
P Systems with String Objects and with
Communication by Request

Erzsébet Csuhaj-Varjú, György Vaszil

Computer and Automation Research Institute
Hungarian Academy of Sciences
Kende utca 13–17, H-1111 Budapest, Hungary
{csuhaj,vaszil}@sztaki.hu

Summary. In this paper we study P systems using string-objects where the communi-
cation between the regions is indicated by the occurrence of so-called query symbols in
the string. We define two variants of communication and prove that these systems with
both types of communication are computationally complete, even having a number of
membranes limited with relatively small constants.

1 Introduction

In this paper we continue our investigations on P systems with string objects and
with communication by request. In [2], the authors studied tissue-like P systems
over string objects where the evolution rules of the objects are represented by
context-free rewriting rules which also describe the communication between the
membranes by the help of communication symbols, called query symbols, one such
symbol corresponding to each region of the system.

Membrane systems, or P systems, are distributed and parallel computing de-
vices inspired by the functioning of the living cell [5]. A P system consists of a
hierarchically embedded structure of membranes. Each membrane encloses a re-
gion that contains objects and might also contain other membranes. There are rules
associated to the regions describing the evolution and the movement of the objects
which together correspond to a computation. For details on membrane systems,
see the monograph [6] and consult the web-page http://psystems.disco.unimib.it.

While in the standard case a P system consists of a hierarchically embedded
structure of membranes, tissue-like P systems are organized in another manner
[4]. Instead of an individual cell, these correspond to groups of cells, like tissues or
organs, interacting with each other either directly or with the use of the environ-
ment, but in any case, having the common property that the membrane structures
are not necessarily described by a tree as the ones corresponding to individual
cells.

268 E. Csuhaj-Varjú, G. Vaszil

Communication in tissue-like P systems with string objects and with commu-
nication by request was defined as follows: When one or more query symbols are
introduced in a string, then the rewriting of that string stops and the queries are
satisfied by replacing the query symbols with strings which do not contain fur-
ther query symbols from the region indicated by the query symbol, in all possible
combinations. If no query symbol free string exists in the queried region, then the
string containing the query disappears.

This model has some biological resemblance: if the strings are considered as
descriptions of simple organisms, the query symbols as their “weak points”, pos-
sibly infected or attacked by another organism, then the communication mimics
some features of an infection or parasitism. Inspired by these resemblances, we
call a communication of type i (infection) if after communicating the copies of
the strings, the strings themselves remain in the region, while the communication
is called of type p (parasitism), if after communication the communicated string
itself disappears from its original region. The model is called an MPC system in
short.

MPC systems can also be considered as modified variants of parallel commu-
nicating (PC) grammar systems defined over multisets of strings. PC grammar
systems are networks of grammars organized in a communicating system to gen-
erate a single language. The reader interested in the theory of grammar systems
is referred to [1, 7].

In [2], the authors proved that MPC systems with 7 membranes and working
with i-communication are able to describe all recursively enumerable languages.
The computational completeness of these systems working with p-communication
holds as well, even for a subclass consisting of systems having only 9 membranes.

In this paper we define the two types of communication for standard P systems
and examine the computational power and the size complexity of these models.
We call the new constructs RPC systems in short. In this case, the requested
string can only be communicated either to the parent membrane or to one of the
child membranes, depending on the issued query symbol. Thus, query symbols
refer only to the neighboring regions. According to the above mentioned biological
resemblance, both infection and parasitism are very local phenomena regarding
their spread, i.e., in one step only the neighbors can be infected and parasitism
can be developed only between two closely related, i.e. neighbor components. As
for MPC systems, the computational completeness can be proved for RPC systems
with both types of communication: in the case of i-communication systems with
10 membranes and in the case of p-communication systems with 30 membranes
are enough for demonstrating the power of the Turing machines. The reader can
observe that both MPC systems and P systems are able to obtain the computa-
tional completeness even with relatively small number of membranes. Moreover, in
the case of i-communication the difference between the two numbers is very small,
i.e. the difference in the underlying structure of the membrane system has not too
much influence on the computational power of the system.

P Systems with String Objects and with Communication by Request 269

2 Preliminaries and Definitions

We first recall the notions and the notations we use. The reader is assumed to be
familiar with the basics of formal language theory, for details see [7]. Let Σ be an
alphabet and let Σ∗ be the set of all words over Σ, that is, the set of finite strings
of symbols from Σ, and let Σ+ = Σ∗ − {ε} where ε denotes the empty word. For
w ∈ Σ∗ and S ⊆ Σ, let |w|S denote the number of occurrences of symbols from S
in the string w (if S = {a} is a singleton set, we may write |w|a instead of |w|{a}).

Let V be a set of objects, and let N denote the set of non-negative integers.
A multiset is a mapping M : V → N which assigns to each object a ∈ V its
multiplicity M(a) in M . The support of M is the set supp(M) = {a | M(a) ≥ 1}.
If supp(M) is a finite set, then M is called a finite multiset. The set of all finite
multisets over the set V is denoted by V ◦.

We say that a ∈ M if M(a) ≥ 1. For two multisets M1,M2 : V → N, M1 ⊆ M2

if for all a ∈ V , M1(a) ≤ M2(a). The union of M1 and M2 is defined as (M1∪M2) :
V → N with (M1∪M2)(a) = M1(a)+M2(a) for all a ∈ V , the difference is defined
for M2 ⊆ M1 as (M1 −M2) : V → N with (M1 −M2)(a) = M1(a) −M2(a) for
all a ∈ V , and the intersection is (M1 ∩ M2) : V → N with (M1 ∩ M2)(a) =
min(M1(a),M2(a)) for a ∈ V , where min(x, y) denotes the minimum of x, y ∈ N.
We say that M is empty, denoted by ε, if its support is empty, supp(M) = ∅.

In the following we sometimes list elements a1, . . . , an of a multiset as M =
{{a1, . . . , an}}, by using double brackets to distinguish from the usual set notation.

A P system is a structure of hierarchically embedded membranes, each having
a label and enclosing a region containing a multiset of objects and possibly other
membranes. The out-most membrane which is unique, is called the skin membrane.
The membrane structure is denoted by a sequence of matching parentheses where
the matching pairs have the same label as the membranes they represent. If mem-
brane li of a given membrane structure µ contains membrane lj , and there is no
other membrane, lk, such that lk contains lj and li contains lk, then we say that
membrane li is the parent membrane of lj , denoted as parentµ(lj) = li, and lj is one
of the child membranes of li, denoted as lj ∈ childµ(li). We also define for any re-
gion li the set of regions neighborµ(li) = {lj | parentµ(li) = lj or lj ∈ childµ(li)}.

The evolution of the contents of the regions of a P system is described by
rules associated to the regions. Applying the rules synchronously in each region,
the system performs a computation by passing from one configuration to another
one. Several variants of the basic notion have been introduced and studied proving
the power of the framework, see the monograph [6] for a summary of notions and
results of the area.

In the following we focus on systems where the objects are represented with
strings, object evolution is modeled by context-free string rewriting rules, and
communication is performed by dynamically emerging requests with the use of
query symbols appearing in the string objects.

Definition 1 A string rewriting P system with communication by request or an
RPC system (of degree m ≥ 1) is a construct

270 E. Csuhaj-Varjú, G. Vaszil

Π = (V, µ, (M1, R1), . . . , (Mm, Rm), io),

where:

• V = N ∪ T ∪K where N, T, K are pairwise disjoint alphabets of noterminals,
terminals, and query symbols, respectively, with K = {Q1, . . . , Qm} (one query
symbol is associated to each region of Π);

• µ is a membrane structure of m membranes;
• M1, . . . , Mm are finite multisets over (N ∪ T)∗;
• R1, . . . , Rm are finite sets of context-free rewriting rules of the form A → u,

with A ∈ N and u ∈ V ∗;
• io ∈ {1, 2, . . . , m} is the index of the output membrane of Π.

The work of such a system starts from the initial configuration (M1, . . . , Mm).
It passes from a configuration (M ′

1, . . . , M
′
m), consisting of multisets of strings

over N ∪ T ∪K placed in the m regions of the system, to another configuration
(M ′′

1 , . . . , M ′′
m) in the following way. If no query symbol is present in the strings

contained by the system, then each string from each multiset M ′
i is rewritten which

can be rewritten according to the rules from Ri, 1 ≤ i ≤ m. This means the use of
one rule from Ri, non-deterministically chosen, for each string. The strings which
cannot be rewritten (no rule can be applied to them) remain unchanged. The
resulting multisets of strings are M ′′

i , 1 ≤ i ≤ m. Note that the rewriting of strings
is maximally parallel, in the sense that all strings which can be rewritten must be
rewritten, and that the process is non-deterministic, the choice of rules and the
places where the rules are applied can lead to several possible new multisets of
strings.

If any query symbol is present in any of the strings contained by M ′
i , 1 ≤ i ≤

n, then a communication is performed: Each symbol Qj introduced in a string
present in region i (that is, in the multiset M ′

i), where j is the index of one of
the neighboring regions, is replaced with all strings from this neighboring region
j which do not contain query symbols. If in region j there are several strings
without query symbols, then each of them is used, hence the string from region
i is replicated (with the occurrence of Qj replaced with strings from region j).
If there are several query symbols in the same string from component i, then
all of them are replaced (we also say that they are satisfied) at the same time,
in all possible combinations. If a query symbol Qj cannot be satisfied (region
j contains no string without query symbols), then the string containing Qj is
removed (it is like replacing it with the strings from an empty language). We call
such a system i-communicating if copies of the requested strings are communicated
to the requesting components, and p-communicating if after replacing the query
symbols with the requested strings, these strings are removed from the multiset
associated to the queried region.

In this way, all query symbols introduced by the rewriting rules disappear,
they are either satisfied (replaced by strings without query symbols) or they dis-
appear together with the string which contain them (in the case when they cannot

P Systems with String Objects and with Communication by Request 271

be satisfied). The multisets obtained in this way in one communication step are
M ′′

1 , . . . ,M ′′
m, constituting the next configuration of the system.

We give now the formal definition of the transition.

Definition 2 Let Π = (V, µ, (M1, R1), . . . , (Mm, Rm), io) be an RPC system as
above, and let (M ′

1, . . . , M
′
m) and (M ′′

1 , . . . ,M ′′
m) be two configurations of Π. We

say that (M ′
1, . . . ,M

′
m) directly derives (M ′′

1 , . . . ,M ′′
m), if one of the following two

cases holds.

1. There is no string containing query symbols, that is, x ∈ (N ∪ T)∗ for all x ∈⋃m
i=1 Mi. In this case, if M ′

i = {{xi,1, . . . , xi,ti}}, then M ′′
i = {{yi,1, . . . , yi,ti}}

where either xi,j ⇒ yi,j according to a context-free rule of Ri, or yi,j = xi,j if
there is no rule in Ri which can be applied to xi,j , 1 ≤ j ≤ ti, 1 ≤ i ≤ m.

2. There is at least one x ∈ ⋃m
i=1 Mi such that |x|K > 0. In this case, rewriting

is stopped and a communication step must be performed as follows. Let

Mreq
i =




{{x ∈ M ′

i | |x|K = 0}} if there is a j ∈ neighborµ(i), such
that y ∈ M ′

j with |y|Qi
> 0,

∅ otherwise,

let
Mavail

i = {{x ∈ M ′
i | |x|K = 0}},

for all i, 1 ≤ i ≤ m, and let for an x = x1Qi1x2Qi2 . . . Qtxt+1, xj ∈ (N ∪
T)∗, Qij ∈ K, 1 ≤ j ≤ t + 1,

Sat(x) =




{{x1yi1x2yi2 . . . yitxt+1 | yij ∈ Mavail

ij
}} if Mavail

ij
6= ∅ for

all ij , 1 ≤ j ≤ t,
∅ otherwise.

Now, for all i, 1 ≤ i ≤ m,

M ′′
i = M ′

i −Mreq
i − {{x ∈ M ′

i | |x|K > 0}}+
⋃

x∈M ′
i ,|x|K>0

Sat(x)

in the p-communicating mode, and

M ′′
i = M ′

i − {{x ∈ M ′
i | |x|K > 0}}+

⋃

x∈M ′
i ,|x|K>0

Sat(x)

in the i-communicating mode.

Let us denote the transitions from one configuration to another, (M ′
1, . . . , M

′
m) to

(M ′′
1 , . . . , M ′′

m), by (M ′
1, . . . ,M

′
m) ⇒X (M ′′

1 , . . . , M ′′
m) with X = i and X = p for

i-communicating and p-communicating systems, respectively.
The language generated by the RPC system consists of all terminal strings

produced in region io during any possible computation in Π.

272 E. Csuhaj-Varjú, G. Vaszil

LX(Π) = {x ∈ T ∗ | (M1, . . . , Mm) ⇒∗
X (M ′

1, . . . , M
′
m) and x ∈ M ′

io
}

for X ∈ {i, p}, where ⇒∗
X denote the reflexive and transitive closure of ⇒X .

The families of all languages generated in this way by RPC systems of de-
grees at most m ≥ 1 with i-communication or p-communication, is denoted by
iRPCmCF and pRPCmCF , respectively. If we use systems of an arbitrary de-
gree, then we replace the subscript m with ∗. Let us also denote the class of
recursively enumerable languages by RE.

RPC systems are computationally universal; they characterize the class of re-
cursively enumerable languages, even with a limited number of components.

Before proving this result, we recall the notion of a two-counter machine from
[3]. A two-counter machine TCM = (T ∪{Z,B}, E, R) is a 3-tape Turing machine
where T is an alphabet, E is a set of internal states with two distinct elements
q0, qF ∈ E, and R is a set of transition rules. The machine has a read-only input
tape and two semi-infinite storage tapes (the counters). The alphabet of the storage
tapes contains only two symbols, Z and B (blank), while the alphabet of the input
tape is T ∪ {B}. R contains transition rules of the form (q, x, c1, c2) → (q′, e1, e2)
where x ∈ T ∪ {ε} corresponds to the symbol scanned on the input tape in state
q ∈ E, and c1, c2 ∈ {Z, ∗} correspond to the symbols scanned on the storage tapes.
If ci = Z, then the symbol scanned on the ith counter tape is Z, if ci = ∗, then the
symbol scanned is either Z or B. By a rule of this form, M enters state q′ ∈ E,
and the counters are modified according to e1, e2 ∈ {−1, 0, +1}. If x ∈ T , then
the machine was scanning x on the input tape, and the head moves one cell to
the right; if x = ε, then the machine performs the transition irrespective of the
scanned input symbol, and the reading head does not move.

The symbol Z appears initially on the cells scanned by the storage tape heads
and may never appear on any other cell. An integer t can be stored by moving
a tape head t cells to the right of Z. A stored number can be incremented or
decremented by moving the tape head right or left. The machine is capable of
checking whether a stored value is zero or not by looking at the symbol scanned
by the storage tape heads. If the scanned symbol is Z, then the value stored in the
corresponding counter is zero. Note that although we do not allow to explicitly
check the non-emptiness of the counters which is allowed in [3], this feature can be
simulated: After successfully decrementing and incrementing a counter, the stored
value is not altered, but the machine can be sure that the scanned symbol is B. A
word w ∈ T ∗ is accepted by the two counter machine if the input head has read
the last non-blank symbol on the input tape, and the machine is in the accepting
state qF . Two-counter machines are computationally complete; they are just as
powerful as Turing-machines, see [3].

Theorem 1. iRPC10CF = RE.

Proof. We only give the proof of the inclusion RE ⊆ iRPC10CF . The re-
verse inclusion follows from the Church thesis. To this aim, let us consider a
recursively enumerable language L ⊆ T ∗ and a two-counter machine TCM =

P Systems with String Objects and with Communication by Request 273

(T ∪ {Z, B}, E, R), in the above form, accepting the language L. We construct an
RPC system L. Let

Π = (V, µ,Csel, Cgen, Cch1 , CS4 , Cc1 , Cind1 , Cch2,1 , Cc2 , Cind2 , Cch2,2 , sel),

where Cα = (Mα, Rα) for α ∈ {sel, gen, c1, c2, ind1, ind2, ch1, S4, ch2,1, ch2,2}, µ =
[[[[]S4 [[]ind1 []ch2,1]c1 [[]ind2 []ch2,2]c2]ch1]gen]sel and V = N ∪K ∪ T .

Let D = {[q, x, c1, c2, q
′, e1, e2] | (q, x, c1, c2) → (q′, e1, e2) ∈ R}, and let us

define for any α = [q, x, c1, c2, q
′, e1, e2] ∈ D, the following notations: State(α) = q,

Read(α) = x, NextState(α) = q′, and Store(α, i) = ci, Action(α, i) = ei for
i = 1, 2.

The general idea of the simulation is to represent the states and the transitions
of TCM with nonterminals of D and the values of the counters by strings of non-
terminals containing as many A symbols as the value stored in the given counter.
Let

N = {S′i, Fi, Bi | 1 ≤ i ≤ 6} ∪ {Si, Ci | 1 ≤ i ≤ 7} ∪ {αi,Hi | α ∈ D, 1 ≤ i ≤
8} ∪ {α′1, α′′1 , ᾱ′1, ᾱ

′′
1 , ᾱ′1 | α ∈ D} ∪ {F1,i | 1 ≤ i ≤ 5} ∪ {Ji | 1 ≤ i ≤ 4} ∪ {A,

F̄ ′1, F̄
′
1, F̄

′
1
, F̄ ′′1 , E, E1, I, J, S′′6 } and let the rules be defined as follows.

Msel = {{I}},
Rsel = {I → α1 | α ∈ D, State(α) = q0} ∪

{α8 → β1 | α, β ∈ D, NextState(α) = State(β)} ∪
{α8 → F1 | α ∈ D,NextState(α) = qF } ∪
{αi → αi+1 | α ∈ D, 1 ≤ i ≤ 7} ∪ {Fi → Fi+1 | 1 ≤ i ≤ 5} ∪
{F6 → Qgen, S′6 → S′6, S

′
6 → Qgen, E → ε, ᾱ′′1 → ε}.

This region keeps track of the current state of the simulated two-counter machine
and also selects the transition to be simulated. The symbol I is used to initial-
ize the system by introducing one of the initial transition symbols of the form
[q0, x, c1, c2, q

′, e1, e2]1 where q0 is the initial state. It also produces the result of
the computation when after simulating the entering of the counter machine into
the final state (that is, after the appearance of the nonterminal F1), it receives the
strings produced in the lower regions and erases the occurrences of the nontermi-
nals E which, if the simulation was successful, produces a terminal word accepted
by the two-counter machine.

Mgen = {{S1, S
′
1}},

Rgen = {S1 → S2, S2 → Qsel, S
′
1 → Qsel} ∪

{α1 → α′1, α2 → Qsel, αi → αi+1 | α ∈ D, 3 ≤ i ≤ 6} ∪
{α′1 → α′′1 , α′′1 → S′2, α7 → xS1 | α ∈ D, Read(α) = x} ∪
{F1 → F1,1, F1,i → F1,i+1, F1,5 → Qch1 | 1 ≤ i ≤ 4} ∪
{S′i → S′i+1 | 2 ≤ i ≤ 4} ∪ {S′5 → S′1, A → ε, J → ε} ∪
{F2 → Qsel, Fi → Fi+1 | 3 ≤ i ≤ 4} ∪ {F5 → Qch1} ∪
{S′6 → S′′6 , H7 → ε}.

274 E. Csuhaj-Varjú, G. Vaszil

This region generates the string accepted by the counter machine by adding the
symbol Read(α) for each α ∈ D chosen in the selector region. After the appearance
of the nonterminal F1 in the system, this region will append the words from the
checking region ch1 to its own string and send this string which also contains the
generated word to the region sel. Then it will receive the word from region ch2

and erase all A and J symbols before forwarding it also to region sel.

Mch1 = {{S1, S
′
1}},

Rch1 = {S1 → S2, S2 → S3, S3 → Qgen, S′1 → S′2, S
′
2 → Qgen} ∪

{α′′1 → δ1δ2QS4 | α ∈ D, δj = Qcj if Store(α, j) = Z,

or δj = ε otherwise} ∪ {Si → Si+1 | 4 ≤ i ≤ 6} ∪
{α′1 → ᾱ′1, ᾱ

′
1 → ᾱ′1, ᾱ

′
1 → S′3, S

′
3 → S′4, S

′
4 → S′5} ∪

{F1,1 → F̄ ′1, F̄
′
1 → F̄

′
1, F̄

′
1 → F̄

′
1
, F̄

′
1
→ Qc1Qc2} ∪

{S7 → S1, S
′
5 → S′1, F1,2 → QS4}, and

MS4 = {{S4}},
RS4 = ∅.

The region ch1 checks whether the counter contents are zero when they should be
zero by collecting the counter strings from regions c1, c2 when necessary. At the
end of the simulation, the collected string is forwarded to the region gen and then
to region sel, where a terminal string can only be produced if the word originating
in region ch1 contains no A symbols.

For j = 1, 2, let

Mcj = {{J,C1}},
Rcj = {J → J1, J1 → J2, J2 → Qch1 , A → Qindj , J3 → Qindj , J4 → J} ∪

{ᾱ′1 → ᾱ′′1 , ᾱ′′1 → δαJ3, ᾱ
′
1 → C5 | α ∈ D, δα = A if Action(α, j) = 0,

δα = AA if Action(α, j) = +1, δα = ε if Action(α, j) = −1} ∪
{Ci → Ci+1, C4 → Qch1 , C7 → C1 | i ∈ {1, 2, 3, 5, 6} } ∪
{F̄ ′1 → F̄ ′′1 , F̄

′
1 → Qch2,j , E → E1,H6 → H7}.

These regions maintain strings representing the contents of the two counters. After
the selection of a transition symbol in the region corresponding to Csel, they
execute the action required by the chosen transition symbol by adding AA, A,
or ε to the counter string and then deleting one A and J3 by rewriting it to
Qindj . The simulation can only be successful if exactly one A and the symbol J3

is rewritten. This is ensured by region Cindj . If there is a string obtained after the
two queries which contain only a number of A or E symbols and one J4 symbol,
then the simulation of the actions required by the chosen transition was successful.
If a counter is empty, this construction also forbids the successful execution of the
decrement instruction since this would introduce E1 in the counter strings.

The rules of the region supporting the work of the counters Ccj , j = 1, 2, are
defined as follows.

P Systems with String Objects and with Communication by Request 275

Table 1. Components of Π in the proof of Theorem 1, simulating an instruction with
α = [q, x, Z, B, q′, +1,−1]. The region CS4 is omitted since it always contains the string
S4.

Csel Cgen Cch1 Cc1 Cind Cch2,1

0 β8 wS1, S
′
1 E...S1, S

′
1 E...J, C1 B1 AEJ...H1

1 α1 wS2, Qsel E...S2, S
′
2 E...J1, C2 B2 AEJ...H2

1C α1 wS2, α1 E...S2, S
′
2 E...J1, C2 B2 AEJ...H2

2 α2 wQsel, α
′
1 E...S3, Qgen E...J2, C3 B3 AEJ...H3

2C α2 wα2, α
′
1 E...S3, α

′
1 E...J2, C3 B3 AEJ...H3

3 α3 wQsel, α
′′
1 E...Qgen, ᾱ′1 E...Qch1 , C4 B4 AEJ...H4

3C α3 wα3, α
′′
1 E...α′′1 , ᾱ′1 E...ᾱ′1, C4 B4 AEJ...H4

4 α4 wα4, S
′
2 E...Qc1QS4 , ᾱ′1 E...ᾱ′′1 , Qch1 B5 AEJ...H5

4C α4 wα4, S
′
2 E...ᾱ′′1S4, ᾱ

′
1 E...ᾱ′′1 , ᾱ′1 B5 AEJ...H5

5 α5 wα5, S
′
3 E...ᾱ′′1S5, S

′
3 E...δαJ3, C5 B6 AEJ...H6

6 α6 wα6, S
′
4 E...ᾱ′′1S6, S

′
4 E...QindJ3, C6 E AEJ...H7

6C α6 wα6, S
′
4 E...ᾱ′′1S6, S

′
4 E...EJ3, C6 E AEJ...H7

7 α7 wα7, S
′
5 E...ᾱ′′1S7, S

′
5 E...EQind, C7 J4 AEJ...H8

7C α7 wα7, S
′
5 E...ᾱ′′1S7, S

′
5 E...EJ4, C7 J4 AEJ...H8

8 α8 wxS1, S
′
1 E...ᾱ′′1S1, S

′
1 E...EJ, C1 B1 AEJQc1H1

8C α8 wxS1, S
′
1 E...ᾱ′′1S1, S

′
1 E...EJ, C1 B1 AEJ...H1

Mindj = {{B1}},
Rindj = {Bi → Bi+1 | 1 ≤ i ≤ 5} ∪ {B6 → E, E → J4, J4 → B1},

and

Mch2,j = {{H1}},
Rch2,j = {Hi → Hi+1 | 1 ≤ i ≤ 7} ∪ {H8 → Qcj H1}.

Instead of giving a detailed proof of the correctness of our construction, we demon-
strate the work of the system in Table 1 and Table 2 by indicating a possible tran-
sition sequence of Π while simulating an instruction of the two-counter machine
TCM , and by presenting the terminating part of the simulation. Note that the
cells of the tables contain only some of the strings produced by the regions, those
which are interesting from the point of view of the simulation.

Let us first look at Table 1. The simulated instruction is represented by a
nonterminal α1 = [q, x, Z, ∗, q′,+1,−1]1 chosen in region Csel in the first step.
This indicates that the first counter should be empty which requirement is satisfied
since region Cc1 contains a string containing zero A symbols. In the following few
steps, the indexed versions of α reach the regions Cgen, Cch1 , Ccj , j ∈ {1, 2}, and
each of these regions executes its part of the simulation. Cgen generates the letter
read by the two-counter machine, Cch1 queries the regions simulating the counters
in the case when their contents should be zero, and this way collects a “checker”

276 E. Csuhaj-Varjú, G. Vaszil

string. If this string contains the nonterminal A, then the simulation is not correct.
Ccj

maintain the contents of the counters by adding or deleting A-s. Its work is
aided by Cind and Cch2,j . The region Cch2,j collects the counter strings at the end
of each simulating cycle. The simulation was successful if and only if this collected
string only contains A,E or J symbols.

The terminating phase of the simulation is presented on Table 2. When Gsel

selects the symbol F , the system prepares to finish its work. The variously indexed
versions of F travel through the system and result in the transfer of the word
generated in Ggen and the checker string of region Cch1 to region Csel. There
the symbol A cannot be erased, so a terminal word can only be produced if the
checker string does not contain this symbol. Meanwhile, the other checker strings
are transferred from Cch2,j

to region Cgen where the A and J symbols can be
erased, but nothing else, so when later also this string is transferred to Csel, a
terminal string can only be produced if the behavior of the counter simulating
regions were correct in each step of the simulation. The last row of the table
represents the situation when the erasing process begins. When all A and J have
disappeared from the string in region Cgen, then S′6 can be changed to a query
symbol transferring the result to Csel, where all remaining symbols can be erased,
in the case when the simulation was correct. 2

Next we prove that any RPC system using i-communication can be simulated
with an RPC system using p-communication.

Theorem 2. iRPCnCF ⊆ pRPC3nCF, for any n ≥ 1.

Proof. Let Π = (V, µ, (M1, R1), . . . , (Mn, Rn), 1) be a system of degree n with
V = N ∪K ∪T . We construct Π ′ = (V ′, µ′, (M ′

1, R
′
1), . . . , (M

′
3n, R′3n), 1) of degree

3n, such that Lp(Π ′) = Li(Π).
Let µ′ be defined by adding two new regions [[]2n+i]n+i inside every region i.

This way, n + i ∈ neighborµ′(i), and 2n + i ∈ neighborµ′(n + i) for all 1 ≤ i ≤ n.
Let V ′ = N ′ ∪K ′ ∪ T where N ′ = N ∪ {S1, S2, S3, S4}, and let the rules of Π ′

be defined as

M ′
i = Mi ∪ {{S1, S2}},

R′i = Ri ∪ {S1 → Qi, S2 → Qn+i},

and

M ′
n+i = {{S1, S2, S3, S4}}, R′n+i = {S3 → Qn+i, S4 → Q2n+i},

M ′
2n+i = {{S1, S2, S3, S4}}, R′2n+i = {S1 → Qn+i, S2 → Q2n+i}

for all 1 ≤ i ≤ n.
The additional membranes of Π ′ work as “suppliers” of symbols. In each step,

each region i rewrites S1 and S2 to query itself, and the region n+ i. From itself it
“receives” the strings it contains besides S1, S2, from region n+i it receives S1, S2,
so the same behavior can be repeated in the next step. This self query mechanism

P Systems with String Objects and with Communication by Request 277

Table 2. Components of Π in the proof of Theorem 1, simulating the terminating phase
of the system. The region CS4 is omitted since it always contains the string S4.

Csel Cgen Cch1 Cc1 Cind Cch2,1

0 β8 wS1, S
′
1 E...S1, S

′
1 E...J, C1 B1 AEJ...H1

1 F1 wS2, Qsel E...S2, S
′
2 E...J1, C2 B2 AEJ...H2

1C F1 wS2, F1 E...S2, S
′
2 E...J1, C2 B2 AEJ...H2

2 F2 wQsel, F1,1 E...S3, Qgen E...J2, C3 B3 AEJ...H3

2C F2 wF2, F1,1 E...S3, F1,1 E...J2, C3 B3 AEJ...H3

3 F3 wQsel, F1,2 E...Qgen, F̄ ′1 E...Qch1 , C4 B4 AEJ...H4

3C F3 wF3, F1,2 E...F1,2, F̄
′
1 E...F̄ ′1, C4 B4 AEJ...H4

4 F4 wF4, F1,3 E...QS4 , F̄
′
1 E...F̄ ′′1 , Qch1 B5 AEJ...H5

4C F4 wF4, F1,3 E...S4, F̄
′
1 E...F̄ ′′1 , F̄

′
1 B5 AEJ...H5

5 F5 wF5, F1,4 E...S5, F̄
′
1

E...F̄ ′′1 B6 AEJ...H6

Qch2,1

5C F5 wF5, F1,4 E...S5, F̄
′
1

E...F̄ ′′1 B6 AEJ...H6

AEJ...H6

6 F6 wQch1 E...S6 E...F̄ ′′1 E AEJ...H7

F1,5 Qc1Qc2 AEJ...H7

6C F6 wE...S6 E...S6 E...F̄ ′′1 E AEJ...H7

F1,5 AEJ......H7 AEJ...H7 E AEJ...H7

7 Qgen wE...S′6 E...S7 E...F̄ ′′1 J4 AEJ...H8

Qch1 AEJ......H7 AEJ...H7

7C wE...S′6 wE...S′6 E...S7 E...F̄ ′′1 J4 AEJ...H8

AEJ...H7 AEJ......H7 AEJ...H7

is used in each region to keep a copy of its contents even in the case when it
is requested by some other region. This way, Π ′ simulates the communication
behavior of Π. 2

By Theorems 1 and 2, we obtain the immediate corollary.

Corollary 3 iRPC10 = pRPC30CF = RE.

3 Closing Remarks

We proved that in the case of string rewriting P systems communication according
to dynamically emerging requests leads to computational completeness both for
standard P systems and tissue-like P systems, even in the case of systems with
bounded size parameters. There have remained several open problems for further
study. For example, it is not known whether the obtained size bounds are sharp
or not, and whether or not the sharp bounds are different for MPC systems and
RPC systems.

278 E. Csuhaj-Varjú, G. Vaszil

References

1. E. Csuhaj-Varjú, J. Dassow, J. Kelemen, Gh. Păun, Grammar Systems. A Grammat-
ical Approach to Distribution and Cooperation, Gordon and Breach, London, 1994.

2. E. Csuhaj-Varjú, Gh. Păun, Gy. Vaszil, Tissue-like P systems communicating by
request. Submitted.

3. P. C. Fischer, Turing machines with restricted memory access, Information and Con-
trol, 9 (1966), 364–379.

4. C. Mart́ın-Vide, Gh. Păun, J. Pazos, A. Rodŕıguez-Patón, Tissue P systems, Theo-
retical Computer Science, 296(2) (2003), 295–326.

5. Gh. Păun, Computing with membranes, Journal of Computer and System Sciences
61(1) (2000), 108–143 (and Turku Center for Computer Science-TUCS Report 208,
November 1998, www.tucs.fi).

6. Gh. Păun, Membrane Computing: An Introduction, Springer-Verlag, Berlin, 2002.
7. G. Rozenberg, A. Salomaa, (eds.), Handbook of Formal Languages, Springer-Verlag,

Berlin, 1997.

