
What is an Event for Membrane Systems?⋆

Gabriel Ciobanu1,2 and Dorel Lucanu1

1 “A.I.Cuza” University of Iaşi, Faculty of Computer Science
2 Romanian Academy, Institute of Computer Science, Iaşi
{gabriel, dlucanu}@info.uaic.ro

Summary. Event structures are formal models for parallel and nondeterministic sys-
tems. The use of the event structures defines formally where and how the parallelism and
nondeterminism appear in systems. We study the event structure for membrane systems,
considering both the causality and the conflict relations. We investigate how an event
structures can be associated to an parallel evolution step. Two cases are considered: first
the rules are applied over strings, and then rules are applied over multisets. We show that,
if we apply the standard procedure of extracting event structures from labelled transition
systems, then the meanings for event and causality are different for the two cases. The
commutativity in the case of multisets introduces some “false” causalities which must be
removed in order to capture the right parallelism of the membrane systems.

1 Introduction

Membrane systems [5] describe a computation mechanism inspired by cellular
biology. Parallelism and nondeterminism represent the essential features of the
membrane computation. Membrane computation is strongly parallel and nonde-
terministic mainly due to its way of applying the rules of a membrane to its
objects. The rules associated with a compartment are applied to the objects from
that compartment in a (maximally) parallel way, and the rules are chosen in a
non-deterministic manner. Moreover, all compartments of the system evolve at
the same time, and so we have two levels of parallelism.

In this paper we study the nature of parallelism and nondeterminism of the
membrane systems in terms of a widely recognized formal model for parallelism
and nondeterminism, namely in terms of event structures [7].

According to [6], the models for concurrency are classified according to the fol-
lowing criteria: whether they can represent the structure of systems or just their
behaviours; whether they can faithfully take into account the difference between
parallel and sequential computation (interleaving or non-interleaving model); and

⋆ This work has been supported by the research grant CEEX 47/2005, Romania



256 G. Ciobanu, D. Lucanu

whether they can represent the branching structure of processes related to nonde-
terministic choices (linear or branching time model). Event structures are chosen
to represent the non-interleaving and branching-time models, and so they model
the true concurrency (parallelism) and nondeterminism.

2 Event Structures

In event-based models, a system is represented by a set of events (action occur-
rences) together with some structure on this set, determining the causality rela-
tions between the events. The causality between actions is expressed by a partial
order, and the nondeterminism is expressed by a conflict relation on actions. For
every two events d and e it is specified either whether one of them is a prerequisite
for the other, whether they exclude each other, or whether they may happen in
parallel. The behaviour of an event structure is formalized by associating to it a
family of configurations representing sets of events which occur during (partial)
runs of the system.

A parallel (concurrent) step is simultaneously executing several rules, each of
them producing events which end up in the resulting event configuration. These
steps are presumably cooperating to achieve a goal, and so they are not totally
independent. They synchronize at certain points, and this is reflected in the events
produced.

There are many levels of granularity at which one might describe the events
that occur as a process executes. At the level of the components from which the
system is composed, computation consists of events which reflect the rules. At
a higher level, the system might be viewed in terms of parallel executions of its
components. Thus, when we talk about the events which occur within a system, it
is understood that we know the granularity of the representation, and that events
are encoded to this granularity (degree of precision).

Definition 1 (Event Structure).
An event structures is a triple (E,≤,#) where

• E is a set of events,
• ≤ ⊆ E × E is a partial order, the causality relation,
• # ⊆ E × E is an irreflexive and symmetric relation, the conflict relation,

satisfying the principle of conflict heredity:
∀e1, e2, e3 ∈ E. e1 ≤ e2 ∧ e1#e3 ⇒ e2#e3.

A more detailed presentation of event structures can be found in [8].

2.1 Event Structure Associated to a Labelled Transition System

There are many cases when the operational semantics of a system is given by
means of a labelled transition system (lts) describing all possible sequential com-
putations. In order to study the concurrency properties, we must determine the
event structure defined by such a labelled transition system.



What is an Event for Membrane Systems? 257

Let (S,−→, L, s0) be a transition system, where S is the set o states, −→ is the
transition relation consisting of triples (s, ℓ, s′) ∈ S × L × S, often written as

s
ℓ
−→ s′, L is the set of labels (actions), and s0 is the initial state. A (sequential)

computation is a sequence s0

ℓ1−→ s1 . . .
ℓn−→ sn such that (si−1, ℓi, si) ∈ −→.

Definition 2 (Events in a lts).
Let ∼ be the smallest equivalence satisfying: if (s, ℓ1, s1), (s, ℓ2, s2), (s1, ℓ2, s3),
(s2, ℓ1, s3), ∈ −→ and (ℓ1 6= ℓ2 or s1 6= s2), then (s, ℓ1, s1) ∼ (s2, ℓ1, s3).
An event is a ∼-equivalence class written as [s, ℓ, s′].

Intuitively, two transitions are equivalent iff they are occurrences of the same
event. The relation ∼ can be easier understood from the following picture:

s

s1

�

ℓ 1

s2

ℓ
2

-

s3

�

ℓ 1
ℓ
2

-

We have two events which may occur in any order, i.e., the two events are concur-
rent.

Definition 3 (Configuration in a lts).
A configuration is a multiset of events [si−1, ℓi, si] corresponding to a computation

s0

ℓ1−→ s1 . . .
ℓn−→ sn.

Since all computations start from s0, each prefix of a configuration is also a
configuration.

Theorem 1 (Event Structure of a lts). [4]
(S,−→, L, s0) can be organized as an event structure.

Proof (Sketch). The event structure (E,<,#) is defined by:

• E is the set of events as defined in Definition 2;
• e1 < e2 if every configuration which contains e2 also contains e1;
• e1 # e2 if there is no configuration containing both e1 and e2.



258 G. Ciobanu, D. Lucanu

Example 1. The events defined by the lts in Figure 1 are:

E1 = {(s0, ℓ1, s1)} E4 = {(s1, ℓ2, s4), (s3, ℓ2, s5)}

E2 = {(s0, ℓ2, s2)} E5 = {(s2, ℓ1, s6)}

E3 = {(s1, ℓ3, s3), (s4, ℓ3, s5)} E6 = {(s4, ℓ1, s6)}

A configuration describe a (partial) computation expressed in terms of events. This
lts defines the following configurations:

E1 E2 E5

E2 E1 E3 E4

E1 E3 E1 E4 E3

E1 E4 E1 E4 E6

We have E1 < E3 because any configuration containing E3 also contains E1. Since
any occurrence of E3 is always after an occurrence of E1, it follows that there is
causal relationship between the two events. We get E1 < E4 < E6 and E2 < E5

in a similar way.
Since there is no a configuration containing both E1 and E2, it follows that there is
a conflict between the two events, i.e., E1 #E2. We get E1 #E5, E2 #E3, E2 #E4,
E2 #E6, E5 #E3, E5 #E4, and E5 #E6 in a similar way.

s0

s1

�

ℓ1

s2

ℓ
2

-

s3

�

ℓ3

s4

ℓ
2

-

s5

�

ℓ3
ℓ
2

-

s6

ℓ1

?

ℓ
1

-

Fig. 1. A lts example



What is an Event for Membrane Systems? 259

3 Event Structure of an Evolution Step

We assume that the reader is familiar with membrane systems (see [5] for a detailed
presentation). A membrane structure and their contents, represented as multisets
of objects, identify a configuration of a P system. By a nondeterministic and paral-
lel use of rules, the system can pass to another configuration; such a step is called
a transition. A sequence of transitions constitutes a computation. Because of the
nondeterminism of the application of rules, starting from an initial configuration,
we can get several successful computations.

Membrane computation is strongly parallel and nondeterministic mainly due to
its way of applying the rules of a membrane to its objects. The rules associated with
a compartment are applied to the objects from that compartment in a (maximally)
parallel way, and the rules are chosen in a non-deterministic manner. We consider
here only membrane systems with a single membrane.

Example 2. Let us consider a simple membrane consisting of the following three
rules

ℓ1 : a → b

ℓ2 : b → a

ℓ3 : ab → d

and having the content aabc. We investigate the space of all sequential rewritings
corresponding to the application of rules in the evolution step aabc

mpr

⇒ bbac in
order to discover the events of this step. The exact definitions for

mpr

⇒ is given in
the next subsections.

3.1 Non-commutative Case

We first assume that the sequential rewritings are executed over non-commutative
words (strings).

A context is a string of the form w •w′, where w,w′ are strings of objects, and
• is a special symbol. Each rewriting step wuw′ → wvw′ is uniquely determined by
the context w•w′ and the rule ℓ : u → v. Therefore the transition (wuw′, ℓ, wvw′) =

wuw′
ℓ
−→ wvw′ is denoted by (w • w′, ℓ).

The maximal parallel rewriting over strings is defined as follows: w
mpr

⇒ w′ if and
only if there are ℓ1, . . . , ℓn, ℓi : ui → vi (i = 1, n) such that w = w0u1w1 . . . unwn,
w′ = w0v1w1 . . . vnwn and w0w1 . . . wn irreducible (no rule can be applied).

We consider first an example. The space of all sequential rewritings for the
evolution step of Example 2 is represented in Figure 2.a.

By Definition 4, we have the following three independent events:

A = {(•abc, ℓ1), (•bbc, ℓ1), (•bac, ℓ1), , (•aac, ℓ1)}

B = {(a • bc, ℓ1), (b • bc, ℓ1), (b • ac, ℓ1), , (a • ac, ℓ1)}

C = {(aa • c, ℓ2), (ab • c, ℓ2), (bb • c, ℓ2), , (ba • c, ℓ2)}.



260 G. Ciobanu, D. Lucanu

aabc aabc

babc
�

ℓ1

abbc

ℓ1

?

aaac

ℓ
2

-

bbbc

ℓ1

?�

ℓ1

baac
�

ℓ1ℓ
2

-

abac

ℓ1

?

ℓ
2

-

bbac

ℓ1

?�

ℓ1ℓ
2

-

bbac

({A, B, C}, ∅, ∅)

?

a) b)

Fig. 2. Lts corresponding to aabc
mpr
⇒ bbac

Each event corresponds to the application of a certain evolution rule at a cer-
tain position in the string. The resulting event structure corresponds very well to
the following description: distribute the object to the rules and then apply the
evolutions rules in parallel. The parallel execution of all involved evolution rules
is possible because the corresponding events are independent (no causalities, no
conflicts). Figure 2.b represents the fact that bbac is obtained from aabc using the
computation space described by the event structure ({A,B,C}, ∅, ∅). Any permu-
tation of A,B,C is a computation (in terms of event structures) in this space.

We give now the formal definition for the event structure associated to a mpr-
step over strings.

Definition 4. The labelled transition system associated to w
mpr

⇒ w′ is given by all
the sequential rewritings starting from w and ending in w′. The event structure
ES(w,w′) associated to w

mpr

⇒ w′ is the event structure associated to its labelled
transition system.

Theorem 2. The event structure ES(w,w′) = (E,<,#) associated to w
mpr

⇒ w′

consists of only independent events, i.e., < = ∅ and # = ∅.

Proof. We have w
mpr

⇒ w′ iff w = w0u1w1 . . . unwn, w = w1v1w2 . . . vnwn, ℓi :
ui → vi is an evolution rule, for i = 1, . . . , n, and w1 . . . w0w1 . . . wn is irreducible.
The conclusion of the theorem follows by the fact that [w0 . . . • wi . . . wn, ℓi] is a
configuration (any of events can occur first).



What is an Event for Membrane Systems? 261

3.2 Commutative Case

We assume now that the sequential rewritings are executed over commutative
words (multisets).

We write w =c w′ if and only if w′ is obtained from w by a permutation of
the objects, i.e., w and w′ are equal modulo commutativity. Let [w] denote the
=c-equivalence class of w, i.e., [w] = {w′ | w =c w′}.

A context is a string of the form [•w], where w is a multiset of objects, and
• is a special symbol. It is easy to see now that the position of • in a context
is not important, and therefore we write • at the beginning. Each rewriting step
[uw] → [vw] is uniquely determined by the context [•w] and the rule ℓ : u → v.

Therefore the transition ([uw], ℓ, [vw]) = [uw]
ℓ
−→ [vw] is denoted by ([•w], ℓ).

The maximal parallel rewriting over multisets is defined as follows: [w]
mpr

⇒ [w′]
iff there are ℓ1, . . . , ℓn, ℓi : ui → vi (i = 1, n) such that [w] = [u1 . . . unr], [w′] =
[v1 . . . vnr and r is irreducible (no rule can be applied).

Again we start with an example. The space of all rewritings for the evolution
step in Example 2 is:

[aabc]

[babc]
�

ℓ 1

[aaac]

ℓ
2

-

[bbbc]
�

ℓ 1

[baac] = [aabc]
�

ℓ 1
ℓ
2

-

[bbac] = [babc]
�

ℓ 1
ℓ
2

-

We also have three events, but they are not totally independent:

A = {([•abc], ℓ1), ([•aac], ℓ1)}

B = {([•bbc], ℓ1), ([•bac], ℓ1)}

C = {([•abc], ℓ2), ([•bac], ℓ2), ([•bbc]ℓ2)}

A < B

An event corresponds now to the application of an evolution rule at an arbitrary
position. The position in strings cannot be used anymore to distinguish between



262 G. Ciobanu, D. Lucanu

events. Moreover, between the events A and B we have a causal dependency: B

may occur only after A. In fact, A can be read as “the first application of the
evolution rule ℓ1” and B as “the second application of the evolution rule ℓ1”. We
notice that the use of commutativity law changes dramatically the meaning of an
event.

Definition 5. The labelled transition system associated to [w]
mpr

⇒ [w′] is given by
all the sequential rewritings starting from [w] and ending in [w′].

Theorem 3. The event structure (E,<,#) associated to the labelled transition
system defined by [w]

mpr

⇒ [w′] has the following properties:

• [[•w1], ℓ1] < [[•w2], ℓ2] if and only if ℓ1 = ℓ2, [[•w1], ℓ1] corresponds to the i-th
application of the rule ℓ1, [[•w2], ℓ1] corresponds to the j-th application of the
rule ℓ1, and i < j;

• # = ∅.

“Maximal parallel” means “no causal dependency” between the application
of the rules. We may conclude either that working with multisets is not a good
solution at this granularity, namely it is not possible to determine all the parallel
rules applied in a mpr-step, or the procedure which determines the event structure
from a lts finds “false” causalities for the particular case when the states are given
by multisets. We believe that the later one is true; the causality relation given by ·-
th application of a rule (when it is applied more than once) is artificial. Therefore
we remove the false causal dependency in the definition of the event structure
associated to a mpr-step.

Definition 6. The event structure associated to [w]
mpr

⇒ [w′] is ES([w], [w′]) =
(E, ∅, ∅), where (E,<, ∅) is the event structure associated to the labelled transition
system defined by [w]

mpr

⇒ [w′].

4 Event Structure of a Membrane

In this section we determine the event structure given by a membrane. Since the
definition for the event concept is different for the two algebraic structures used
for contents, we get two definitions for the event structure of a membrane.

We first note that the notation for events is not longer suitable for the case
of membranes. We assume that we have a membrane with two evolution rules: ℓ :
a → b and ℓ′ : b → a. Let us consider the computation aa

mpr

⇒ bb
mpr

⇒ aa
mpr

⇒ bb. Since
the events of aa

mpr

⇒ bb occur always before the events of bb
mpr

⇒ aa, and the events of
bb

mpr

⇒ aa occur before the events of aa
mpr

⇒ bb, then we get [a•, ℓ] < [b•, ℓ′] < [a•, ℓ],
i.e., the causality relation < is cyclic. Therefore each event [c, ℓ] in ES(w,w′) is
denoted with a new fresh name e, and we define action(e) = [c, ℓ]. In this way, the
event sets corresponding to different computation steps are disjoint.



What is an Event for Membrane Systems? 263

4.1 Non-commutative Case

If the commutativity law is not suitable at this level of granularity, then a question
must be answered: who (and how) computes the correct permutation of the objects
such that the maximal parallel rewriting is possible? For instance, if the membrane
in Example 2 has the content bbac, then this content must be permuted to babc in
order to have bbac =c babc

mpr

⇒ acc.
The answer is given by the nondeterministic allocation of the available re-

sources to the rules before the execution of a mpr-step. Such an allocation of
resources is considered as an event appearing before a mpr-step. This event con-
sists in the nondeterministic choice of a permutation of available resources, and
reflect the nondeterminism of the membrane computation. Once such a permuta-
tion is selected, then the next mpr-step is applied over the corresponding string
corresponding to this permutation.

We informally describe the event structure of a membrane M . A computation
in M is of the form w0 =c w′

0

mpr

⇒ w1 =c w′

1

mpr

⇒ · · · , where w0 is the initial contents
of M . A string (contents) w is reachable in M iff there is a computation from w0

to w. A reachable string w is ready-to-fire if there is a w′ such that w
mpr

⇒ w′.

The event structure ES(M) = (EM , <M ,#M ) associated to a membrane M is
defined as follows:

1. for each reachable w and each w′ such that w
mpr

⇒ w′, ES(w,w′) ⊆ ES(M) (we
recall that the events in ES(w,w′) are renamed);

2. for each reachable w and each ready-to-fire permutation w′ of w, w 6= w′, we
consider in EM a distinct event e with action(e) equal to w =c w′, and
a) for each reachable w1 such that w1

mpr

⇒ w and for each event e1 in ES(w1, w)
we have e1 < e, and

b) for each w2 such that w′
mpr

⇒ w2 and for each event e2 in ES(w′, w2) we
have e < e2;

3. if e1, e2 ∈ EM such that action(e1) is w =c w1 and action(e2) is w =c w2 with
w1 6= w2, then we have e1#e2;

4. if w
mpr

⇒ w1, w
mpr

⇒ w2 and w1 6= w2, then we have e1#e2 in ES(M) for each e1

in ES(w,w1) and e2 in ES(w,w2).

Example 3. Let M be the membrane presented in Example 2. We consider the com-
putation subspace given by aabc

mpr

⇒ bbac =c babc
mpr

⇒ acc and aabc
mpr

⇒ bcc
mpr

⇒ acc.
We denote by D the event corresponding to bbac =c babc, by ({E,F}, ∅, ∅) the
event structure corresponding to babc

mpr

⇒ acc, by ({A′, B′}, ∅, ∅) the event structure
corresponding to aabc

mpr

⇒ bcc, and by ({E′}, ∅, ∅) the event structure correspond-
ing to bcc

mpr

⇒ acc. The whole event structure corresponding to the computation
subspace is represented in Figure 3.

The events given by item 2 are essential for the definition of the causality re-
lationship. Such an example is the event D in Example 3. We have A,B,C < D

because D is causally dependent on A,B,C. The non-deterministic allocation of



264 G. Ciobanu, D. Lucanu

aabc

bbac

�
({

A
,B

,C
},
∅,
∅)

babc

({D}, ∅, ∅)

?

bcc
({

A
′, B

′}
, ∅

, ∅)
-

acc
�

({
E
′ },

∅,
∅)

({E
,F
}, ∅, ∅)-

Fig. 3. Event structure corresponding to a membrane computation subspace over strings

the resources to rules is given only after all the evolution rules from the previ-
ous mpr-step are completely applied. In this way, all ready-to-fire strings obtained
from bbac have the same probability. However, it is debatable whether we have to
distinguish between ready-to-fire strings producing essentially the same compu-
tations, e.g., the computation starting from babc, abbc, bcab, abcb, cbab, and cabb

are bisimilar. We also have D < E,F because the evolution rules of the next step
can be applied only after the resources are allocated to rules. We assume for the
moment that action(E) = [•abc, ℓ2] and action(F ) = [b • c, ℓ3]. By transitivity,
we get A < F even if the application of the rule ℓ3 in F does not use resources
produced by the application of the rule ℓ1 in A.

The conflict relation # is given by the nondeterministic allocation of the avail-
able resources to the rules before the execution of a mpr-step (item 3), and the
causality relation is given by the repeating evolution steps (item 4). Again, it is
debatable if the events corresponding to bbac =c babc, bbac =c abbc, bbac =c bcab,
bbac =c abcb, bbac =c cbab, and bbac =c cabb are really in conflict.

4.2 Commutative Case

In terms of multisets, a computation in M is of the form [w0]
mpr

⇒ [w1]
mpr

⇒ · · · ,
where [w0] is the initial contents of M . A multiset (contents) w is reachable in M

iff there is a computation from [w0] to [w].
The construction of the event structure ES(M) = (EM , <M ,#M ) associated

to a membrane M is simpler than that for the case of strings:



What is an Event for Membrane Systems? 265

1. for each reachable [w] and each [w′] such that [w]
mpr

⇒ [w′], ES([w], [w′]) ⊆
ES(M);

2. if [w]
mpr

⇒ [w1], [w]
mpr

⇒ [w2] and [w1] 6= [w2], then we have e1#e2 in ES(M) for
each e1 in ES([w], [w1]) and e2 in ES([w], [w2]);

3. if [w]
mpr

⇒ [w1], [w1]
mpr

⇒ [w2], then we have e1 < e2 in ES(M) for each e1 in
ES([w], [w1]) and e2 in ES([w1], [w2]).

Example 4. We consider the computation subspace given by [aabc]
mpr

⇒ [bbac]
mpr

⇒
[acc] and [aabc]

mpr

⇒ [bcc]
mpr

⇒ [acc]. We denote by ({E,F}, ∅, ∅) the event structure
corresponding to [babc]

mpr

⇒ [acc], by ({A′, B′}, ∅, ∅) the event structure correspond-
ing to [aabc]

mpr

⇒ [bcc], and by ({E′}, ∅, ∅) the event structure corresponding to
[bcc]

mpr

⇒ [acc]. The whole event structure corresponding to the computation sub-
space is represented in Figure 4.

[aabc]

[bbac]

�
({

A
,B

,C
},
∅,
∅)

[bcc]

({A
′, B

′}, ∅, ∅)
-

[acc]
�

({
E
′ },

∅,
∅)

({E
,F
}, ∅, ∅)-

Fig. 4. Event structure corresponding to a membrane computation space over strings

The allocation of the resources to the rules is not longer given by an explicit
event. It is given by the causality relation. For instance, in Example 4 we have
A,B,C < E,F . The conflict relation is generated only by the mpr-steps starting
from the same multiset (contents) and producing different new multisets (con-
tents).

5 Conclusion

In this paper we study the event structure for membrane systems, considering both
the causality and the conflict relations. We investigate how an event structures can
be associated to an parallel evolution step. We found that the meaning of an event



266 G. Ciobanu, D. Lucanu

depends on the algebraic structure used for the contents of membranes: string or
multiset.

The construction of the event structures for the cases of priorities and pro-
moters can be reduced to the case of maximal parallel rewriting. A computation
step w

pri

⇒ w′ ([w]
pri

⇒ [w′]) in the presence of priorities is the same with w
mpr

⇒ w′

([w]
mpr

⇒ [w′]) by taking into account only the rules of maximal priority applicable
on w. Similarly, a computation step w

prom

⇒ w′ ([w]
prom

⇒ [w′]) in the presence of pro-
moters is the same with w

mpr

⇒ w′ ([w]
mpr

⇒ [w′]) where the rules requiring promoters
not in w are not considered.

References

1. O. Andrei, G. Ciobanu, D. Lucanu. A Structural Operational Semantics of the P
Systems, In Membrane Computing. WMC6, Lecture Notes in Computer Science
vol.3850, Springer, 32–49, 2006.

2. O. Andrei, G. Ciobanu, D. Lucanu. Operational Semantics and Rewriting Logic in
Membrane Computing, Electronic Notes of Theoretical Computer Science 156:57–78,
2006.

3. O.Andrei, G.Ciobanu, D.Lucanu. A Rewriting Logic Framework for Operational
Semantics of Membrane Systems. Theoretical Computer Science 373:163–181, 2007.

4. M. Nielsen, G. Rozenberg, P.S. Thiagarajan. Transition Systems, Event Structures,
and Unfoldings. Information and Computation 118(2):191–207, 1995.

5. Gh. Păun. Membrane Computing. An Introduction. Springer, 2002.
6. V. Sassone, M. Nielsen, G. Winskel. Models for Concurrency: Towards a Classifica-

tion. Theoretical Computer Science 170:297–348, 1996.
7. G. Winskel. Event structures. In Petri Nets: Applications and Relationships to

Other Models of Concurrency, Lecture Notes in Computer Science vol.255, 325–392,
Springer, 1987.

8. G. Winskel. An introduction to event structures. In REX School/Workshop on Linear
Time, Branching Time and Partial Order in Logics and Models for Concurrency,
Lecture Notes in Computer Science vol.354, 364–397, Springer, 1989.


