
Networks of Mealy Multiset Automata

Gabriel Ciobanu and Mihai Gontineac

”A.I. Cuza” University of Iaşi, Romania
gabriel@info.uaic.ro, gonti@uaic.ro

Summary. We introduce the networks of Mealy multiset automata, and study their
computational power. The networks of Mealy multiset automata are computationally
complete.

1 Learning from Molecular Biology

Systems biology represents a new cross-disciplinary approach in biology which has
only recently been made possible by advances in computer science and technology.
As it is mentioned in [10], it involves the application of experimental, theoretical,
and modelling techniques to the study of biological organisms at all levels. Adding
new abstractions, discrete models and methods able to help our understanding of
the biological phenomena, systems biology may provide predictive power, useful
classifications, new paradigms in computing and new perspectives on the dynamics
of various biological systems.

Recent promising work [1] employs automata theory as an efficient tool of
describing and controlling gene expression (a small automaton is encoded by DNA
strands and then it is used in logical control of gene expression).

In [2], we present a way of interaction between gene machine and protein ma-
chine, namely the process of making proteins, in abstract terms of Mealy automata,
transformation semigroup and abstract operations.

The Mealy automaton proposed as a formal model of the genetic message
translation is a minimal one that accepts the mRNA messages and terminates the
translation process (according to [9], there are no appropriate formalism for the
process of translation).

However molecular biology ”deals” not only with sequences, but also with mul-
tisets. The biological cells are ”smart” enough to put together at work sequences
and multisets of atoms and molecules, so if we try to get models from their func-
tioning, we should not restrict ourselves in dealing only with sequential machines
(like classical automata). To deal with multisets, the main approach is given by

244 G. Ciobanu, M. Gontineac

membrane systems [11]. There is also introduced and studied an automata-like
machine to work with multisets [7], i.e. multiset automaton. At a first glance, it
seams that they are nothing else but weighted automata with weights in the semi-
ring of positive integers. In [8] it is proven that such automata (weighted automata
with weights in the semiring of positive integers) has the same power as finite au-
tomata (accepts only regular languages). In fact, a careful reader should remark
that a multiset automaton is not a sequential machine, and it is not working with
sequences of multisets as in the case of weighted automata. A multiset automaton
accepts, together with a sequence of multisets, an entire class, namely the class
of that sequence obtained by ”abelianization” (as an example, together with the
sequence, say aab, it accepts aba and baa). In this manner, multiset automata
become very powerful (see [7], for details). Mealy multiset automata, [3], can be
viewed as the corresponding Mealy machine. We study some of their (co)algebraic
properties in [3] and [4] and we connect this properties with various aspects of
their behaviour. In [5], we organize them in a P machine, in order to simulate a
P system. However the biological systems are not always organized in an hierar-
chical manner. This means that we also have to organize sets of Mealy multiset
automata in networks. In order to obtain the computing power for networks of such
automata, we relate them to neural P systems, proving that networks of Mealy
multiset automata are computationally complete.

2 Networks of Mealy Multiset Automata

In order to define networks of Mealy multiset automata, we can connect these
automata in many ways, having both parallel and serial connections. In [3] we
define the restricted direct product of MmA for the parallel case, and the cascade
product for a serial connection. See, also, the appendix for details.

2.1 Mealy Multiset Automata

Roughly speaking, an Mealy multiset automata (MmA) consists of a storage lo-
cation (a box for short) in which we place a multiset over an input alphabet and
a device to translate the multiset into a multiset over an output alphabet. We
have a detection head that detects whether or not a given multiset appears in the
multiset available in the box. The multiset is removed from the box whenever it
is detected, and the automaton inserts a multiset over the output alphabet (or
a marked symbol if the output alphabet is the same) that can not be viewed by
the detection head. This automaton stops when no further move is possible. We
say that the sub-multiset read by the head was translated to a multiset over the
output alphabet. We give here only the definitions and the properties that we need
for networks of MmA. For more informations see [3] or [4]. From the formal point
of view, a Mealy multiset automaton is a construct A = (Q, V, O, f, g, q0) where

1. Q is a finite set, the set of states;

Networks of Mealy Multiset Automata 245

2. q0 ∈ Q is special state, which is both initial and final;
3. V is a finite set of objects, the input alphabet ;
4. O is a finite set of objects, the output alphabet, such that O ∩ V = ∅;
5. f : Q× N 〈V 〉 → P(Q) is the state-transition (partial) mapping ;
6. g : Q× N 〈V 〉 → P(N 〈O〉) is the output (partial) mapping.

If | f(q, a) |≤ 1 we say thatA is Q- deterministic and if | g(q, a) |≤ 1 our automaton
is O-deterministic.

An MmA A receives a multiset in its box, and processing this multiset it
passes through different configurations. It starts with a multiset from N 〈V 〉 and
ends with a multiset from N 〈V ∪O〉. A configuration of A is a triple (q, α, β̄)
where q ∈ Q,α∈ N 〈V 〉, β̄∈ N 〈O〉. We say that a configuration (q, α, β̄) passes to
(s, α − a, β̄ + b̄) (or, that we have a transition between those configurations) if
there is a ⊆ α such that s ∈ f(q, a), b̄ ∈ g(q, a). We denote this by (q, α, β̄) `
(s, α−a, β̄ + b̄). We also denote by `∗ the reflexive and transitive closure of `. We
could alternatively define a configuration to be a pair (q, α) where α ∈ N 〈V ∪O〉
and the transition relation is (q, α) ` (s, α − a + b̄), with the same conditions as
above.

2.2 Networks of automata

The formal description of a network of Mealy multiset automata is not intuitive.
On the other hand, these networks could be very powerful, so we think that they
deserve our attention. We can consider several variants of such networks. Some of
them can have no inter-communication and, in this case, the network is, in fact,
a bigger MmA. The same remark can be done if we have only MmA connected
in a serial manner, without any ramifications (as we have seen in the previous
subsections). The case that we consider in this paper is inspired by the defini-
tion of neural P systems (nP systems). Neural P systems are defined in [11] as
a computing model inspired by the network of cells. Each cell has a finite state
memory, and processes multisets of symbol (impulses); it can send some impulses
(called excitations) to the neighbouring cells. It is proved that such networks are
rather powerful: they can simulate Turing machine using a small number of cells,
every cell having in a small number of states. It is also proved that, in appropri-
ate organization, such a network can solve in linear time the Hamiltonian Path
Problem.

We consider a set of MmA that can communicate by means of some commu-
nication channels. All of them have the same input alphabet V , and their boxes
contain an input multiset over V (they can also have an empty multiset ε as input).
The output alphabet has a “real” part O of output alphabet, and a “specific” part
used for communication. The specific part is, in fact, a Cartesian product between
the input alphabet V and the set of targets T (the set of the indexes of the MmA
forming the net). We can also have a special MmA to collect in its box the result
of the computation (i.e. a multiset over O) for such a network. Alternatively, we

246 G. Ciobanu, M. Gontineac

can consider as result of the computation the tuple of multisets obtained in the
box of every MmA of the net.

Definition 1. A network of Mealy multiset automata (shortly, nMmA) is a con-
struct N = (V, O, {Ai}i=1,n , {Λi}i=1,n , B) where:

• V = {a1, a2, ..., am} is a finite set of objects, the input alphabet ;
• O is the output alphabet such that O ∩ V = ∅;
• Ai = (Qi, V, O, fi, gi, s0,i) are MmA’s connected in the network. Their output

alphabets are of the form O = O ∪ (V × T), where T = {1, 2, ..., n};
• B is a box where N “receives” the output multiset. Depending on features

that we consider for the net, B can be a specific box of a specific MmA in the
network, or B can be the Cartesian product of all the boxes.

• Λi : N
〈
O

〉 → (N 〈O〉 ∪N 〈V 〉)n are the communication mappings associated to
all the A′i, i ∈ T .

A computation starts with some input multisets w0,i in the boxes of the MmA’s
that are in their initial states, s0,i; then we have a big step given by a translation
(made by the MmA’s, in fact by their restricted direct product

∧n
i=1Ai) and a

communication (done by {Λi}) - a kind of “parallel cascade product”, since every
MmA is in cascade with the restricted direct product of itself and the other MmA.

A configuration of the network is of the form (s, w), where s = (s1, s2, ..., sn)
with si ∈ Qi is the global state, and w = (w1, ..., wn) where wi ∈ N 〈O〉 ∪ N 〈V 〉.

A transition between configurations is denoted by (s, w) ` (s′, w′) and is defined
in the following manner:

s′ = (s′1, s
′
2, ..., s

′
n), where s′i ∈ fi(si, ai) with ai ∈ N 〈V 〉; we allow some of the

a′s to be ε if in the corresponding MmA there is no transition.
w′ = Λ1(b1) + Λ2(b2) + ... + Λn(bn) + (w1 − a1, w2 − a2, ..., wn − an), where

bi ∈ gi(si, ai).
A network of MmA can be used in various modes. We can use it as a generative

system, looking to the number of output objects that we find in the boxes (without
considering the final state for the MmA). It can be used also to compute functions
from N 〈V 〉 to N 〈O〉. An example of such a network used as a generative system
could clarify these aspects:

Example 1. Let
N = (V, O, {Ai}i=1,3 , {Λi}i=1,3 , B1)

where:

• V = {a} is the input alphabet;
• O = {b} is the output alphabet b 6= a;
• Ai = ({si} , V, O, fi, gi, si), are the MmA’s connected in the network.

Their output alphabet is O = {b, (a, 1), (a, 2), (a, 3)}
• B1 is the box where N “receives” the output multiset.
• Λi : N

〈
O

〉 → (N 〈O〉 ∪N 〈V 〉)3 are the communication mappings associated to
all the Ai, i ∈ T = {1, 2, 3}.

Networks of Mealy Multiset Automata 247

We describe now the mappings. The transition mappings are

• fi(si, a) = si, i = 1, 3;

The output mappings:

• g1(s1, a) ∈ {b, (a, 2) + (a, 3)}, so is a nondeterministic mapping;
• g2(s2, a) = (a, 1);
• g3(s3, a) = (a, 1)

The communication mappings:

• Λ1(nb + k1(a, 1) + k2(a, 2) + k3(a, 3)) = (nb + k1a, k2a, k3a))
• Λ2(nb + k1(a, 1) + k2(a, 2) + k3(a, 3)) = (k1a, ε, ε))
• Λ3(nb + k1(a, 1) + k2(a, 2) + k3(a, 3)) = (k1a, ε, ε))

Since A1 has a nondeterministic output mapping, the behaviour of our network
is nondeterministic. We denote the global state by s = (s1, s2, s3). We start our
computation from (s, (a, ε, ε)) Applying the restricted direct product we can obtain
(s, (b, ε, ε)) or (s, (ε, a, a)).

In the first case we obtain one b, so we generate 1. In the second case, the
computation continues with communication, and we obtain (s, (a + a, ε, ε) =
(s, (2a, ε, ε), and, again, we have various possibilities to choose. Anyway, it should
be clear now that we can generate any number of b′s, so N can generate every
positive integer.

In order to study the computational power of nMmA, we are trying to simulate
neural-like P systems. To be more specific, we try to simulate the neural P systems
working in minimal mode and replicative manner. To keep the paper self-contained,
we remember some facts about neural P systems and adapt the notations from
[11].

3 Neural P Systems

The former tissue P systems were called neural-like P systems in [11]. We start with
the classical definition, and later we adapt the notation to our needs. We consider
a class of networks of membranes inspired by the way the neurons cooperate to
process impulses in the complex net established by synapses. A possible model
of this symbol processing machinery can be given by a network of membranes,
each of them containing a multiset of objects and a state according to which the
objects are processed. The membranes can communicate along “axons” channels.
We make some minor modifications to the original notations, having in mind that
in the Mealy multiset automata we distinguish between multisets and strings that
could represent them (since we can deal with two kinds of behaviours, a global
one and a sequential one). We also restrict our presentation of neural P systems
working in minimal mode and replicative manner.

248 G. Ciobanu, M. Gontineac

Definition 2. A neural P system (nP system) of degree m ≥ 1 is a construct

Π = (V, σ1, σ2, ..., σm, syn, iout),

where

1. V is a finite non-empty alphabet (of objects);
2. syn ⊆ {1, 2, ..., m} × {1, 2, ..., m} (synapses among cells);
3. iout ∈ {1, 2, ..., m} indicates the output cell ; we can put iout = 1;
4. σ1, σ2, ..., σm are cells of the form σi = (Qi, si,0, wi,0, Ri), 1 ≤ i ≤ m,

where:

• Qi is a finite set (of states);
• Ri is a finite set of rules of the form sw → s′(x + ygo + zout), where s, s′ ∈ Qi,

w, x ∈ N 〈V 〉, ygo ∈ N 〈V × {go}〉 , zout ∈ N 〈V × {out}〉, with the restriction
that zout = ε for all i different from 1.

The objects that appears in the left hand multiset w of the rule sw → s′w′ are
called impulses, while those from w′ are called excitations.

An m-tuple of the form (s1w1, s2w2, ..., smwm) is called a configuration of Π.
Using the rules defined above, we can define transitions among the configurations
of the system. To this end, there are considered three modes of processing the
impulse-objects and three modes of transmitting excitation-objects from one cell to
another one. As we already mention, we restrict ourselves to the minimal processing
mode.

Notations: Vgo = {(a; go) | a ∈ V }, Vout = {(a; out) | a ∈ V }, and Vtot =
V ∪ Vgo ∪ Vout. For s, s′ ∈ Qi, x ∈ N 〈V 〉 and y ∈ N 〈Vtot〉, we write

sx ⇒min s′y iff sw → s′w′ ∈ Ri, w ⊆ x and y = (x− w) ∪ w′.
In this case, only one occurrence of the multiset from the left-hand side of a rule
is processed, being replaced by the multiset from the right-hand of the rule, and
at the same time changing the state of the cell.

We also write sx ⇒min sx for s ∈ Qi and x ∈ N 〈V 〉 whenever there is no
rule sw → s′w′ ∈ Ri such that w ⊆ x. This encodes the case when a cell cannot
process the current objects in a given state (it can be “unblocked” after receiving
new impulses from the cells which are active and can send objects to it).

Now, recall that the multiset w′ from a rule sw → s′w′ contains symbols from
V , but also symbols of the form (a, go) (or, in the case of the cell 1, of the form
(a, out)). Such symbols are sent to the cells related by synapses to the cell σi where
the rule sw → s′w′ is applied, according to various manners of communication. As
we already mention it, we choose the replicative manner, i.e. each symbol a from
(a, go) appearing in w′, it is sent to each of the cells σj such that (i; j) ∈ syn.

In order to formally define the transition among the configurations of Π, some
further notations are needed. For a multiset w over Vtot, we consider the projections
on V , Vgo and Vout, namely prV (w); prVgo(w), and prVout(w) (see [11] for details).
For a node i in the graph defined by syn, the ancestors and the successors of

Networks of Mealy Multiset Automata 249

node i are denoted by anc(i) = {j | (j, i) ∈ syn} and succ(i) = {j | (i, j) ∈ syn},
respectively.

Each transition lasts one time unit, and the network is synchronized: a global
clock define the passage of time for all the cells.

For two configurations C1 = (s1w1, ..., smwm) and C2 = (s′1w”1, ..., s
′
mw”m)

we write C1 ⇒ C2 if there are w′1, ..., w
′
m in N 〈Vtot〉 such that

siwi ⇒ s′iw
′
i, 1 ≤ i ≤ m

and
w”i = prV (w′i) +

∑

j∈anc(i)

prVgo
(w′j)

Obviously, objects are always sent to a cell i only from its ancestors, namely from
cells j such that a direct synapse exists from j to i. In the case of the cell 1, we
remove from w′1 all the symbols a ∈ V which appear in w′1 in the form (a, out).
If during a transition a cell does nothing (no rule is applicable to the available
multiset of objects in the current state), then the cell waits until new objects are
sent to it from its ancestor cells.

A sequence of transitions among the configurations of Π is called a computation
of Π. A computation ending in a configuration where no rule in no cell can be
used is called a halting computation. The result of a halting computation is the
number of objects in the output cell 1 (or sent to the environment from the output
cell 1). We denote by N(Π) the set of all natural numbers computed in this way
by a system Π. We denote by NOnPm,r(coo) the family of sets N(Π) computed
by all cooperative neural-like P systems with at most m ≥ 1 cells, each of them
using at most r ≥ 1 states. When non-cooperative systems are used, we write
NOnPm,r(ncoo) for the corresponding family of sets N(Π).

3.1 Computational power

We denote by NRE the family of Turing computable sets of natural numbers.
Following [11], we mention that the minimal mode of using the rules turns out

to be computationally universal.If we consider the apparently weak neural-like P
systems, then the fact that we obtain universality even in the non-cooperative case
when using the mode min of applying the rules is rather unexpected. The same
result holds true also when using cooperative rules. Among the results presented
in [11] we mention here only those for minimal mode and for replicative manner.

Theorem 1. NOnP2,5(ncoo) = NRE.

For the cooperative rules, the number of states can be decreased.

Theorem 2. NOnP2,2(coo) = NRE.

250 G. Ciobanu, M. Gontineac

4 Universality of the Networks

In order to obtain the generative power of a network of MmA, we give the following
result.

Theorem 3. Any nP System working in min mode and replicative manner can be
simulated by a network of MmA (possibly nondeterministic).

Proof. Let Π = (V, σ1, σ2, ..., σm, syn, 1) be an nP system with its components
described as in the previous section. We remind that σ1, σ2, ..., σm are cells of the
form σi = (Qi, si,0, wi,0, Ri) (1 ≤ i ≤ m), where Qi is a finite set (of states) and
Ri is a finite set of rules of the form sw → s′(x + ygo + zout) with s, s′ ∈ Qi,
w, x ∈ N 〈V 〉, ygo ∈ N 〈V × {go}〉, zout ∈ N 〈V × {out}〉 (with the restriction that
zout = ε for all i different from 1).
We can build a nMmA N = (V, O, {Ai}i=1,m , {Λi}i=1,m , B1) where:

- the output alphabet O is Vout;
- Ai = (Qi, V, O, fi, gi, s0,i) is the MmA simulating the activity of cell σi. The

output alphabets are of the form O = O ∪ (V × T), where T = {1, 2, ..., m};
- B1 is the box where N collects the output multisets;
- Λi : N

〈
O

〉 → (N 〈O〉 ∪ N 〈V 〉)n are the communication mappings associated
to Ai, i ∈ T .

Consider a rule sw → s′(x + ygo + zout) from Ri. We can simulate this rule
with fi and gi by defining them in the following manner:

- fi(s, w) = s′;
- gi(s, w) = (zout + x + k1(y, 1) + k2(y, 2) + ... + km(y,m)),

with the following restrictions in gi:
* if i 6= 1, then zout = ε;
* if there is no synapse from σi to σj , we define kj = 0, else kj = 1.

In this manner we can also simulate the replicative manner of applying the rules,
since y is marked to be send to all the cells having synapse from σi.

It is easy to see that we have a transition (s1w1, ..., smwm) ⇒ (s′1w”1, ..., s
′
mw”m)

in Π if and only if ((s1, s2, ..., sn), (w1, ..., wn)) ` ((s′1, s
′
2, ..., s

′
n), (w”1, ..., w”n))

As an immediate consequence of this result we get the following

Theorem 4. Nondeterministic networks of Mealy multiset automata are univer-
sal.

Proof. We already know that NOnP2,2(coo) = NRE. Applying the previous the-
orem we obtain that the generative power of a nondeterministic network of MmA
is NRE. Therefore the nondeterministic network of MmA is universal.

Therefore a network of Mealy multiset automata is able to simulate Turing
machines, and so it is computationally complete. The number of cells and states
sufficient to characterize the power of Turing machines is rather small.

P systems are simulated on a network of computers [6]. It would be interesting
to see whether such an implementation can be related to the network of Mealy
multiset automata.

Networks of Mealy Multiset Automata 251

References

1. Y.Benenson, B.Gil, U.Ben-Dor, R.Adar, E. Shapiro. An autonomous molecular com-
puter for logical control of gene expression. Nature 429, (2004) 423-429.

2. G. Ciobanu, M. Gontineac. An Automata Description of the Genetic Message Trans-
lation, Fundamenta Informaticae, vol. 64, 93-107, 2005

3. G. Ciobanu, M. Gontineac. Mealy Multiset Automata, International Journal of Foun-
dations of Computer Science vol.17 (1), 111-126, 2006.

4. G. Ciobanu, M. Gontineac. Algebraic and Coalgebraic Aspects of Membrane Com-
puting, Lecture Notes in Computer Science vol.3850, Springer, 181-198, 2006.

5. G. Ciobanu, M. Gontineac. P Machines: An Automata Approach to Membrane Com-
puting, Lecture Notes in Computer Science vol.4361, Springer, 314-329, 2006.

6. G. Ciobanu, W. Guo. P Systems Running on a Cluster of Computers. Lecture Notes
in Computer Science vol.2933, Springer, 123-139, 2004.

7. E. Csuhaj-Varju, C. Martin-Vide, V. Mitrana. Multiset Automata. Multiset Process-
ing, Lecture Notes in Computer Science vol.2235, Springer, 69-83, 2001.

8. S. Eilenberg. Automata. Languages and Machines vol. A, Academic Press, 1976.
9. H.de Jong. Modelling and Simulation of Genetic Regulatory Systems: A Literature

Review , J. of Computational Biology 9 (2002)67-103.
10. H.Kitano. Computational Systems Biology. Nature vol.420, 206-210, 2002.
11. Gh. Păun. Membrane Computing: An Introduction , Springer, 2002.

Appendix

Behaviour of MmA

For some of the categorical properties of MmA’s, as well as behaviour and bisim-
ulation relation, we refer to [3] and [4]. Behaviour is often appropriately viewed
as consisting of both dynamics and observations, which have to do with change of
states and partial access to states, respectively. The main advantage of an MmA
is that it has an output function that can play the main role in observability, i.e.
we do not have to construct an other machine to describe the MmA’ s behaviour.

Definition 3. Let A = (Q,V,O, f, g) be a Mealy multiset automaton. The gen-
eral behaviour of a state q ∈ Q is a function beh(q) assigning to every multiset
α∈N 〈V 〉 the output multiset obtained after consuming α starting from q.

When talking about the behaviour, we consider a specific order of consuming
multisets, i.e. in terms of strings of multisets.

A certain feature for MmA is that the behaviour is always finite because we
can not go further after consuming the given multiset. On the other hand, since
the outputs go back into the box, it is possible that we can not track the sequence
of intermediate states. If we are interested only on the outcome of the machine,
then we should not take care of the intermediate states, and if the input multiset
is partially consumed, it should be of interest the state where the MmA arrives in
order to (possible) provide the box with a supplementary multiset in order to make

252 G. Ciobanu, M. Gontineac

the initial one a consumed multiset. These considerations lead us to the following
definition.

Definition 4. Let A = (Q,V, O, f, g) be a Mealy multiset automaton. The se-
quential behaviour of a state q ∈ Q is a function seqbeh(q) that assigns to every
multiset α∈N 〈V 〉 all the sequences of the output multisets obtained after consum-
ing α starting from q.

Example 2. Suppose that we have the following sequence of transitions (q, α, ε) `
(q1, α− a1, b1) ` (q2, α− a1 − a2, b1 + b2) ` ... ` (qn, α− a1 − ...− an, b1 + ... + bn)
and MmA stops. Then beh(q)(α) = b1 + ... + bn and seqbeh(q)(α) 3 b1...bn.
Moreover, b1 + ... + bn belongs to N 〈O〉, while b1...bn belongs to (N 〈O〉)∗.
Consider the canonical inclusion i : N 〈O〉 → (N 〈AO〉)∗ and the identity map
id : N(O) → N(O). By the universal property of the free monoid, we know that
there exists a unique homomorphism of monoids IO : (N 〈O〉)∗ → N 〈O〉 defined
by IO(b1...bn) = b1 + ... + bn such that IO ◦ i = id. Since id is onto, it follows that
I is onto, and so, applying the isomorphism theorem for monoids, we obtain that
(N 〈O〉)∗/kerIO w N 〈O〉.
Proposition 1. For all the states q of a Mealy multiset automaton we have

IO ◦ seqbeh(q) = beh(q).

If q, q′ are two bisimilar states (see [3] for details), they have the same sequential
behaviour seqbeh(q) = seqbeh(q′). This implies that they also have the same
behaviour beh(q) = beh(q′). We can define (since the reciprocal it is not true) a
weaker equivalence relation:

q ≈ q′ ⇔ beh(q) = beh(q′)

Proposition 2. We have q ≈ q′ ⇔ (∀)α ∈ N 〈V 〉:(seqbeh(q), seqbeh(q′)) ∈
kerIO.

Since this relation is independent of the order of consuming resources from the box,
we call it output conservative equivalence. The importance of this equivalence is
given mainly by the idea of consuming and producing resources. The resource prob-
lem appears to be of interest when we consider the parallel/concurrent processes.
In this manner we overpass the sequential framework previously represented by
seqbeh.

Restricted direct product of Mealy multiset automata

Let Ai = (Qi, V,O, fi, gi), and Bi their corresponding boxes, i = 1, n, a finite
family of Mealy multiset automata. We can connect them in parallel in order to
obtain a new MmA defined by A =

∧n
i=1Ai = (×n

i=1Qi, V, On, f, g), called the
restricted direct product of Ai, where:

Networks of Mealy Multiset Automata 253

• f((q1, q2, ..., qn), a) = (f1(q1, a), f2(q2, a), ..., fn(qn, a)),
• g((q1, q2, ..., qn), a) = (g1(q1, a), g2(q2, a), ..., gn(qn, a)),
• box of A is the disjoint union

⊔n
i=1 Bi of {Bi | i = 1, n},

• a configuration of A is a triple (q, α, β̄), where q = (q1, q2, ..., qn), α =
(α1, α2, ..., αn), and β̄ = (β̄1, β̄2, ..., β̄n),

• the transition relation of A: (q, α, β̄) ` (s, α − a, β̄ + b̄) iff si ∈ fi(qi, ai) and
b̄i ∈ gi(qi, ai) for all i ∈ 1, n.

The cascade product of Mealy multiset automata

The cascade product is useful to describe a serial connection, and provide also
some results in decompositions of such machines in irreducible ones.

Let A = (Q,V,O, f, g), A′ = (Q′, V ′, O′, f ′, g′) be two Mealy multiset au-
tomata. In order to connect them, we need a multiset mapping linking the output
of one of them to the input of the other. This can be done using a N-homomorphism
from N 〈O′〉 to N 〈V 〉 (this homomorphism can be obtained by using a mapping
from O′ to V). We denote by Λ : N 〈O′〉 → N 〈V 〉 this homomorphism. Then we
can define a mapping Ω : Q′ × N 〈V ′〉 → N 〈V 〉 by Ω(q′, a′) = Λ(g′(q′, a′)).

• This mapping gives us the cascade product induced by Ω:

AΩA′ = (Q×Q′, V ′, O, fΩ , gΩ)

where fΩ((q, q′), a′) = (f(q, Ω(q′, a′)), f ′(q′, a′)), and
gΩ((q, q′), a′) = g(q, Ω(q′, a′)), for all a′ ∈ N 〈V ′〉 , (q, q′) ∈ Q×Q′.

• The transition relation becomes ((q, q′), α′, β̄) ` ((s, s′), α′ − a′, β̄ + b̄) if there
is a′ ⊆ α′ such that (s, s′) = fΩ((q, q′), a′) and b̄ = gΩ((q, q′), a′), where
a′, α′ ∈ N 〈V ′〉, (q, q′) ∈ Q×Q′, and β̄ ∈ N 〈O〉.

We can alternatively define the transition relation by

((q, q′), α′, β̄) ` ((s, s′), α′ − a′, β̄ + b̄)

if there is a′ ⊆ α′ such that s=f(q, Λ(g′(q′, a′))), s′=f ′(q′, a′), b̄=g(q, Λ(g′(q′, a′))),
where a′, α′ ∈ N 〈V ′〉, (q, q′) ∈ Q×Q′, β̄ ∈ N 〈O〉. The graphical representation of
the cascade product is given in the following figure:

In order to obtain the behaviour of a network of MmA’s, we should also con-
sider the behaviour of the cascade product. Roughly speaking, the two types of
behaviour depends mainly on the corresponding behaviours of A′. On the other

254 G. Ciobanu, M. Gontineac

hand, when we have a cascade product, the observable part is strongly connected
with the observations that could be made after we pass through A. We may also
emphasize the decisive role played by the connection homomorphism given by Λ.
We have the following result:

Theorem 5. Let A = (Q,V,O, f, g), A′ = (Q′, V ′, O′, f ′, g′) be two MmA’s,
AΩA′ their cascade product, and (q, q′) a state of this product. The behaviour
of (q, q′) is beh((q, q′)) = beh(q) ◦ Λ ◦ beh(q′).

If we want to get the sequential behaviour starting from beh((q, q′)) = beh(q) ◦
Λ ◦beh(q′), then (I, I′) ◦ seqbeh((q, q′)) = (I ◦ seqbeh(q)) ◦Λ ◦ (I′ ◦ seqbeh(q′)).

