
On the Dynamics of PB Systems with Volatile
Membranes

Giorgio Delzanno1, Laurent Van Begin2?

1 Università di Genova, Italy
giorgio@disi.unige.it

2 Université Libre de Bruxelles, Belgium
lvbegin@ulb.ac.be

Summary. We investigate decision problems like reachability and boundedness for ex-
tensions of PB systems with volatile membranes. Specifically, we prove that reachability
and boundedness are decidable for PB systems extended with rules for membrane disso-
lution. For PB systems extended with membrane creation, reachability is still decidable
whereas boundedness becomes undecidable. Furthermore, we show that both problems
are undecidable for PB systems extended with both dissolution and creation rules. Fi-
nally, we prove that reachability and boundedness become decidable for PB systems with
dissolution rules and in which only one instance of each type of membrane can be created
during a computation. Our work extends previous results obtained for PB systems by
Dal Zilio and Formenti in a paper appeared in the proceedings of WMC 2003 [5].

1 Introduction

The PB systems of Bernardini and Manca [2] are a variant of P-systems [16] in
which rules can operate on the boundary of a membrane. A boundary rule can be
used here to move multisets of objects across a membrane. In biological modeling,
PB are very useful for expressing complex interactions among biological mem-
branes [8]. For this reason, it seems important to develop methods for qualitative
and quantitative analysis of models specified in this formalism. In this paper we
focus our attention on theoretical issues for the qualitative analysis of PB systems.
Some preliminary results on decision problems for PB systems have been obtained
in [5]. Specifically, in [5] Dal Zilio and Formenti proved that the reachability prob-
lem is decidable for PB systems with symbol objects. The reachability problem
consists in checking if a given system can evolve into a fixed a priori configuration.
The decidability proof in [5] is based on an encoding of PB systems into Petri nets
[17], an infinite-state model of concurrent systems for which the reachability prob-
lem is decidable [14, 11]. A Petri net is a collection of places that contain tokens,

? Research fellow supported by the Belgian National Science Foundation (FNRS).

280 G. Delzanno, L. Van Begin

and of transitions that define how tokens move from one place to another. The
current configuration of a net is called marking. A marking specifies the current
number of tokens in each place. A PB system can be encoded as a Petri net in
which membranes are modelled as places, symbol objects as tokens, configurations
as markings, and internal/boundary rules as transitions. The execution of a rule
is simulated then by the firing of the corresponding Petri net transition. The Petri
net encoding shows that the reachability problem is decidable in PB systems. The
same reduction can be used to decide other properties like boundedness [6]. In [5]
the authors observe that the aforementioned encoding can be extended to more
sophisticated Petri net models so as to deal with dynamically changing membrane
structures. As an example, Petri net transitions extended with transfer arcs nat-
urally model the dissolution of a membrane. Indeed, a transfer arc can be used
to atomically transfer all tokens from one place to another. This operation can be
applied to move the content of a dissolved membrane to its father. Unfortunately,
as pointed out in [5], this connection cannot be exploited in order to extend the de-
cidability results obtained for PB systems. Indeed, problems like reachability and
boundedness become undecidable in presence of transfer or reset arcs [6]. The de-
cidability of reachability and boundedness for PB systems with volatile or moving
membrane seems to be still an open problem. In this paper we focus our attention
on decision problems for extensions of PB systems with dissolution and creation
rules. More specifically, our technical results are as follows.

We first show that reachability is decidable in PB systems with dissolution
rules (PBD systems). Dissolution rules are a peculiar feature of P-systems. Thus,
PBD systems represent a natural extension of PB system. Our decidability proof
is still based on a reduction to a Petri net reachability problem. Our construction
extends the Petri net encoding of [5] in order to weakly simulate the original PBD
system. More precisely, from a PBD reachability problem we compute a Petri net
that may contain executions that do not correspond to real computations of the
corresponding PBD system. Spurious computations can however be eliminated by
enforcing special conditions (e.g. requiring a special set of places to be empty) on
the initial and target markings used to encode a PBD reachability problem. It
is important to notice that our reduction does not require the additional power
provided by Petri nets with transfer arcs.

As a second result, we show that reachability is decidable in PB systems ex-
tended with creation rules (PBC systems). We consider here creation rules inspired
to those proposed by Mart́ın-Vide, Pãun, and Rodriguez-Paton in the context of
P-systems [13]. Our proof exploits structural properties of PBC systems that allow
us to reduce the reachability of a target configuration c, to a reachability problem
in a Petri net extracted from both the original PBC system and the configuration
c. As for PBD systems, this decidability result is a conservative extension of the
result for PB systems obtained in [5].

We consider then a model with both dissolution and creation rules (PBDC sys-
tems). For this model, we first give a general negative result for the decidability of
reachability, and then study a non-trivial subclass in which reachability becomes

On the Dynamics of PB Systems with Volatile Membranes 281

decidable. Specifically, we first show that it is sufficient to consider three mem-
branes with the same name to encode a reachability problem for a two counter
machine [15] as reachability of a PBDC system. We define then a restricted seman-
tics for PBDC systems in which at most only one copy of each type of membrane
can be created during a computation. This semantics is inspired to a view of
membrane names/types as bounded resources. Under this semantics, we prove the
decidability of PBDC reachability via a reduction to Petri net reachability. In the
encoding we use special places to identify the membrane structure of the current
configuration. The encoding is exponentially more complex than the encoding used
for PBD and PBC systems, since it requires the construction of a Petri net where
the number of places is equal to number of tree structures that can be built upon
a finite and fixed a priori set of membrane names.

As a last analysis, we study the boundedness problem for the aforementioned
extensions of PB systems. Specifically, we first show that boundedness is decidable
for PBDC systems with restricted semantics. The proof exploits the theory of well-
quasi ordering [7]. As a consequence, we obtain the decidability of boundedness for
PBD systems. Finally, we prove that boundedness is undecidable in PBC systems.
This result is obtained by encoding counter machines as PBC systems. The en-
coding exploits the possibility of creating several instances of the same membrane
to simulate a counter (i.e. the same encoding cannot be applied in the restricted
semantics of PBDC systems).

To our current knowledge, these are the first decidability/undecidability results
obtained for reachability and boundedness in extensions of PB systems with disso-
lution and creation rules. Decision problems for qualitative analysis of subclasses
of P-systems have been studied, e.g., in [12, 9]. It is important to notice that the
decidability of reachability in PBC systems is not in contradiction with the un-
decidability of boundedness in the same model. Indeed, several other examples of
universal models for which the reachability problem is decidable has recently been
discovered in the field of process algebra, see e.g. [3, 4].

Plan of the Paper

In Section 2 we recall the main definitions of PB systems, Petri nets, and counter
machines. In Section 3, 4, and 5 we study the reachability problem for extensions
of PB systems resp. with dissolution, creation, and both dissolution and creation
rules. In Section 6 we study the boundedness problem for the aforementioned
extensions of PB systems. Finally, in Section 7 we address some conclusion and
future work.

2 Preliminaries

In this section we recall the main definitions for PB systems with symbol objects
taken from [2, 5], Petri nets [17], and counter machines [15]. We first need some

282 G. Delzanno, L. Van Begin

preliminary notions. Let N be the set of positive integers. Consider a finite alphabet
Γ of symbols. A multiset over Γ is a mapping u : Γ ; N. For any a ∈ Γ , the
value u(a) denotes the multiplicity of a in u (the number of occurrences of symbol
a in u). We often use a multiset as a string a1 · . . . · an of symbols, i.e., ai ∈ Γ .
Furthermore, we use ε to denote the empty multiset, i.e., such that ε(a) = 0 for
any a ∈ Γ . As an example, for Γ = {a, b, c, d}, a · b · c · c represents the multiset
u such that u(a) = u(b) = 1, u(c) = 2, u(d) = 0. We use Γ⊗ to denote the set
of all possible multisets over the alphabet Γ . Given two multisets u, v over Γ ,
we write u

.= v if u(a) = v(a) for all a ∈ Γ , and u ¹ v if u(a) ≤ v(a) for all
a ∈ Γ . Furthermore, we use ⊕ and ª to denote multiset union and difference,
respectively. Specifically, for any a ∈ Γ we have that (u⊕ v)(a) = u(a)+ v(a), and
(uª v)(a) = u(a)− v(a). We are ready now to formally define a PB system.

2.1 P-systems with Boundary Rules

A PB system [2] with symbol object is a tuple Π = (Γ,M, R, µ0), where

• Γ is a finite alphabet of symbols;
• M is a finite tree representing the membrane structure with membrane names

taken from a set N ,
• R is a finite set of rules,
• µ0 is the initial configuration, i.e., a mapping from membranes (nodes in M)

to multisets of objects from Γ .

Rules can be of the following two forms:3

(1) Internal : [i u → [i v
(2) Boundary : u [i v → u′ [i v′

where i ∈ N , and u, u′, v, v′ ∈ Γ⊗ and we assume that at least one between u and
u′ is not empty.
A configuration µ of a PB system Π is a distribution of objects in Γ in the
membranes in M , i.e., a mapping from M to Γ⊗. A rule of the form (1) is enabled
at µ, if i is a membrane in M and u ¹ µ(i). Its application leads to a new
configurations ν′ such that ν′(i) = (ν(i) ª u) ⊕ v and ν′(j) = ν(j) for any j ∈ N
s.t. j 6= i.
Suppose now that membrane j contains as immediate successor in M membrane i.
A rule of the form (2) is enabled at µ, if u ¹ µ(j) and v ¹ µ(i). Its application leads
to a new configurations ν′ such that ν′(j) = (ν(j)ªu)⊕u′ and ν′(i) = (ν(i)ªv)⊕v′

and ν′(k) = ν(k) for any k ∈ N s.t. k 6= i, j. We say that there is a transition
µ ⇒ µ′ if µ′ can be obtained from µ by applying a rule in R. A computation with
initial configuration µ0 is a sequence of transitions µ0 ⇒ µ1 ⇒ A configuration
is reachable from µ0 if there exists a sequence of transitions µ0 ⇒ . . . ⇒ µ

3 We consider here a slight generalization of the model in [5] in which we allow any kind
of transformation between two membranes.

On the Dynamics of PB Systems with Volatile Membranes 283

Definition 1 (Reachability). Given a PB system Π with initial configuration
µ0 and a configuration µ, the reachability problem consists in checking if µ is
reachable from µ0.

Definition 2 (Boundedness). Given a PB system Π with initial configuration
µ0, the boundedness problem consists in deciding if the set of configurations reach-
able from µ0 is finite.

Reachability and boundedness are decidable for PB systems with symbol objects.
The proof is based on an encoding PB systems into Petri nets defined in [5].

2.2 Petri nets

A Petri net [17, 18] is a pair (P, T,m0) where P is a finite set of places, T is a finite
set of transitions (T ⊆ P⊗ × P⊗), and m0 is the initial marking. A transition t
is defined by the pre-set •t and by the post-set t•, two multisets of places in P (we
consider here multisets of places instead of adding weights to arcs). A marking is
just a multiset over P . Given a marking m and a place p, we say that the place p
contains m(p) tokens. A transition t is enabled at the marking m if •t ¹ m. If it is
the case, t can fire and produces a marking m′ (usually written m

t→ m′) defined
as (m ª• t) ⊕ t•. A firing sequence is a sequence of markings m0m1 . . . such that
mi is obtained from mi−1 by firing a transition in T at mi. Finally, we say that
m′ is reachable from m0 if there exists a firing sequence from m0 passing through
marking m′. The Petri net reachability problem has been proved to be decidable
in [14, 11].

2.3 Counter Machines

A counter machine [15] consists of a finite set of locations/control states `1, . . . , `k,
a finite set of counters c1, . . . , cm, and a finite set of instructions. The instruction
set consists of the increment, decrement, and zero-test, and the nonzero-test oper-
ations on each counter. Each operation has three parameters: the current location,
the successor location, and the counter on which it operates. When executed in
location `, the increment operation on ci adds one unit to the current value of
ci and then moves to the successor location `′. When executed in location `, the
decrement operation on ci removes one unit from the current value of ci and then
moves to the successor location `′. When executed in location `, the zero-test on
ci moves to the successor location `′ only if ci has value zero. When executed in
location `, the nonzero-test on ci moves to the successor location `′ only if ci has
a value strictly greater than zero. For a fixed initial location `0, the initial config-
uration has location `0 and all counters set to zero. A computation is a sequence
of configurations obtained by applying instructions associated to locations. The
if-then-else instruction `: if ci = 0 goto `1 else goto `2 typically found in the defini-
tion of counter machines can be simulated here by two rules associated to the same
location `: a zero-test ` : ci = 0 goto `1 and a nonzero-test. ` : ci > 0 goto `2. It

284 G. Delzanno, L. Van Begin

is well-known that the model of two counter machines can simulate a Turing ma-
chine, i.e., properties like termination, reachability of a location, and boundedness
are all undecidable in this model [15].

3 PB Systems with Dissolution Rules

A PB system with dissolution rules (PBD) provides, in addition to internal and
boundary rules, a third kind of rules of the following form:

(3) Dissolution : [i u → [i v · δ

where δ is a symbol not in Γ . The intuitive meaning of this rule is that after
applying the rule [i u → [i v the membrane i is dissolved and its content (including
its sub-membranes) is moved to the membrane j that contains i as immediate
successor in the current membrane structure. To make the semantics formal, we
make the membrane structure part of the current configuration, M0 being the
initial tree. Thus, a configuration is now a pair c = (M, µ), where M is a tree, and
µ is a mapping from nodes of M to Γ⊗. Rules of type (1) and (2) operate on a
configuration c = (M, µ) without changing the tree structure M and changing µ
as specified in the semantics of PB systems. A dissolution rule like (3) operates on
a configuration c = (M, µ) as follows. For simplicity, we assume that membrane
i is not the root of M . Suppose now that i is an immediate successor of j in
M . The rule is enabled if u ¹ µ(i). Its application leads to a new configurations
c′ = (M ′, ν′) such that

• M ′ is the tree obtained by removing node i and by letting all successor nodes
of i become successors of j;

• ν′ is the mapping defined as ν′(j) = ν(j)⊕ (ν(i)ª u)⊕ v and ν′(k) = ν(k) for
any k ∈ M s.t. k 6= i, j.

Notice that rules of type (1− 3) are enabled at c = (M, µ) only if the membrane i
is in current tree M . The definition of sequences of transitions and of reachability
problems can naturally be extended to the new type of rules.

3.1 Decidability of Reachability in PBD Systems

In this section we prove that the reachability problem is decidable in PB systems
with dissolution rules. We assume here that names of membranes are all different.
However, the construction we present can be extended to the general case. The
starting point of our construction is the reduction of reachability for PB systems
to reachability in Petri nets given in [5]. Let Π = (Γ,M, R, µ0) be a PB system.
For each membrane i in M and each symbol a ∈ Γ , the Petri net N associated to
Π makes use of place ai to keep track of the number of occurrences (multiplicity)
of objects of type a in i. Transitions associated to internal rules redistribute tokens
in the set of places associated to the corresponding membrane. As an example, a

On the Dynamics of PB Systems with Volatile Membranes 285

rule like [i a · b → [i c is encoded by a Petri net transition that removes one token
from place ai and one token from place bi and adds one token to place ci. Boundary
rules are modelled by Petri net transitions that work on places associated to pairs
of membranes. As an example, if membrane j contains i, a rule like a [i b → b [i a
is encoded by a Petri net transition that removes one token from place aj and
one token from place bi and adds one token to place bj and one token to place
ai. For a membrane structure M , a configuration µ : M ; Γ⊗ is represented by
a marking mµ such that for every node i in M , ai has k tokens in m iff a has k
occurrences in µ(i). Reachability of a configuration µ is reduced the to reachability
of the marking mµ starting from mµ0 in N .

How to Cope with Dissolution Rules

The Petri net encoding of [5] exploits the property that the membrane structure
of a PB system is never changed by the application of a rule. This property does
not hold anymore for dissolution rules, since they removes nodes from the current
membrane structure. Thus, the size of the membrane structure may decrease in
a sequence of transitions. Our decidability proof is still based on a reduction to
a Petri net reachability problem. Our reduction exploits the property that the
number of applications of dissolution rules is bounded a priori by the size of the
initial membrane structure M0.

Specifically, suppose that in M0 there is an absolute path i0, i1, . . . , ik, i where
i0 is the root of M0. In the construction of the Petri net associated to the membrane
i we must take into consideration the possibility that each one of the membranes
i1, . . . , ik can dissolve during the execution. This means that boundary rules as-
sociated to the membrane i should be redirected to the membrane ij in the path
i0, i1, . . . , ik such that all membranes ij+1, . . . , jk are no more present in the current
membrane structure. To achieve this, each membrane i comes with an associated
flag presenti/dissolvedi. Transitions that encode boundary rules on membrane i
are conditioned then by the present/dissolved flags of the membranes i0, i1, . . . , ik
in the path leading to i. In other words we need to implement a sort of switch that
redirects boundary rules to membrane ij whenever membranes ij+1, . . . , jk are all
dissolved.

Another problem to solve is related to the transfer of the contents of a mem-
brane to its immediate ancestor in the membrane structure. To simulate this
process, our Petri net operates in two different modes. In the normal mode the
Petri net simulates boundary and internal rules. Suppose now that j is the mem-
brane that contains i in the current tree structure, and that the dissolution rule
[iu → [iv · δ is enabled. We first execute the internal rule [iu → [iv. The Petri
net then switches to the dissolvingi mode. In this mode all normal operations
are blocked. This is achieved by conditioning all transitions associated to normal
operations with the normal flag. After this step, we activate a set of transitions
that move tokens (one-by-one) from i to j. Since in a Petri net it is not possible to
test if a place is empty, instead of testing if all objects in i have been moved to j,

286 G. Delzanno, L. Van Begin

we add a rule that non-deterministically stops the transfer process. As a last step,
we marked membrane i as dissolved and reactivate the normal operating mode.
The last step automatically disable internal/boundary/dissolve rules operating on
membrane i (they are conditioned by the presenti flag) and redirects boundary
rules of any membrane i′ contained in i (in the current tree structure) to membrane
j.

The non-deterministic termination of the transfer process may lead to incor-
rect simulations of the original PBD system. Indeed, we could restart in normal
mode with a configuration in which a membrane is marked dissolved and some of
its objects have not been transferred to its father. This problem can be solved by
the following key observation. We first recall that we are interested in reachability
of a configuration c = (M, µ). Thus, by looking at the structure of M0 and M we
can extract the set of nodes D that must be dissolved in a sequence of transitions
leading from c0 to c. Thus, we can tell good simulations from bad ones by imposing
the constraint that, in the marking mµ modelling the target configuration µ, every
place associated to a membrane in D is empty. As a final remark, notice that all
information needed in the encoding (nodes and paths in M0) can statically be ex-
tracted from the description of the PBD system and from the initial configuration
c0.

Formal Definition of the Petri Net Encoding

Assume a PBD system Π = (Γ, M0, R, µ0), where Γ = {a1, . . . , am}, and M0 has
the membranes with names in N = {n0, n1, . . . , nk}, n0 ∈ N being the root node.
Given a membrane i, let path(i) be the sequence of nodes in the (unique) path
from n0 to i in M0.

We define the Petri net N encoding Π in several steps. First of all we assume
that N has at least the places normal, dissolving1, . . . , dissolvingk that we use to
determine the simulation mode as described in the previous paragraphs. We assume
here that normal contains one token iff dissolvingi is empty for all i : 1, . . . , k,
and dissolvingi contains one token iff normal as well dissolvingj are empty for
any j 6= i. Furthermore, for each membrane i, the Petri net N has a place presenti
and a place dissolvedi and, for any a ∈ Γ , a place ai.
Notation: In the rest of the paper given a multiset of objects u and a membrane i
we use πi(u) to denote the multiset of places in which, for each a ∈ Γ , ai has the
same number of occurrences as those of a in u.

Internal Rules

An internal rule r = [iu → [iv is encoded by a transition tr that satisfies the follow-
ing conditions. The pre-set of tr contains place normal (normal mode), presenti
(membrane i is still present), and the multiset of places πi(u). The post-set of tr
contains normal, presenti and the multiset of places πi(v). Thus, the only differ-
ence with the encoding of PB system is the condition on the normal and presenti

On the Dynamics of PB Systems with Volatile Membranes 287

flags (in normal mode internal rules are enabled only when the membrane is not
dissolved).

Boundary Rules

Let path(i) = (n0, n1, . . . , nq, i) with q ≥ 0. A boundary rule r = u[iv → u′[iv′

is encoded by a set Br = {bn0
r , . . . , b

nq
r } of transitions. The pre-set of transition

b
nj
r contains places normal and presenti together with the set of places Dnj =
{presentnj , dissolvednj+1 , . . . , dissolvednq}, and the multisets πnj (u) and πi(v).
The post-set contains places normal and presenti together with the set of places
Dnj defined for the pre-set and the multisets πnj

(u′) and πi(v′). The pre-condition
Dnj allows us to select the membrane that is the immediate ancestor of i in
the current configuration, i.e., a membrane nj ∈ path(i) that is not dissolved
and such that all the intermediate membranes between nj and i in path(i) are
dissolved. Notice that, by the assumptions we made on the normal/dissolving
and present/dissolved flags, in normal mode one and only one rule in Br can be
enabled at a given configuration (represented by a marking).

Dissolution Rules

Let path(i) = (n0, n1, . . . , nq, i) with q ≥ 0. Consider a dissolution rule r = [iu →
[iv · δ. We first model the internal rule by the transition sr. The pre-set of sr con-
tains the places normal and presenti and the multiset πi(u). The post-set contains
the place dissolvingi and the multiset πi(v).
We then model the transfer of the contents of membrane i to its current immediate
ancestor via a set of transitions Sa

r = {sn0
a , . . . , s

nq
a } for each a ∈ Γ . The pre-set of

transition s
nj
a contains places dissolvingi (i is dissolving) and ai (the source of a

token to be transferred) together with the set of places Dnj defined in the case of
boundary rules. The post-set contains places dissolvingi and aj (the destination
of a transferred token), and the set Dnj .
Finally, we add a transition di

r to stop the transfer of tokens and to switch the op-
erating mode back to normal. The pre-set of di

r contains the place dissolvingi and
its post-set contains the places normal and dissolvedi. Notice that the simulation
phase of a dissolution rule for membrane i can be activated only if presenti is not
empty. This implies that once the dissolvingi flag is reset (i.e. the mode goes back
to normal) it cannot be set in successive executions (a membrane can dissolve at
most once).

Places, Transitions and Configurations

The Petri net N is built by taking the union of the places and transitions used in
the encoding described before. Let M be a membrane structure with a subset of
the nodes in M0 (initial structure of Π). A configuration c = (M, µ) is encoded by
a marking mc in which there is one token in normal, one token in presenti for each
membrane i in M , and one token in dissolvedj for each j not in M . Furthermore,

288 G. Delzanno, L. Van Begin

for each membrane i in c and a ∈ Γ , place ai has as many tokens as the number
occurrences of a in µ(i). All the remaining places in N (dissolvingi for i : 0, . . . , k
and presentj for all membranes j not in M) are empty.

Reachability Problem

By construction ofN , it is immediate to see that if there is a sequence of transitions
from c0 = (M0, µ0) to c = (M, µ) passing through the configurations c1, . . . , cv

then there is a firing sequence from mc0 to mc passing through the markings
mc1 , . . . ,mcv

. Such a firing sequence is obtained by completing all transfers of
objects required by the simulation of each dissolution rule (i.e. after the simulation
of the dissolution of membrane i, the normal mode is reactivate only when the
places associated to the objects contained in i are all empty). Vice versa, suppose
there exists a firing sequence from mc0 to mc. We first notice that only the markings
in which the place normal is not empty correspond to configurations of the original
PBD system. Furthermore, suppose that during the simulation of the dissolution of
membrane i, the transfer of objects is stopped when some of the places associated
to objects in i are not empty. Let m be the resulting marking. Now we notice
that the first step of the simulation of dissolution is to set the presenti flag to
false. This implies that in the marking m place presenti is empty, while there
exists a ∈ Γ such that ai is not empty (some token has not been transferred). It
is easy to check that if m has these two properties, for any marking m′ derived
from m by applying transitions of N , the content of the place ai in m′ is the
same as in m. Indeed, transitions that simulate internal, boundary and dissolution
rules operating directly on i are no more enabled (the condition presenti fails).
Furthermore, a dissolution rule on a membrane j nested into i in M0 cannot
transfer tokens to i since dissolvedi is checked when searching for the father of
j in the current tree structure. In other words, if the simulation of a dissolution
rule is not correctly executed, then there exists at least one non-empty place ai

for a dissolved membrane i. By definition, however, mc is the marking in which all
places associate to dissolved membranes are empty. Thus, if mc is reachable from
mc0 then the corresponding firing sequence corresponds to a real computation
in N . Thus, we have that the reachability of a configuration c = (M, µ) in Π
can be encoded as the reachability of the marking mc in N from mc0 . From the
decidability of reachability in Petri nets, we obtain the following theorem.

Theorem 1. Reachability is decidable in PBD systems.

This result extends (and is consistent with) the Petri net encoding and the decid-
ability result for reachability in PB systems of [5].

4 PB System with Creation

In this section we consider an extension of PB systems inspired to the membrane
creation operation studied in [13]. Let N be a possibly infinite list of membrane

On the Dynamics of PB Systems with Volatile Membranes 289

names. A PB system with creation rules (PBC) provides, in addition to internal
and boundary rules, a third kind of rules of the following form:

(4) Creation : a → [i v]i

where a ∈ Γ , v ∈ Γ⊗, and i ∈ N. The intuitive meaning of this rule is that after
applying the rule a → [iv]i inside a membrane j, object a is replaced by the new
membrane i containing the multiset of objects v. To make the semantics formal, we
assume that membrane structures are trees whose nodes are labelled with names in
N. Furthermore, we make both the set of used names and the membrane structure
part of the current configuration, N0 ⊆ N being the initial set of used names, and
M0 being the initial tree defined over N0. Thus, a configuration is now a triple
c = (N,M, µ) where N is a set of names, M is a tree with nodes labelled in N ,
and µ is a mapping M ; Γ⊗. Rules of type (1) and (2) operate on a configuration
c = (N,M,µ) without changing N and M . A creation rule like (4) operates on a
configuration c = (N, M, µ) as follows. Suppose that n is a node in M . The rule is
enabled if a ∈ µ(n). Its application leads to a new configurations c′ = (N ′,M ′, ν′)
such that

• N ′ = N ∪ {i};
• M ′ is the tree obtained by adding a new node m labelled by i as a successor

of node n;
• ν′ is the mapping defined as ν′(n) = ν(n)ªa, ν′(m) = v, and and ν′(p) = ν(p)

for p 6= m,n, p ∈ N .

Notice that rules of type (4) can be applied in any membrane. Indeed, the only
precondition for the application of rule 4 is the existence of object a in a mem-
brane. Furthermore, such an application may create different nodes with the same
membrane name.

The reachability problem can naturally be reformulated for the extended se-
mantics of rules. Specifically, it consists in checking whether a given target config-
uration c is reachable from the initial configuration c0.

In presence of creation rules the membrane structure can grow in an arbitrary
manner both in width and depth. Notice that in our model we distinguish nodes
from membrane names. Thus, different nodes may have the same name. As a simple
example, consider the rule a → [1a]1 in a system with a single membrane [0a]0.
The evolution of this PBC system may lead to membrane structures of arbitrary
nesting level, e.g.,

[0[1a]1]0 [0[1[1a]1]1]0 [0[1[1[1a]1]1]1]0 . . .

Now consider the rules [0a → [0a · a and a → [1b]1. Then the membrane [0a]0 can
generate membrane structures of arbitrary width, e.g.,

[0[1b]1]0 [0[1b]1[1b]1]0 [0[1b]1[1b]1[1b]1]0 . . .

Despite of these powerful features of PBC systems, the reachability problems can
still be decided by resorting to an encoding into Petri net reachability as explained
in the next section.

290 G. Delzanno, L. Van Begin

4.1 Decidability of Reachability in PBC Systems

Differently from the encoding defined for PBD systems in the previous section, the
encoding needed here is function of both the initial and the target configuration.
Indeed, since PBC rules can only add new nodes, to decide if a configuration
c = (N,M, µ) is reachable from c0 we can restrict our attention to membrane
structures of size comprised between the size of M0 and the size of M and with
(possibly repeated) labels in N .

Actually, we can make some simplification that allows us to build a Petri net
by considering only the target configuration M . Indeed, as shown in [13], with
creation rules we can safely consider initial configurations with only the root mem-
brane (we can always add a finite number of creation rules to generate any initial
configuration in a preliminary phase of the computation).

So let Π be a PBC system with initial configuration c0 = (N0,M0, µ0) where
M0 is a single node labelled n0. Consider now a target configuration (N, M, µ)
where N = {n0, . . . , nk} and M has m nodes with k ≤ m and the root node of M
is labelled n0.

Starting from Π and c we build the Petri net N described next. For each node
n in M , the Petri net N has places usedn and notusedn (used as one flip-flop), and
an for each a ∈ Γ (to model the content of membrane n). We assume that usedn

is not empty iff the membrane has been created and it is in use, and notusedn

is not empty iff the membrane has still to be created. PBC rules are modelled as
follows.

Internal Rules

For each node n in M with label i, an internal rule r = [iu → [iv is encoded by
a transition tnr that satisfies the following conditions: The pre-set contains place
usedn together with multiset πn(u); The post-set contains usedn together with
multiset πn(u).
The differences with the encoding of PB/PBD systems is the condition on the
usedn flag and the fact that we work on nodes of membrane structures and not
directly on membrane names (as said before two different nodes may have the same
name). The pre-condition on usedn is needed in order to enable rules operating
on node n only after the corresponding creation rule has been fired.

Boundary Rules

For each node m in M that has an immediate successor n with label i, a boundary
rule r = u[iv → u′[iv′ is encoded by a transition bm,n

r that satisfies the following
conditions. The pre-set contains places usedn and usedm together with the mul-
tisets πm(u) and πn(v). The post-set contains places usedn and usedm together
with the multisets πm(u′) and πn(v′). Notice that, differently from the encoding
used in PBD, in PBC we do not have to consider paths in the membrane structure
M .

On the Dynamics of PB Systems with Volatile Membranes 291

Creation Rules

For each node m in M that has an immediate successor n with label i, a creation
rule r = a → [iv]i is encoded by a transition cm,n

r that satisfies the following
conditions. The pre-set contains places usedm, am and notusedn. The post-set
contains places usedm and usedn, together with the multiset πn(v)

Places, Transitions and Configurations

The Petri net N is built by taking the union of the places associated to each
membrane and the union of the set of transitions used to encode internal, boundary
and creation rules described before.
A configuration c′ = (N ′,M ′, µ′) is encoded by a marking mc′ in which for each
node n in M ′ there is one token in usedn, and for each a ∈ Γ , an has as many
tokens as the number occurrences of a in µ(n). Furthermore, for each node n′ in
M that do not occur in M ′, we put a token in notusedn′ . All the remaining places
are empty.

Reachability Problem

By construction of N , it is immediate to see that there is a sequence of transi-
tions from c0 = (N0,M0, µ0) to c = (N, M, µ) passing through the configurations
c1, . . . , cv if and only if there is a firing sequence from mc0 to mc passing through
the markings mc1 , . . . , mcv . The creation of a new node n corresponds to the acti-
vation of the part of the Petri net N that models node n. Since nodes are created
in ”cascade”, a node m is created only after all ancestors have been created. This
property is ensured by the condition on the used flag inserted in the transitions
modelling creation rules.

Following from the decidability of reachability in Petri nets, we obtain the
following theorem.

Theorem 2. Reachability is decidable in PB systems with creation rules.

This result extends (and is consistent with) the Petri net encoding and the decid-
ability result for reachability in PB systems of [5].

5 PB Systems with Dissolution and Creation

In this section we consider an extension of PB systems with both dissolution and
creation rules (PBDC systems). The semantics is obtained in a natural way by
adapting the semantics of dissolution rules to membrane structures with labelled
nodes. More precisely, a dissolution rule applied to a configuration (N,M,µ) mod-
ifies M and µ as specified in Section 3 while it does not modify N , i.e., the set N
of used names can only grow monotonically. Notice that the reachability problem
for PBDC systems allows to determine if, for a PBDC system Π, it is possible

292 G. Delzanno, L. Van Begin

from the initial configuration to build a membrane structure M with a mapping
µ that associates multisets of objects to nodes, whatever the set of names N is.
Indeed, the set of possible names for membranes that appear in executions of Π
is determined by the creation rules of the PBDC system (and its initial configu-
ration). Hence, the number of possibilities for N is finite and the problem can be
reduced to a finite number of reachability problems.

In presence of both creation and dissolution the membrane structure can change
in an arbitrary manner. As a simple example consider the rules a → [1a]1, and
[1a → [1a · δ in a system with a single membrane [0a]0. The evolution of this PB
system may lead to membrane structures that grow and shrink in an arbitrary
way as in the sequence:

[0[1a]1]0 [0[1[1a]1]1]0 [0[1a]1]0 . . .

This feature gives additional power to PB systems. Indeed, we can reduce the
reachability problem for two counter machines (known to be undecidable) to reach-
ability in a PBDC system. For this reduction it is enough to consider dissolution
and creation rules working on three membranes with the same name. Specifically,
consider a system with initial configuration

c0 = [0 s0 [0 c1]0 [0 c2]0]0

here s0 represents the initial control state of a two counter machine. Membrane
[0ci]0 is used to represent counter ci with value zero for i : 1, 2. Counter ci with
value k is represented by the membrane [0ci · u]0 where u is the multiset with k
occurrences of a special object a.
The increment of counter ci in control state s and update to control state s′ is
encoded by the boundary rule

s [0 ci → s′ [0 ci · a

for i : 1, 2.
The decrement of counter ci in control state s and update to control state s′ is
encoded by the boundary rule

s [0 ci · a → s′ [0 ci

for i : 1, 2.
The zero test on counter ci in control state s and update to control state s′ is
simulated by three rules. We first move to an auxiliary state auxs and dissolve the
membrane with label i.

s [0 ci → auxs [0 ε · δ
where ε is the empty multiset. We then create a new empty instance of the same
membrane containing the objects ci and out′s via the rule

auxs → [0 ci · outs′]0

On the Dynamics of PB Systems with Volatile Membranes 293

Finally, we use a boundary rule to move to the next state s′

[0 ci · outs′ → s′ [0 ci

We assume here that no other rule uses auxs and outs′ . The effect of the execution
of these three rules is that of moving the contents of the counter on which the zero-
test is executed to the top level membrane 0. Indeed, the membrane containing ci

is first dissolved and then re-created. If the zero-test is executed when a counter
is not zero, some object will remain inside membrane 0 in all successive configu-
rations. This feature can be used to distinguish good simulations from bad ones.
Specifically, let us consider the reachability problem for a two counter machine in
which the initial and the target configurations both coincide with the configuration
with a given control state s and both counters set to zero. This problem can be
expressed as the reachability of the configuration c0 from c0. Thus, the following
property holds.

Theorem 3. Reachability is undecidable in PBDC systems in which configurations
have at most three different membranes with the same name.

5.1 PBDC Systems with Restricted Semantics

As a final analysis, we consider a restricted semantics for PBDC systems in which
newly created membranes must be assigned fresh and unused names. In other
words we assume that creation rules can be applied at most once for each type
of membrane. Another possible view is that membrane names are themselves re-
sources that can be used at most once.

Formally, assume a configuration c = (N, M,µ). Suppose that n is a node
in M . In the restricted semantics, the creation rule (4) is enabled if a ∈ µ(n)
and i 6∈ N , i.e., the name i is fresh. Its application leads to a new configurations
c′ = (N ′,M ′, ν′) such that N ′ = N ∪ {i}, M ′ is the tree obtained by adding a
new node m labelled i as a successor of node n, and ν′ is the mapping defined as
ν′(n) = ν(n)ª a, ν′(m) = v, and ν′(p) = ν(p) for p 6= m, n, p ∈ N).

Since with creation rules in the style of [13] the set of rules operating on
membranes is fixed and known a priori, we can assume that the number of distinct
names is finite (it corresponds to the set of names occurring in internal, boundary,
dissolution and creation rules and in the initial configuration). This restriction
yields the following key observation.

Observation 1.

If the set of possible membrane names N is finite and every name in N can be
used only once, then starting from a configuration with a single membrane, the
number of distinct membrane structures that we can generate is finite. Every such
membrane structure has at most |N| nodes.

This property does not imply that the number of configurations is finite. Indeed,
there are no restrictions on creation and deletion of objects inside membranes. As

294 G. Delzanno, L. Van Begin

an example, the PBDC system with the internal rule [0a → [0a · a and the initial
membrane [0a]0 generates an infinite set of configurations (membrane 0 with any
number of repetitions of object a).

The aforementioned property can be used to show that reachability is decidable
in PBDC Systems with restricted semantics. Let Π be a PBDC system defined
over a finite set of names Λ. Suppose that Λ has cardinality K. Furthermore,
assume that the initial configuration c0 = (N0,M0, µ0) is such that M0 is a single
node. We first build the set Θ of all possible membrane structures with at most K
nodes labelled with distinct labels taken from Λ. As an example, if Λ = {0, 1, 2},
then we will consider all trees with at most three nodes and such that each node
has a distinct label taken from Λ, i.e., [0]0, [1]1, [1 [0]0]1, [2 [0]0 [1]1]2, and
so on. Notice that for a fixed membrane structure T we can always determine the
immediate ancestor j of a node i (if it exists) at static time.

Starting from Π and Θ, we now define a Petri net N that satisfies the following
conditions. First of all, we associate a place T to each membrane structure T ∈ Θ.
We assume that only one of such places can be non empty during the simulation
of the restricted semantics. A non-empty place T ∈ Θ corresponds to the current
membrane structure. Furthermore, for each i ∈ Λ we add to N places usedi and
notusedi (to model freshness of name i), and, for each a ∈ Γ , place ai (to model
the content of membrane i in the current membrane structure). Notice that since
names are used at most once, we can safely confuse nodes of membrane structure
with their labels (each node has a different label in Λ). PBDC rules are modelled
as the finite set of transitions in N defined as follows.

Internal Rules

For each membrane structure T ∈ Θ with a membrane i, an internal rule r =
[iu → [iv is encoded by a transition tTr that satisfies the following conditions. The
pre-set contains the places T (the current membrane structure) and usedi (i is
in use) together with multiset πi(u). The post-set contains places T and usedi

together with multiset πi(v). Thus, only the internal rules defined on the current
membrane structure are enabled.

Boundary Rules

For each membrane structure T ∈ Θ with a membrane j with immediate successor
i, a boundary rule r = u[iv → u′[iv′ is encoded by a transition bT,i,j

r that satisfies
the following conditions. The pre-set contains places T , usedi, usedj , and the
multisets πi(u) and πi(v). The post-set contains places T , usedi, usedj , and the
multisets πi(u′) and πi(v′). Thus, only boundary rules defined on the current
membrane structure are enabled.

Creation Rules

For each T ∈ Θ such that i does not occur in the set of names in T (the side
condition that ensures the freshness of generated membrane names), and for each

On the Dynamics of PB Systems with Volatile Membranes 295

name j occurring in T , a creation rule r = a → [iv]i is encoded by a transition
cT,i,j
r that satisfies the following conditions. The pre-set contains places T , usedj ,

notusedi, and aj . The post-set contains places usedi and usedj , the multiset πi(v),
and the place Tj+i ∈ Θ associated to the membrane structure obtained from T by
adding a new node labelled i as immediate successor of j.

Dissolution Rules

For each membrane structure T ∈ Θ with a membrane j with immediate successor
i, a dissolution rule r = [iu → [iv · δ is encoded by the following set of transitions.
We first define a transition cT,i,j

r that starts the dissolution phase of node i. The
pre-set of cT,i,j

r contains places T , usedi, usedj , and the multiset πi(u). The post-
set contains the place dissolveT,i,j , and, the multiset πi(v). Notice that, by remov-
ing a token from the place T , we automatically disable all transitions not involved
in the dissolution phase (i.e. T plays the role of flag normal used for simulating
dissolution rules in PBD systems). Now, for each a ∈ Γ , we model the transfer of
the content of node i to node j via a transition mT,i,j,a

r that satisfies the following
conditions: The pre-set contains the places dissolveT,i,j and ai (the source of a
token to be transferred). The post-set contains the places dissolveT,i,j and aj (the
destination of a transferred token). Finally, let Tj−i be the membrane structure
obtained by T by removing membrane i and moving all of its sub-membranes
into membrane j. Then, we add transition dT,i,j

r to non-deterministically stop the
transfer of tokens and to update the membrane structure to Tj−i, i.e., the pre-set of
this transition contains the place dissolveT,i,j and its post-set contains the places
Tj−i, usedi and usedj . Notice that name i remains marked as used after dissolving
the corresponding membrane (i.e. it cannot be used in successive creation rules).

Places, Transitions and Configurations

The Petri net N is built by taking the union of the places and transitions used to
encode internal, boundary, creation and dissolution rules described before.
A generic configuration c = (N, M, µ) is encoded by a marking mc in which: there
is one token in the place associated to the membrane structure M , one token in
usedi for each i ∈ N , one token in notusedi for each i ∈ Λ \ N , and, for each
i that occurs in M and for each a ∈ Γ , as many tokens in ai as the number of
occurrences of object a in µ(i). All other places are empty.

Reachability Problem

Notice that after a membrane with name i is introduced by a creation rule (i.e. the
place unusedi is emptied while one token is put in usedi), no other membranes
with the same name can be created (there is no rule that puts a token back to
unusedi). The membrane i however can dissolve in a successive transition, i.e. in a
target configuration usedi can be non-empty (i.e. i ∈ N), even if i does not occur
in the current membrane structure. Also notice that in mc we enforce all places
associated to membranes not occurring in M to be empty. The combination of these

296 G. Delzanno, L. Van Begin

two properties allows us to distinguish good simulations (i.e. in which after the
application of dissolution rules all tokens are transferred to the father membrane)
from bad ones (some tokens are left in a place ai, usedi is non empty, but i is
no more in the current membrane structure). Following from this observation and
from the construction of N , we have that c = (N, M, µ) is reachable from c0 if and
only if the marking mc is reachable from mc0 .

Following from the decidability of reachability in Petri nets, we obtain the
following theorem.

Theorem 4. Reachability is decidable in PBDC systems with restricted semantics.

6 Boundedness Problem for Extended PB Systems

In [5] Dal Zilio and Formenti exploit the Petri net encoding used for deciding
reachability to prove that boundedness is decidable too for PB systems with sym-
bol objects. In this section we investigate the boundedness problem for the different
extensions of PB systems proposed in the present paper. In particular, we show
that the boundedness problem is decidable for PBDC systems with restricted se-
mantics where a membrane name can be used at most once. This result implies that
boundedness is decidable for PB systems with dissolution (and standard seman-
tics). Finally, we show undecidability of the boundedness problem for PB systems
with creation and standard semantics.

6.1 Boundedness for PBDC Systems with Restricted Semantics

To prove decidability of boundedness in PBDC systems with restricted semantics,
let us first define the following partial order v over configurations. Assume two
configurations c1 = (N1,M1, µ1) and c2 = (N2,M2, µ2). We define c1 v c2 if and
only if N1 = N2 and M1 = M2 (i.e. c1 and c2 have the same tree structure), and
µ1(n) ≤ µ2(n) (the multiset associated to n in c1 is contained in that associated to
n in c2) for all node n in M1. If we fix an upper bound on the number of possible
nodes occurring in a membrane structure along a computation, then v has the
following property.

Proposition 1. Fixed a k ∈ N, for any infinite sequence of configurations c1c2 . . .
with membrane structure of size at most k, there exist positions i < j such that
ci v cj (i.e. v is a well-quasi ordering).

The proof is a straightforward application of composition properties of well-quasi
ordering, see e.g. [1]. Now assume an infinite computation c0 = (N0,M0, µ0)c1 =
(N1,M1, µ1) . . . of a PBDC system with restricted semantics. From Observation 1
it follows that for all i ≥ 0 the number of nodes in Mi is bounded by the number
of possible names. Hence, by Prop. 1 we know that there exist positions i < j
such that ci v cj . Furthermore, if ci v cj and ci 6= cj , then Ni = Nj , Mi = Mj ,
and µi ≺ µj . Thus, the transition sequence σ from ci to cj does not modify the

On the Dynamics of PB Systems with Volatile Membranes 297

membrane structure but strictly increases the number of objects contained at each
of its node. This implies that the application of σ can be iterated starting from cj ,
leading to a infinite strictly increasing, w.r.t v, sequence of configurations.

As a consequence of these properties, the boundedness problem for PBDC
systems can be decided by building a computation tree T such that: the root node
n0 of T is labelled by the initial configuration c0, if n0, . . . , nk is a path in T
such that ni is labelled with ci i : 0, . . . , k, and for all i : 0, . . . k − 1 ci 6= ck and
ci 6v ck then we add a node n′ labelled c′ as successor of nk if and only if ck ⇒ c′.
Furthermore, the PBDC system is not bounded if and only if there exists a leaf n
labelled with c and a predecessor n′ of n labelled with c′ in T such that c′ v c.
Since, v is a decidable relation and, the tree T is finite (by Observation 1 and
Prop. 1), the following property then holds.

Theorem 5. The boundedness problem is decidable for PBDC systems with re-
stricted semantics.

From Theorem 5, we know that boundedness is decidable for PB systems (con-
sistently with the result in [5]) and for PB systems with dissolution (they form a
subclass of PBDC systems where the restricted and standard semantics coincides).

6.2 Boundedness Problem for PBC Systems

The boundedness problem turns out to be undecidable for PBC systems with
standard semantics in which there is no limit on the number of instances of a
given type of membranes that can be created during a computation. The proof is
based on a reduction of counter machines with increment, decrement and zero-test
to PBC systems. The idea is to use nested membranes to model the current value
of a counter. For instance,

[1used [1 used [1 unused [1 end]1]1]1]1

can be used to encode counter c1 with value 2 (the number of occurrences of symbol
used). Hence a configuration of a two counter machine with both counters set to
zero is encoded as a configuration of the form

[0 ` [1 unused [1 . . . [1 end]1 . . .]1]1[2 unused [2. . . [2 end]2 . . .]2]2]0

where ` is a symbol corresponding to the current location of the two counter
machine, and membrane with name i encodes counter i for i : 1, 2. Increment of
counter i in location ` with `1 as successor location is simulated by replacing the
first unused symbol encountered when descending the tree from the membrane
0 with the symbol used. This is implemented by the following set of rules that
descend the structure of a membrane of type i in search for the first occurrence of
symbol unused:

298 G. Delzanno, L. Van Begin

` [i unused → `1 [i used
` [i used → `′i [i down
down [i used → down [i down
down [i unused → up [i used
down [i up → up [i used
`′i [i up → `1 [i used

where `′i, down, up are auxiliary symbols (`′i is blocking for the other counter(s),
down propagate the search down in the tree, up propagate the success notification
up in the tree). Furthermore, if the current tree has no membrane containing the
unused symbol (i.e. all membranes contain used) then a new membrane is created
by applying the following additional rules:

down [i end → down [i create
create → [i exit · end]i
ε [i exit → up [i ε

where ε denotes the empty multiset. Decrement is simulated by changing the last
occurrence of used encountered by descending the membrane tree from the root
into symbol unused. We can safely assume here that the counter is non-zero, i.e.,
that there is at least one membrane with used object. The rules that implement
decrement are defined as follows.

` [i used → `′i [i used1

used1 [i used → used1 [i used1

used1 [i unused → used2 [i unused
used1 [i end → used2 [i end
used1 [i used2 → used3 [i unused
used1 [i used3 → used3 [i used
`′i [i used2 → `1 [i unused
`′i [i used3 → `1 [i used

where `′i, used1, used2, used3 are auxiliary symbols, used1 is used to mark nodes
during the downward search (for unused), used2 is used to mark the used node to
be replaced by unused, and used3 is used to replace nodes marked with used1 with
used during the return from the search. The zero-test on counter ci in location `
with successor `1 can be implemented by testing if all objects in membranes i are
unused (or end). Note that increment, resp. decrement, of ci is encoded by a top-
down traversal of membranes i until reaching a membrane containing an object
unused, resp. used, which is then replaced by used, resp. unused. Furthermore,
each membrane contains one object. Hence, no membrane i contain a used symbols
if and only if the top level membrane i has object unused or end. This can be
checked with the following rules:

` [i unused → `1 [i unused
` [i end → `1 [i end

On the Dynamics of PB Systems with Volatile Membranes 299

Similarly, testing that ci is not equal to zero in location ` with successor `1 amounts
to check that the top level membrane i has object used, i.e.,

` [i used → `1 [i used

By construction, we directly have that a two counter machine is bounded (Are
its counters bounded by a constant k ∈ N?) if and only if its encoding into PBC
systems is bounded. Since boundedness is undecidable for two-counter machines
with zero-test, we obtain the following negative result.

Theorem 6. The boundedness problem is undecidable for PBC systems.

Remark The proof of Theorem 6 shows that PBC systems can simulate two-counter
machines by means of membrane structures with unbounded depth. Let us now
go back to the reachability problem of a target configuration µ. Since PBC rule
never remove membranes, the target configuration µ gives us an upper bound
on the size of membrane structures that may occur in a sequence of transition
leading to it. Thus, the set of possible membrane structures than we have to
consider to solve a reachability problem is always finite (Notice that this not imply
that we have to consider a finite number of configurations). In other words, for
reachability problems, we do not have to deal with the full computational power
of PBC systems. For this reason, the undecidability of boundedness proved in
Theorem 6 is not in contradiction with the decidability of reachability proved in
Theorem 2. Similar results obtained for fragments of process calculi [3, 4] seem to
indicate that, in general, the decidability of reachability cannot be use to give an
estimation of the expressive power of a computational model.

7 Conclusions

In this paper we have investigated the decidability of reachability and boundedness
in extensions of PB systems with rules that dynamically modify the tree structure
of membranes. We conjecture that some of the positive results presented here
can be extended to PB systems with some form of movement and with dynamic
generation of membrane names. We plan to investigate these problems in future
work.

References

1. P. Aziz. Abdulla and A. Nylén. Better is Better than Well. On Efficient Verification
of Infinite-State Systems. LICS 2000: 132-140.

2. F. Bernardini, V. Manca P Systems with Boundary Rules WMC 2002: 107-118.
3. N. Busi and G. Zavattaro. Deciding Reachability in Mobile Ambients. ESOP 2005:

248-262.
4. N. Busi and G. Zavattaro. Deciding Reachability in Boxed Ambients. ICTCS 2005:

143-159.

300 G. Delzanno, L. Van Begin

5. S. Dal Zilio and E. Formenti. On the Dynamics of PB Systems: A Petri Net View.
WMC 2003: 153167.

6. C. Dufourd, A. Finkel, Ph. Schnoebelen. Reset Nets Between Decidability and Un-
decidability. ICALP 1998: 103-115.

7. A. Finkel, Ph. Schnoebelen. Well-structured transition systems everywhere! TCS
256(1-2): 63-92 (2001).

8. G. Franco, V. Manca. A Membrane System for the Leukocyte Selective Recruitment.
WMC 2003: 181-190.

9. O. H. Ibarra, Z. Dang, Ö. Egecioglu. Catalytic P systems, semilinear sets, and vector
addition systems. TCS 312(2-3): 379-399 (2004)

10. R. M. Karp, R. E. Miller. Parallel Program Schemata, J. of Computer and System
Sciences 3: 147-195 (1969).

11. S. R. Kosaraju. Decidability of Reachability in Vector Addition Systems. STOC 1982:
267-281.

12. C. Li, Z. Dang, O. H. Ibarra, H.-C. Yen. Signaling P Systems and Verification Prob-
lems. ICALP 2005: 1462-1473

13. C. Martin-Vide, Gh. Pãun, A. Rodriguez Paton. On P Systems with Membrane
Creation Computer Science J. of Moldova 9(2): 134–145 (2001).

14. E. W. Mayr. An Algorithm for the General Petri Net Reachability Problem. SIAM
J. Comput. 13(3): 441-460 (1984).

15. M. Minsky. Computation: Finite and Infinite Machines, Prentice-Hall, 1967.
16. G. Paun. Computing with membranes. J. of Computer and System Science 61(1):

108-143, 2000.
17. C. A. Petri. Kommunikation mit Automaten. Ph.D. Thesis. University of Bonn, 1962.
18. W. Reisig. Petri Nets - An Introduction. Springer, 1985.

