
On the Number of Agents in P Colonies

Luděk Cienciala1, Lucie Ciencialová1, Alica Kelemenová1,2

1 Institute of Computer Science, Silesian University in Opava, Czech Republic
2 Department of Computer Science, Catholic University Ružomberok, Slovakia
{ludek.cienciala, lucie.ciencialova, alica.kelemenova}@fpf.slu.cz

Summary. We continue the investigation of P colonies introduced in [7], a class of
abstract computing devices composed of independent agents, acting and evolving in a
shared environment.

We decrease the number of agents needed to computational completeness of P colonies
with one and two objects inside each agent, respectively, owing some special restrictions
to the type of programs. We characterize the generative power of the partially blind
machine by the generative power of special P colonies.

1 Introduction

P colonies were introduced in paper [7] as formal models of a computing de-
vice inspired by membrane systems and by grammar systems called colonies. This
model is inspired by structure and functioning of a community of living organisms
in a shared environment.

The independent organisms living in a P colony are called agents. Each agent
is represented by a collection of objects embedded in a membrane. The number
of objects inside the agent is the same for each one of them. The environment
contains several copies of a basic environmental object denoted by e. The number
of the copies of e is unlimited.

A set of programs is associated with each agent. The program determines
the activity of the agent by rules. In every moment all the objects inside of the
agent are being evolved (by an evolution rule) or transported (by a communication
rule). The third type of the rules used is a checking rule. This type of the rules
sets the priority between two rules.

The computation starts in the initial configuration specified in the definition.
Using their programs the agents change themselves and by the environment they
can affect the behavior of the other agents. In each step of the computation,
each agent with at least one applicable program nondeterministically chooses one
of them and executes it. The computation halts when no agent can apply any of its

228 L. Cienciala, L. Ciencialová, A. Kelemenová

programs. The result of the computation is the number of some specific objects
present at the environment at the end of the computation.

There are several different ways how to define the beginning of the computation.
(1) At the beginning of computation the environment and all agents contain only
copies of object e. (2) All the agents can contain various objects at the beginning
of computation - the agents are in different initial states.
(3) The initial state of the environment is nonempty - the environment contains
initial ”parameters” for future computation, the agents start with e-s.

In [4, 6, 7] the authors study P colonies with two objects inside the agents. In
this case programs consist of two rules, one for each object. If the former of these
rules is an evolution and the latter is a communication or checking, we talk about
restricted P colonies. If we allow also another combination of the types of the rules,
we obtain non-restricted P colonies. The restricted P colonies with the checking
rules are computationally complete [3, 4]. Activities carried out in the field of mem-
brane computing are currently numerous and they are available also at [11].

In the present paper we start with definitions in Section 2.
In Section 3 we will deal with P colonies with one object inside each agent. In

recent paper [1] there was shown, that at most seven programs for each agent as
well as five agents guarantees the computational completeness of these P colonies.
In the preset paper we look for the generative power of P colonies with less than
five agents. Two results are achieved in this direction. First, we show, that four
agents are enough for computational completeness of P colonies. The second result
gives a lower bound for the generative power the P colonies with two agents. Even
a restricted variant of these P colonies is at least as powerful as the partially blind
register machines.

Restricted P colonies are studied in Section 4. It is known that one agent
is sufficient to obtain computational completeness of restricted P systems with
checking rules. If no checking rules are used in the restricted P colonies then we
need two agents to prove the universal computational power of those P colonies.

2 Definitions

Throughout the paper we assume the reader to be familiar with the basics of the
formal language theory.

We use NRE to denote the family of the recursively enumerable sets of natural
numbers. Let Σ be the alphabet. Let Σ∗ be the set of all words over Σ (includ-
ing the empty word ε). We denote the length of the word w ∈ Σ∗ by |w| and
the number of occurrences of the symbol a ∈ Σ in w by |w|a.

A multiset of objects M is a pair M = (V, f), where V is an arbitrary (not
necessarily finite) set of objects and f is a mapping f : V → N ; f assigns to each
object in V its multiplicity in M . The set of all multisets with the set of ob-
jects V is denoted by V ◦. The set V ′ is called the support of M and denoted
by supp(M) if for all x ∈ V ′ f(x) 6= 0 holds. The cardinality of M , denoted by

On the Number of Agents in P Colonies 229

|M |, is defined by |M | =
∑

a∈V f(a). Any multiset of objects M with the set of
objects V ′ = {a1, . . . an} can be represented as a string w over alphabet V ′ with
|w|ai

= f(ai); 1 ≤ i ≤ n. Obviously, all words obtained from w by permuting
the letters can also represent the same M , and ε represents the empty multiset.

2.1 P colonies

We briefly recall the notion of P colonies. A P colony consists of agents and envi-
ronment. Both the agents and the environment contain objects. With every agent
the set of program is associated. There are two types of rules in the programs.
The first type, called the evolution, is of the form a → b. It means that object a
inside of the agent is rewritten (evolved) to the object b. The second type of rules,
called a communication, is in the form c ↔ d. When this rule is performed, the ob-
ject c inside the agent and the object d outside of the agent change their places,
so, after execution of the rule d appears inside the agent and c is placed outside
of the agent.

In [6] the ability of agents is extended by checking rules. These rules give to
the agents an opportunity to opt between two possibilities. They have form r1/r2.
If the checking rule is performed, the rule r1 has higher priority to be executed
as the rule r2 has. It means that the agent checks the possibility to use rule r1.
If it can be executed, the agent has to use it. If the first rule cannot be applied,
the agent uses the second one.

Definition 1. The P colony of the capacity k is a construct
Π = (A, e, f, VE , B1, . . . , Bn), where

• A is an alphabet of the colony, its elements are called objects,
• e ∈ A is the basic object of the colony,
• f ∈ A is the final object of the colony,
• VE is a multiset over A− {e},
• Bi, 1 ≤ i ≤ n, are agents, each agent is a construct Bi = (Oi, Pi), where

– Oi is a multiset over A, it determines the initial state (content) of the agent,
|Oi| = k,

– Pi = {pi,1, . . . , pi,ki} is a finite multiset of programs, where each program
contains exactly k rules, which are in one of the following forms each:
· a → b, called an evolution rule,
· c ↔ d, called a communication rule,
· r1/r2, called a checking rule; r1, r2 are an evolution or a communication

rules.

An initial configuration of the P colony is an (n+1)-tuple of strings of objects
present in the P colony at the beginning of the computation, it is given by Oi

for 1 ≤ i ≤ n and by VE . Formally, the configuration of P colony Π is given
by (w1, . . . , wn, wE), where |wi| = k, 1 ≤ i ≤ n, wi represents all the objects
placed inside the i-th agent and wE ∈ (A− {e})∗ represents all the objects in the
environment different from the object e.

230 L. Cienciala, L. Ciencialová, A. Kelemenová

In the paper parallel model of P colonies will be studied. At each step of the
parallel computation each agent tries to find one program to use. If the number
of applicable programs is higher than one, the agent nondeterministically chooses
one of them. At one step of computation the maximal possible number of agents
are active.

Let the programs of each Pi be labeled in a one-to-one manner by labels in a
set lab (Pi) in such a way that lab (Pi) ∩ lab (Pj) = ∅ for i 6= j, 1 ≤ i, j ≤ n.

To express derivation step formally we introduce following four functions for
the agent using the rule r of program p ∈ P with objects w in the environment:

For rule r being a → b, c ↔ d and c ↔ d/c′ ↔ d′, respectively, and for multiset
w ∈ V ◦ we define:

left (a → b, w) = a
right (a → b, w) = b
export (a → b, w) = ε
import (a → b, w) = ε

left (c ↔ d,w) = ε
right (c ↔ d,w) = ε
export (c ↔ d,w) = c
import (c ↔ d,w) = d

left (c ↔ d/c′ ↔ d′, w) = ε
right (c ↔ d/c′ ↔ d′, w) = ε
export (c ↔ d/c′ ↔ d′, w) = c
import (c ↔ d/c′ ↔ d′, w) = d

}
for |w|d ≥ 1

export (c ↔ d/c′ ↔ d′, w) = c′

import (c ↔ d/c′ ↔ d′, w) = d′

}
for |w|d = 0 and |w|d′ ≥ 1

For a program p and any α ∈ {left, right, export, import}, let
α (p, w) = ∪r∈pα (r, w).

A transition from a configuration to another is denoted as
(w1, . . . , wn; wE) ⇒ (w′1, . . . , w

′
n; w′E) , where the following conditions

are satisfied:

• There is a set of program labels P with |P | ≤ n such that
– p, p′ ∈ P , p 6= p′, p ∈ lab (Pj) implies p′ /∈ lab (Pj),
– for each p ∈ P , p ∈ lab (Pj), left (p, wE) ∪ export (p, wE) = wj , and⋃

p∈P

import (p, wE) ⊆ wE .

• Furthermore, the chosen set P is maximal, that is, if any other program
r ∈ ∪1≤i≤nlab (Pi), r /∈ P , is added to P , then the conditions above are not
satisfied.

Now, for each j, 1 ≤ j ≤ n, for which there exists a p ∈ P with p ∈ lab (Pj),
let w′j = right (p, wE) ∪ import (p, wE) . If there is no p ∈ P with p ∈ lab (Pj) for
some j, 1 ≤ j ≤ n, then let w′j = wj and moreover, let

w′E = wE −
⋃

p∈P

import (p, wE) ∪ ⋃
p∈P

export (p, wE) .

A configuration is halting if the set of program labels P satisfying the conditions
above cannot be chosen to be other than the empty set. A set of all possible halting

On the Number of Agents in P Colonies 231

configurations is denoted by H. With a halting computation we can associate a
result of the computation. It is given by the number of copies of the special symbol
f present in the environment. The set of numbers computed by a P colony Π is
defined as

N (Π) =
{
|vE |f | (w1, . . . , wn, VE) ⇒∗ (v1, . . . , vn, vE) ∈ H

}
,

where (w1, . . . , wn, VE) is the initial configuration, (v1, . . . , vn, vE) is a halting
configuration, and ⇒∗ denotes the reflexive and transitive closure of ⇒.

Given a P colony Π = (A, e, f, VE , B1, . . . , Bn) the maximal number of
programs associated with the agents in P colony Π is called the height of P colony
Π. The degree of P colony Π is the number of agents in P colony Π. The third
parameter characterizing a P colony is the capacity of P colony Π describing the
number of the objects inside each agent.

Let us use the following notations:
NPCOLpar(k, n, h) for the family of all sets of numbers computed by P colonies
working in parallel, using no checking rules and with:

- the capacity at most k,
- the degree at most n and
- the height at most h.

If we allow checking rules the family of all sets of numbers computed by P colonies
is denoted by NPCOLparK. If the P colonies are restricted, we replace the deno-
tation to NPCOLparR and NPCOLparKR, respectively.

2.2 Register machines

In this paper we want to characterize the size of the families NPCOLpar(k, n, h)
comparing them with the recursively enumerable sets of numbers. To achieve this
aim we use the notion of a register machine.

Definition 2. [8] A register machine is the construct M = (m,H, l0, lh, P) where:
- m is the number of registers,
- H is the set of instruction labels,
- l0 is the start label, lh is the final label,
- P is a finite set of instructions injectively labeled with the elements

from the set H.

The instruction of the register machine are of the following forms:
l1 : (ADD(r), l2, l3) Add 1 to the content of the register r and proceed to the

instruction (labeled with) l2 or l3.
l1 : (SUB(r), l2, l3) If the register r stores the value different from zero, then

subtract 1 from its content and go to instruction l2, other-
wise proceed to instruction l3.

lh : HALT Stop the machine. The final label lh is only assigned to this
instruction.

Without loss of generality, one can assume that in each ADD-instruction l1 :
(ADD(r), l2, l3) and in each conditional SUB-instruction l1 : (SUB(r), l2, l3) the
labels l1, l2, l3 are mutually distinct.

232 L. Cienciala, L. Ciencialová, A. Kelemenová

The register machine M computes a set N(M) of numbers in the following way:
it starts with all registers empty (hence storing the number zero) with the instruc-
tion labeled l0 and it proceeds to apply the instructions as indicated by the labels
(and made possible by the contents of registers). If it reaches the halt instruction,
then the number stored at that time in the register 1 is said to be computed by M
and hence it is introduced in N(M). (Because of the nondeterminism in choosing
the continuation of the computation in the case of ADD-instructions, N(M) can
be an infinite set.) It is known (see e.g.[8]) that in this way we can compute all
sets of numbers which are Turing computable.

Moreover, we call a register machine partially blind [5], if we interpret a sub-
tract instruction in the following way: l1 : (SUB(r); l2; l3) - if in register r there
is value different from zero, then subtract one from its contents and go to instruc-
tion l2 or to instruction l3; if in register r there is stored zero when attempting to
decrement register r, then the program ends without yielding a result.

When the register machine reaches the final state, the result obtained in the
first register is only taken into account if the remaining registers store value zero.
The family of sets of non-negative integers generated by partially blind register
machines is denoted by NRMpb. The partially blind register machine accepts a
proper subset of NRE.

3 P colonies with one object inside the agent

In this Section we analyze the behavior of P colonies with only one object inside
each agent of P colonies. This gives that every program is formed by only one rule,
either an evolution or a communication.

If all the agents have their programs with evolution rules, the agents ”live only
for themselves” and do not communicate with the environment.

In [1] following results was proved:
– NPCOLparK(1, ∗, 7) = NRE.
– NPCOLparK(1, 5, ∗) = NRE
The number of agents in the second result can be decreased:

Theorem 1. NPCOLparK(1, 4, ∗) = NRE

Proof. We construct a P colony simulating the computation of the register ma-
chine. Because there are only copies of e in the environment and inside the agents,
we have to initialize a computation by generating initial label l0. After generating
symbol l0 this agent stops and it can start its activity only by using a program
with communicating rule. Two agents will cooperate in order to simulate the ADD
and SUB instructions.

Let us consider an m-register machine M = (m,H, l0, lh, P) and present
the content of the register i by the number of copies of a specific object ai in the en-
vironment. We construct the P colony Π = (A, e, f, ∅, B1, . . . , B4) with:

On the Number of Agents in P Colonies 233

– alphabet A = {l, l′|l ∈ H}∪
∪ {Ei, E

′
i, Fi, F

′
i , F

′′
i | for each li ∈ H}∪

∪ {ai|1 ≤ i ≤ m} ∪ {e, d,m, C},
– f = a1,
– Bi = (e, Pi), 1 ≤ i ≤ 4.

(1) To initialize simulation of computation of M we take agent B1 = (e, P1) with
a set of programs:

P1 :
1 : 〈e → l0〉 , 2 : 〈l0 ↔ d〉 ;

(2) We need one more agent to generate some special object d. In every pair of
steps the agent B2 places one copy of d to the environment.

P2 :
3 : 〈e → d〉 , 4 : 〈d ↔ C/d ↔ e〉 ;
The P colony Π starts its computation in the initial configuration (e, e, e, e, ε).

In the first subsequence of steps of P colony Π only agents B1, B2 can apply its
programs.

configuration of Π
step B1 B2 B3 B4 Env P1 P2 P3 P4

1. e e e e 1 3
2. l0 d e e 4
3. l0 e e e d 2 3
4. d d e e l0

(3) To simulate the ADD-instruction l1 : (ADD(r), l2, l3) there are two agents B3

and B4 in P colony Π. These agents help each other to add one copy of object ar

and object l2 or l3 to the environment.
P3 P3 P4 P4

5 : 〈e ↔ l1〉 , 11 : 〈E′
1 → l′2〉 , 15 : 〈e ↔ E1〉 , 21 : 〈e ↔ l′2〉 ,

6 : 〈l1 → E1〉 , 12 : 〈E′
1 → l′3〉 , 16 : 〈E1 → E′

1〉 , 22 : 〈e ↔ l′3〉 ,
7 : 〈E1 ↔ d〉 , 13 : 〈l′2 ↔ e〉 , 17 : 〈E′

1 ↔ e〉 , 23 : 〈l′2 → l2〉 ,
8 : 〈d → L1〉 , 14 : 〈l′3 ↔ e〉 , 18 : 〈e ↔ L1〉 , 24 : 〈l′3 → l3〉 ,
9 : 〈L1 ↔ E′

1/L1 → m〉 , 19 : 〈L1 ← ar〉 , 25 : 〈l2 ↔ e〉 ,
10 : 〈m → d〉 , 20 : 〈ar ↔ e〉 , 26 : 〈l3 ↔ e〉 ;

The agent B3 consumes the object l1, changes it to E1 and places it to the envi-
ronment. The agent B4 borrows E1 from the environment and gives a little altered
(to E′

1) back. B3 rewrites the object d to some Li. If this Li has the same index
as E′

i placed in the environment, the computation can go to the next phase. If
indices of Li and Ei are different the agent B3 tries to generate another Li. If
the computation gets over this checking step, B3 generates the helpful object l′2 or
l′3 and places it to the environment. The agent B4 exchanges it for ”valid label” l2
or l3.

An instruction li : (ADD(r), lj , lk) is simulated by the following sequence
of steps. Let the content of the agent B2 be d.

234 L. Cienciala, L. Ciencialová, A. Kelemenová

configuration of Π
step B1 B2 B3 B4 Env P1 P2 P3 P4

1. d d e e lia
u
r dv 4 5

2. d e li e au
r dv+1 3 6

3. d d Ei e au
r dv+1d 4 7

4. d e d e Eia
u
r dv+1 3 8 15

configuration of Π
step B1 B2 B3 B4 Env P1 P2 P3 P4

5. d d Li Ei au
r dv+1 4 16

6. d e Li E′
i au

r dv+2 3 17
7. d d Li e E′

ia
u
r dv+2 4 9

8. d e E′
i e Lia

u
r dv+3 3 11 or 12 18

9. d d l′j Li au
r dv+3 4 13 19

10. d e e ar l′ja
u
r dv+4 3 20

11. d d e e l′ja
u+1
r dv+4 4 21

12. d e e l′j au+1
r dv+5 3 23

13. d d e lj au+1
r dv+5 4 25

14. d e e e lja
u+1
r dv+6

(4) For each SUB-instruction l1 : (SUB(r), l2, l3) , the next programs are intro-
duced in the sets P1, P3 and in the set P4:
P3 P3 P1 P4

27 : 〈e ↔ l1〉 , 33 : 〈F ′′1 → l′3〉 , 36 : 〈d ↔ F1〉 , 41 : 〈e ↔ l′2〉 ,
28 : 〈l1 → F1〉 , 34 : 〈l′2 ↔ e〉 , 37 : 〈F1 → F ′1〉 , 42 : 〈e ↔ l′3〉 ,
29 : 〈F1 ↔ d〉 , 35 : 〈l′3 ↔ e〉 ; 38 : 〈F ′1 ↔ ar/F ′1 → F ′′1 〉 , 43 : 〈l′2 → l2〉 ,
30 : 〈d ↔ F ′1〉 , 39 : 〈ar → d〉 , 44 : 〈l′3 → l3〉 ,
31 : 〈F ′1 → l′2〉 , 40 : 〈F ′′1 ↔ d〉 , 45 : 〈l2 ↔ e〉 ,
32 : 〈d ↔ F ′′1 〉 , 46 : 〈l3 ↔ e〉

Agent B4 starts simulation of executing SUB-instruction l1, the agent B1 checks
whether there is a copy of the object ar in the environment or not and gives this
information (F ′1 - there is some ar; F ′′1 - there is no object ar in the environment)
to the environment.

An instruction li : (SUB(r), lj , lk) is simulated by the following sequence of
steps. When the value in counter r is zero:

On the Number of Agents in P Colonies 235

configuration of Π applicable programs
step B1 B2 B3 B4 Env P1 P2 P3 P4

1. d d e e lid
v 4 27

2. d e li e dv+1 3 28
3. d d Fi e dv+1d 4 29
4. d e d e Fid

v+1 36 3
5. Fi d d e dv+2 37 4
6. F ′i e d e dv+3 38 3
7. F ′′i d d e dv+3 40 4
8. d e d e F ′′i dv+3 3 32
9. d d F ′′i e dv+4 4 33
10. d e l′k e dv+5 3 35
11. d d e e l′kdv+5 4 42
12. d e e l′k dv+6 3 44
13. d d e lk dv+6 4 46
14. d e e e lkdv+7

When register r stores value different from zero:

configuration of Π
step B1 B2 B3 B4 Env P1 P2 P3 P4

1. d d e e lia
u
r dv 4 27

2. d e li e au
r dv+1 3 28

3. d d Fi e au
r dv+1d 4 29

4. d e d e Fia
u
r dv+1 36 3

5. Fi d d e au
r dv+2 37 4

6. F ′i e d e au
r dv+3 38 3

7. ar d d e Fia
u−1
r dv+3 39 4 30

8. d e F ′i e au−1
r dv+5 3 31

9. d d l′j e au−1
r dv+5 4 34

10. d e e e l′ja
u−1
r dv+6 3 41

11. d d e l′j au−1
r dv+6 4 43

12. d e e lj au−1
r dv+7 3 45

13. d d e e lja
u−1
r dv+7

(5) The halting instruction lh is simulated by agent B3 with subset of programs:

P3

47 : 〈e ↔ lh〉 , 48 : 〈lh → C〉 , 49 : 〈C ↔ e〉 .
The agent consumes the object lh and in the environment there is no other

object lm. This agent places one copy of the object C to the environment and stops
working. In the next step the object C is consumed by the agent B3. No agent
can start its work and computation halts. The execution of halting instruction lh
stops all agents in P colony Π:

236 L. Cienciala, L. Ciencialová, A. Kelemenová

configuration of Π
step B1 B2 B3 B4 Env P1 P2 P3 P4

1. d d e e lhdv 4 47
2. d e lh e dv+1 3 48
3. d d C e dv+1d 4 49
4. d e e e Cdv+1 3
5. d d e e Cdv+2 4
6. d C e e dv+3 - - - - - - - - - - - - - - -

P colony Π correctly simulates computation in the register machine M .
The computation of Π starts with no object ar placed in the environment
in the same way as the computation in M starts with zeros in all the registers.
The computation of Π stops if the symbol lh is placed inside the corresponding
agent in the same way as M stops by executing the halting instruction labeled
lh. Consequently, N(M) = N(Π) and because the number of agents equals four,
the proof is complete. ut
Theorem 2. NRMpb ⊆ NPCOLpar(1, 2, ∗).
Proof. Let us consider a partially blind register machine M with m registers. We
construct a P colony Π = (A, e, f, VE , B1, B2) simulating a computation of the
register machine M with:

- A = {J, J ′, V, Q} ∪ {li, l′i, l′′i , Li, L
′
i, L

′′
i , Ei | li ∈ H} ∪ {ar | 1 ≤ r ≤ m},

- f = a1,
- Bi = (Oi, Pi), Oi = {e}, i = 1, 2

The sets of programs are as follows:
(1) For initializing the simulation:
P1 : P1 : P2 :
1 : 〈e → J〉 , 3 : 〈J → l0〉 , 5 : 〈e ↔ J〉 ,
2 : 〈J ↔ e〉 , 4 : 〈Q → Q〉 , 6 : 〈J → J ′〉 ,

7 : 〈J ′ ↔ e〉 ;
At the beginning of the computation the first agent generates the object l0 (the la-
bel of starting instruction of M). It generates some copies of object J . The agent
B2 exchange them by J ′.

configuration of Π

B1 B2 Env P1 P2

1. e e 1 −
2. J e 2 or 3 −
3. e e J 1 5
4. J J 2 or 3 6
5. l0 J ′ 8 or 24 or 34 7
6. ? e J ′

(2) For every ADD-instruction l1 : (ADD(r), l2, l3) P1 and P2 contain:

On the Number of Agents in P Colonies 237

P1 : P1 : P2 :
8 : 〈l1 → l′1〉 , 14 : 〈L1 ↔ E1〉 , 18 : 〈e ↔ l′1〉 ,
9 : 〈l′1 ↔ J ′〉 , 15 : 〈L1 → Q〉 , 19 : 〈l′1 → E1〉 ,

10 : 〈l′1 → Q〉 , 16 : 〈E1 → l2〉 20 : 〈E1 ↔ e〉 ,
11 : 〈J ′ → L′′1〉 , 17 : 〈E1 → l3〉 21 : 〈e ↔ L1〉
12 : 〈L′′1 → L′1〉 , 22 : 〈L1 → ar〉
13 : 〈L′1 → L1〉 , 23 : 〈ar ↔ e〉

When there is object l1 inside agent B1, the agent rewrites it to one copy of l′1 and
the agent sends it to the environment. The agent B2 borrows E1 from the envi-
ronment and returns E′

1 back.
The agent B1 rewrites the object J ′ to some Li. The first agent has to generate

it in three steps to wait till the second agent generates the symbol E′
i and places it

to the environment. If this Li has the same index as E′
i placed in the environment,

the computation can go to the next phase. If the indices of Li and Ei are different,
the agent B1 generates Q and the computation never stops. If the computation
gets over this checking step, B1 generates object l2 or l3.

configuration of Π

B1 B2 Env P1 P2

1. l1 e J ′ 8 −
2. l′1 e J ′ 9 or 10 −
3. J ′ e l′1 11 18
4. L′′1 l′1 12 19
5. L′1 E1 13 20
6. L1 e E1 14 or 15 −
7. E1 e L1 16 or 17 21
8. l2 L1 8 or 24 or 34 22
9. ? ar 9 or 25 or 35 23
10. ? e ar

(3) For every SUB-instruction l1 : (SUB(r), l2, l3) there are subsets of programs
in P1 and P2:

P1 : P1 : P2 :
24 : 〈l1 → l′′1 〉 , 28 : 〈V ↔ l′′′1 〉 , 31 : 〈l′′1 ↔ e〉 ,
25 : 〈l′′1 ↔ ar〉 , 29 : 〈l′′′1 → l2〉 , 32 : 〈l′′1 → l′′′1 〉 ,
26 : 〈l′′1 → Q〉 , 30 : 〈l′′′1 → l3〉 33 : 〈l′′′1 ↔ e〉 ,
27 : 〈ar → V 〉 ,

In the first step the agent checks if there is any copy of ar in the environment (for
zero in register r). In the positive case it rewrites ar to V , in the other case l′′1 is
rewritten to Q and the computation will never halt. At the end of this simulation
the agent B1 generates object l2 or l3.

238 L. Cienciala, L. Ciencialová, A. Kelemenová

configuration of Π

B1 B2 Env P1 P2

1. l1 e ar 24 −
2. l′′1 e ar 25 or 26 −
3. ar e l′′1 27 31
4. V l′′1 − 32
5. V l′′′1 − 33
6. V e l′′′1 28 −
7. l′′′1 e 29 or 30 −
8. l2 e

configuration of Π

B1 B2 Env P1 P2

1. l1 e 24 −
2. l′′1 e 26 −
3. Q e 4
4. Q e

(4) For halting instruction lh there are programs in sets P1 and P2:
P1 : P2 : P2 :
34 : 〈lh ↔ J ′〉 , 39 : 〈e ↔ lh〉 , 43 : 〈Lh ↔ ar〉 , 1 < r ≤ m

35 : 〈J ′ → Lh〉 , 40 :
〈
lh → lh

〉
, 44 : 〈ar ↔ e〉

36 : 〈lh → Q〉 , 41 :
〈
lh ↔ e

〉
,

37 : 〈Lh → Lh〉 , 42 : 〈e ↔ Lh〉
38 :

〈
Lh ↔ lh

〉
,

By using these programs, the P colony finishes the computation in the same way
as the partially blind register machine halts its computation. Programs with labels
43 and 44 in P2 check value zero stored in all except the first one registers.

all counters r, 1 < r ≤ m store zero

configuration of Π

B1 B2 Env P1 P2

1. lh e J ′ 34 or 36 −
2. J ′ e lh 35 39
3. Lh lh 37 40
4. Lh lh 37 41
5. LH e lh 38 −
6. lh e Lh − 42
7. lh Lh − −

content of some counter r, 1 < r ≤ m is
different from zero

configuration of Π

B1 B2 Env P1 P2

1. lh e J ′ar 34 or 36 −
2. J ′ e lhar 35 39
3. Lh lh ar 37 40
4. Lh lh ar 37 41
5. LH e lhar 38 −
6. lh e Lhar − 42
7. lh Lh ar − 43
8. lh ar Lh − 44
9. lh Lh ar − 43

P colony Π correctly simulates any computation of the partially blind register
machine M . ut

4 On computational power of restricted P colonies without
checking

For restricted P colonies Following results are known from the literature:

On the Number of Agents in P Colonies 239

• NPCOLparKR(2, ∗, 5) = NRE in [2, 7],
• NPCOLparR(2, ∗, 5) = NPCOLparKR(2, 1, ∗) = NRE in [4].

Theorem 3. NPCOLparR(2, 2, ∗) = NRE.

Proof. Let us consider a register machine M with m registers. We construct
a P colony Π = (A, e, f, Ve, B1, B2) simulating the computations of register ma-
chine M with:

- A = {G} ∪ {li, l′i, l′′i , l′′′i , l′′′′i , li, li, li, li, Li, L
′
i, L

′′
i , Fi | li ∈ H} ∪

∪ {ar | 1 ≤ r ≤ m},
- f = a1,
- Bj = (Oj , Pj), Oj = {e, e}, j = 1, 2

At the beginning of the computation the first agent generates the object l0 (the
label of starting instruction of M). Then it starts to simulate instruction labeled
l0 and it generates the label of the next instruction. The sets of programs are as
follows:

(1) For initializing of the simulation there is one program in P1:
P1

1 : 〈e → l0; e ↔ e〉
The initial configuration of Π is (ee, ee, ε). After the first step of computation

(only the program 1 is applicable) the system enters configuration (l0e, ee, ε).
(2) For every ADD-instruction l1 : (ADD(r), l2, l3) we add to P1 the programs:
P1

2 : 〈e → ar; l1 ↔ e〉 , 3 : 〈e → G; ar ↔ l1〉 ,
4 : 〈l1 → l2; G ↔ e〉 , 5 : 〈l1 → l3; G ↔ e〉

When there is object l1 inside the agent, it generates one copy of ar, puts it to
the environment and generates the label of the next instruction (it nondetermin-
istically chooses one of the last two programs 4 and 5)

configuration of Π

B1 B2 Env P1 P2

1. l1e ee ax
r 2 −

2. are ee l1a
x
r 3 −

3. Gl1 ee ax+1
r 4 or 5 −

4. l2e ee ax+1
r G

(3) For every SUB-instruction l1 : (SUB(r), l2, l3), the next programs are added
to sets P1 and P2:

240 L. Cienciala, L. Ciencialová, A. Kelemenová

P1 P1

6 : 〈l1 → l′1; e ↔ e〉 12 :
〈
l1 → l2; e ↔ L′′1

〉

7 : 〈e → l′′1 ; l′1 ↔ e〉 13 :
〈
l1 → l3; e ↔ L1

〉

8 : 〈e → l′′′1 ; l′′1 ↔ e〉 14 :
〈
L′′1 → l2; l2 ↔ e

〉

9 : 〈l′′′1 → l′′′′1 ; e ↔ e〉 15 :
〈
L1 → F3; l3 ↔ e

〉

10 :
〈
l′′′′1 → l1; e ↔ e

〉
16 :

〈
e → l3; F3 ↔ l3

〉

11 :
〈
l1 → l1; e ↔ e

〉
17 :

〈
l3 → l3; l3 ↔ e

〉

P2

18 : 〈e → L1; e ↔ l′1〉
19 : 〈l′1 → L′1; L1 ↔ l′′1 〉
20 : 〈l′′1 → L′′1 ; L′1 ↔ ar〉
21 : 〈ar → e;L′′1 ↔ L1〉
22 : 〈L1 → e; e ↔ e〉
23 : 〈l′′1 → e; L′1 ↔ F3〉
24 : 〈F3 → e; e ↔ e〉

At the first phase of the simulation of the SUB instruction the first agent
generates object l′1, which is consumed by the second agent. The agent B2 generates
symbol L1 and tries to consume one copy of symbol ar. If there is any ar, the agent
sends to the environment object L′′1 and consumes L1. After this step the first agent
consumes L′′1 or L1 and rewrites it to l2 or l3. The objects x, x and x are used for
a synchronization of the computation in both agents and for storing information
about the state of the computation.

Instruction l1 : (SUB(r), l2, l3) is simulated by the following sequence of steps.

If the register r stores value zero :
configuration of Π

B1 B2 Env P1 P2

1. l1e ee ax
r 6 −

2. l′1e ee ax
r 7 −

3. l′′1e ee l′1a
x
r 8 18

4. l′′′1 e L1l
′
1 l′′1ax

r 9 19
5. l′′′′1 e L′1l

′′
1 L1a

x
r 10 20

6. l1e L′′1ar L1L
′
1a

x−1
r 11 21

7. l1e eL1 L′′1ax−1
r 12 22

8. l2L
′′
1 ee ax−1

r 14 −
9. l2e ee ax−1

r l2

If the register r stores nonzero value:
configuration of Π

B1 B2 Env P1 P2

1. l1e ee 6 −
2. l′1e ee 7 −
3. l′′1e ee l′1 8 18
4. l′′′1 e L1l

′
1 l′′1 9 19

5. l′′′′1 e L′1l
′′
1 L1 10

6. l1e L′1l
′′
1 L1 11

7. l1e L′1l
′′
1 L1 13

8. l3L1 L′1l
′′
1 15 −

9. F3e L′1l
′′
1 l3 16 −

10. l3l3 L′1l
′′
1 F3 17 23

11. l3e F3e l3L
′
1 2 or 6

or none

24

12. ?? ee l3L
′
1

(4) For halting instruction lh no program is added to the sets P1 and P2.
P colony Π correctly simulates all computations of the register machine M

and the number contained on the first register of M corresponds to the number of
copies of the object a1 present in the environment of Π. ut

On the Number of Agents in P Colonies 241

5 Conclusions

We have shown that the P colonies with capacity k = 2 and without checking
programs with height at most 2 are computationally complete. In Section 3 we
have shown that the P colonies with capacity k = 1 and with checking/evolution
programs and 4 agents are computationally complete.

We have verified also that partially blind register machines can be simulated
by P colonies with capacity k = 1 without checking programs with two agents.
The generative power of NPCOLparK(1, n, ∗) for n = 2, 3 remains open.

In Section 4 we have studied P colonies with capacity k = 2 without checking
programs. Two agents guarantee the computational completeness in this case.

Remark 1. This work has been supported by the Grant Agency of Czech Republic
grants No. 201/06/0567 and by IGS SU 32/2007.

References

1. Ciencialová, L., Cienciala, L.: Variations on the theme: P Colonies, Proceedings of the
1st International workshop WFM’06 (Kolář, D., Meduna, A., eds.), Ostrava, 2006, pp.
27-34.

2. Csuhaj-Varjú, E., Kelemen, J., Kelemenová, A., Păun, Gh., Vaszil, G.: Cells in en-
vironment: P colonies, Multiple-valued Logic and Soft Computing, 12, 3-4, 2006, pp.
201-215.

3. Csuhaj-Varjú, E., Margenstern, M., Vaszil, G.: P Colonies with a bounded number
of cells and programs. Pre-Proceedings of the 7th Workshop on Membrane Computing
(H. J. Hoogeboom, Gh. Păun, G. Rozenberg, eds.), Leiden, The Netherlands, 2006,
pp. 311-322.

4. Freund, R., Oswald, M.: P colonies working in the maximally parallel and in the se-
quential mode. Pre-Proceedings of the 1st International Workshop on Theory and
Application of P Systems (G. Ciobanu, Gh. Păun, eds.), Timisoara, Romania, 2005,
pp. 49-56.

5. Greibach, S. A.: Remarks on blind and partially blind one-way multicounter machines.
Theoretical Computer Science, 7(1), 1978, pp. 311-324.

6. Kelemen, J., Kelemenová, A.: On P colonies, a biochemically inspired model of compu-
tation. Proc. of the 6th International Symposium of Hungarian Researchers on Com-
putational Intelligence, Budapest TECH, Hungary, 2005, pp. 40-56.

7. Kelemen, J., Kelemenová, A., Păun, Gh.: Preview of P colonies: A biochemically in-
spired computing model. Workshop and Tutorial Proceedings, Ninth International Con-
ference on the Simulation and Synthesis of Living Systems, ALIFE IX (M. Bedau at
al., eds.) Boston, Mass., 2004, pp. 82–86.

8. Minsky, M. L.: Computation: Finite and Infinite Machines. Prentice Hall, Engle-wood
Cliffs, NJ, 1967.

9. Păun, Gh.: Computing with membranes. Journal of Computer and System Sciences
61, 2000, pp. 108-143.

10. Păun, Gh.: Membrane computing: An introduction. Springer-Verlag, Berlin, 2002.
11. P systems web page: http://psystems.disco.unimib.it

