (Sin+1p, Spjn+1), (Spin+1 , Spjn+1) are transformed respectively
in the objects Cin+1p, Cin+1p, Cpin+1 , these objects do not have the subscript
jn+1. After that the rule rk+2 is applied in order to eliminate the objects
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Sin+1p, Sjn+1p, Spin+1 , Spjn+1 ∈ C1+n(3k−1) that have not been eliminated in the
previous configurations, with these two rules all the objects Sij with {i, j} ∩
{in+1, jn+1} 6= ∅ have disappeared.
When we apply the rule rk+3 the objects Cij , in+1 ∈ {i, j} are transformed in
the objects Sij , in+1 ∈ {i, j}.
So if Sij ∈ C1+(n+1)(3k−1)(N) then
(i, j) /∈ {(in+1jn+1)}, {i, j} ∈ {1, . . . , N} − {jn+1}.
And by the induction hypothesis Sij ∈ C1+(n+1)(3k−1)(N)
(i, j) /∈ {(i1j1), . . . , (injn)}, {i, j} ∈ {1, . . . , N} − {j1 . . . jn} therefore
(i, j) /∈ {(i1j1), . . . , (in+1jn+1)}, {i, j} ∈ {1, . . . , N} − {j1 . . . jn+1}
concluding the proof of b). ¤

In the following proposition we study how the multiplicities of the objects Sij

changed at the moment that two clusters joined.

Proposition 8. Let C be an arbitrary computation of the P system. Let us sup-
posse that X

i1j1t
(1)
i1j1

, X
i2j2t

(2)
i2j2

, . . . , X
injnt

(n)
injn

∈ C1+n(3k−1)(env) with 1 ≤ n ≤ νC,

and t
(n)
ij = max{t : St

ij ∈ C1+n(3k−1)}. Then,

• If in /∈ {i, j} then t
(n+1)
ij = t

(n)
ij . That is, the multiplicity of the objects Sij is

the same in the configurations C1+n(3k−1) and C1+(n+1)(3k−1).
• If 1 ≤ in < jn < p ≤ N then t

(n+1)
inp = min{t(n)

inp, t
(n)
jnp}. That is, the multiplic-

ity of the objects Sinp corresponds to the minimum multiplicity of the objects
Sinp, Sjnp.

• If 1 ≤ in < p < jn ≤ N then t
(n+1)
inp = min{t(n)

inp, t
(n)
pjn
}. That is, the multiplic-

ity of the object Sinp corresponds to the minimum multiplicity of the objects
Sinp, Spjn .

• If 1 ≤ p < in < jn ≤ N then t
(n+1)
pin

= min{t(n)
pin

, t
(n)
pjn
}. That is, the multiplic-

ity of the object Spin corresponds to the minimum multiplicity of the objects
Spin , Spjn .

Proof. For the proof of Proposition 7 when we apply the rule rk+1 in the con-
figuration Ck+(n−1)(3k−1) the pairs of objects (Sinp, Sjnp), (Sinp, Spjn), (Spin , Spjn)
are transformed respectively in the objects Cinp, Cinp, Cpin . Therefore the num-
ber of objects Cinp, Cinp, Cpin are the same respectively of the pairs of the ob-
jects (Sinp, Sjnp), (Sinp, Spjn), (Spin , Spjn). After that the rule rk+2 is applied in
order to eliminate the objects Sinp, Sjnp, Spin , Spjn ∈ C1+(n−1)(3k−1) that have
not been eliminated in the previous configurations. So the multiplicity of the ob-
jects Cinp, Cinp, Cpin is respectively equal to min{t(n)

inp, t
(n)
jnp}, min{t(n)

inp, t
(n)
pjn
}, and

min{t(n)
pin

, t
(n)
pjn
}. When we apply the rule rk+3 the objects Cij are transformed in

the objects Sij . ¤

Next, we define how the partition of the individuals is formed from the objects
sent to the environment.
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Definition 6. Given a computation C of the P system we denote the succession of
partitions of the set of the individuals by ∆C

0 , ∆C
1 , . . . ,∆C

θ . These partitions are
constructed recursively as follows:

The initial partition is formed by the initial individuals,
∆C

0 = {B0
q1
0
, . . . , B0

qN
0
} with q0

i = i y B0
i = {ωi} ≡ {i}

The partition ∆C
1 is constructed from the object X

i1j1t
(1)
i1j1

∈ Ck+1(env) with

1 ≤ i1 < j1 ≤ N as follows:

As {q1
0 , . . . , qN

0 } = {1, . . . , N} then {i1, j1} ⊆ {q1
0 , . . . , qN

0 }.
If i1 = qu

0 , j1 = qs
0 with 1 ≤ u < s ≤ N , then the new cluster is

B1
qu
1

= B0
qu
0
∪B0

qs
0

with qu
1 = qu

0 and

B0
qs
0

/∈ ∆C
1

B1
l = B0

l for l ∈ {q1
0 , . . . , qN

0 } − {qu
0 , qs

0}
Then the new partition obtained is ∆C

1 = {B1
q1
1
, . . . , B1

qN−1
1

}

In a recursive manner we obtain the partition ∆C
n+1 as follows:

¿From the objectsX
i1j1t

(1)
i1j1

, . . . Xinjntinjn
(n) ∈ C(k+1)+(n−1)(3k−1)(env) the parti-

tion ∆C
n = {Bn

q1
n
, . . . , Bn

qN−n
n

} have been obtained and in the configuration C(k+1)+n(3k−1)

the object X
in+1jn+1t

(n+1)
in+1jn+1

with 1 ≤ in+1 < jn+1 ≤ N is sent to the environment.

By Proposition 7, {in+1, jn+1} ∈ {1, . . . , N}−{j1, j2, . . . , jn} therefore in+1 <
jn+1 and {in+1, jn+1} ⊆ {q1

n, . . . , qN−n
n }.

By construction of the partition it is verified {q1
n, . . . , qN−n

n } ⊂ {1, . . . , N} and
we have {j1, j2, . . . , jn} ∩ {q1

n, . . . , qN−n
n } = ∅.

Let in+1 = qu
n, jn+1 = qs

n with 1 ≤ u < s ≤ N , then the new cluster is
Bn+1

qu
n+1

= Bn
qu

n
∪Bn

qs
n

with qu
n+1 = qu

n

Bn
qs

n
/∈ ∆C

n+1

Bn+1
l = Bn

l with l ∈ {q1
n, . . . , qN−n

n } − {qu
n, qs

n}
Then ∆C

n+1 = {Bn+1
q1

n+1
, . . . , Bn+1

qN−n−1
n+1

}

Theorem 1. Let C be an arbitrary computation of the P system. Let us suppose

that S
t
(n)
ij

ij ∈ C1+n(3k−1)(N) and S
t
(n)
ij +1

ij /∈ C1+n(3k−1)(N), with 1 ≤ n ≤ νC. Then,

t
(n)
ij is the minimum similarity between any pair of individuals pertaining to Bn−1

i ∪
Bn−1

j . That is, t
(n)
ij corresponds to the aggregation index between the groups Bn−1

i

and Bn−1
j :

t
(n)
ij = min{t′ : St′

i′j′ ∈ C1(N), St′+1
i′j′ /∈ C1(N) : i′, j′ ∈ Bn

i ∪Bn
j }

Proof. We prove the theorem by induction on n.
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• For n = 0.
By Proposition 1 if S

t
(0)
ij

ij ∈ C1(N) then t
(0)
ij corresponds to the similarity be-

tween individuals i, j.

• Let us suppose it is certain for n with 1 ≤ n < νC .

• Let us show that the theorem is held for n + 1.
In the configuration C(k+1)+(n−1)(3k−1) the partition ∆C

n = {Bn
q1

n
, . . . , Bn

qN−n
n

} is
obtained and in the configuration C(k+1)+n(3k−1) the object Xin+1jn+1t

in+1j
(n+1)
n+1

with 1 ≤ in+1 < jn+1 ≤ N is sent to the environment, then:

– For Proposition 8 if in+1 /∈ {i, j} then t
(n+1)
ij = t

(n)
ij . By the induction

hypothesis t
(n)
ij is the aggregation index between the groups i, j and for the

definition 6, Bn+1
i = Bn+1

i , Bn+1
j = Bn+1

j , then the theorem is true.

– For Proposition 8 we have t
(n+1)
in+1j = min{t(n)

in+1j , t
(n)
jn+1j} and by induction

hypothesis t
(n)
in+1j , t

(n)
jn+1j corresponds to the minimum similarity between any

pair of individuals pertaining respectively to Bn−1
in+1

∪ Bn−1
j , Bn−1

jn+1
∪ Bn−1

j .

Therefore t
(n+1)
in+1j is the minimum of these two similarities and Bn

in+1
=

Bn−1
in+1

∪ Bn−1
jn+1

then it is verified that the minimum similarity between any
pair of individuals pertaining to Bn

in+1
∪Bn

j . ¤

The following result proves that if in the configuration C(k+1)+(n−1)(3k−1) the
object X

injnt
(n)
injn

goes out to the environment, then when we form the partition

∆C
n the similarities between two individuals obtained in each set of ∆C

n are always
greater or equal than t

(n)
injn

.

Proposition 9. Let C be an arbitrary computation of the P system. Let us sup-
pose that in the configuration C(k+1)+(n−1)(3k−1), with 0 ≤ n ≤ νC − 1, the
object X

injnt
(n)
injn

is sent to the environment, and the new partition is ∆C
n =

{Bn
q1

n
, . . . , Bn

qN−n
n

}. Then, the hierarchical index of the cluster Bn
in

is t
(n)
injn

, and

the hierarchical index of the rest of clusters ∆C
n − {Bn

in
} is greater or equal to

t
(n)
injn

.

Proof. We prove this result by induction on n.
For Definition 6, ∆C

0 = {{ω1}, . . . , {ωN}} and f({ωi}) = k with 1 ≤ i ≤ N .

• For n = 1.
∆C

1 = {B1
q1
1
, . . . , B1

qN−1
1

} with Bi1 = {ωi1 , ωj1} and Bj = {ωj}, ∀j 6= i1.

Then f(Bj) = k with j 6= i1

and f(Bi1) = t
(1)
i1j1

because s(ωi1 , ωj1) = t
(1)
i1j1

≤ k − 1.
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• We suppose that is true for any 1 ≤ n ≤ νC . Let us show that the result holds
for n + 1.
In the configuration C(k+1)+n(3k−1) the rule rk sends the object X

in+1jn+1t
(n+1)
in+1jn+1

to the environment, where t
(n+1)
in+1jn+1

is the similarity between the clusters in+1

and jn+1. By construction of the P system t
(n+1)
in+1jn+1

≤ tn and the partition is
∆C

n+1 = {Bn+1
q1

n+1
, . . . , Bn+1

qN−n−1
n+1

} for Definition 6:

– If in+1, jn+1 ∈ Bn
ql

n
then Bn+1

ql
n+1

= Bn
ql

n
and for induction hypothesis

f(Bn+1
ql

n+1
) = t

(n)
injn

≥ t
(n+1)
in+1jn+1

.

– If Bn+1
in+1

= Bn
in+1

∪Bn
jn+1

and δ(Bn
in+1

, Bn
jn+1

) = t
(n+1)
in+1jn+1

, then

f(Bn+1
in+1

) = t
(n+1)
in+1jn+1

. ¤

Proposition 10. The P system Π(PNk) allows us to find a hierarchical clustering.

Proof. ¿From the partition ∆C
0 , ∆C

1 , . . . , ∆C
θ according to Definition 6 we can

obtain an indexed hierarchy P0, P1, . . . , Pm with 1 ≤ m ≤ N − 1.
By Proposition 9 all partitions ∆C

n have a hierarchical index tn = t
(n)
injn

and we
denoted by (∆C

0 , t0), (∆C
1 , t1), . . . , (∆C

θ , tθ) with
t0 > t1 = t2 = . . . tp1 > tp1+1 = . . . = tp2 > . . . > tpm = . . . = tθ.

In order to construct the partition P0, P1, . . . , Pm we do the following steps:

– P0 = ∆0 = {{ω1}, {ω2}, . . . , {ωN}}.
– The partitions ∆1, . . . , ∆p1 have associated a hierarchical index equal to t1 so

P1 = ∆p1 .
– The partitions ∆p1+1, . . . , ∆p2 have associated a hierarchical index equal to tp2

so P2 = ∆p2 .
– And successively until we have one of the following situations:

– if ∆θ has a hierarchical index tθ = k − 1 then Pm = ∆θ = Ω.
– if ∆θ has a hierarchical index tθ < k − 1 then Pm−1 = ∆θ and Pm = Ω.

¤

4 Conclusions

One of the central issues when we have a set of individuals characterized by a
k-tuple is to obtain a cluster that allows us to group similar individuals.

In this paper we propose a non-deterministic P system with external output to
obtain a hierarchical clustering. This P system gives one of the possible solutions
to the problem. We give an efficient (semi-uniform) solution to the problem of clus-
tering in the framework of the cellular computing with membranes. The solution
is semi-uniform because for each matrix formed by the values of the individuals,
a specific P system with external output is designed. The solution is efficient, be-
cause it is polynomial in order of the number of N individuals and of the number
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of k characteristics. The amount of resources initially required to construct the
system is quadratic in N and k.

The mechanisms of the formal verification of P systems are often a very hard
task. So to have new examples is always interesting, in order to find systematic
processes of formal verification in a model of computation oriented to machines, like
the cellular model. The paper also provides a new example of formal verification
of P systems designed to solve a problem, following a specific methodology valid
in some cases as those considered in the paper.
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