
A Formal Framework for P Systems

Rudolf Freund1, Sergey Verlan2

1 Faculty of Informatics, Vienna University of Technology
Favoritenstr. 9, 1040 Vienna, Austria
rudi@emcc.at

2 LACL, Département Informatique
UFR Sciences et Technologie, Université Paris XII
61, av. Général de Gaulle, 94010 Créteil, France
verlan@univ-paris12.fr

Summary. The formalism of P systems is known for many years, yet just recently new
derivation modes and halting conditions have been proposed. For developing comparable
results, a formal description of their functioning, in particular, of the derivation step is
necessary. We introduce a formal general framework for static membrane systems that
aims to capture most of the essential features of (tissue) P systems and to define their
functioning in a formal way.

1 Introduction

P systems were introduced by Gh. Păun (see [8], [14]) as distributed parallel com-
puting devices, based on inspiration from biochemistry, especially with respect to
the structure and the functioning of a living cell. The cell is considered as a set
of compartments enclosed by membranes; the membranes are nested one in an-
other and contain objects and evolution rules. The basic model neither specifies
the nature of these objects nor the nature of the rules. Specifying these two para-
meters, a lot of different models of computing have been introduced, see [20] for a
comprehensive bibliography. Tissue P systems, first considered by Gh. Păun and
T. Yokomori in [18] and [19], also see [11], use the graph topology in contrast to
the tree topology used in the basic model of P systems.

In this paper, we design a general class of multiset rewriting systems contain-
ing, in particular, P systems and tissue P systems. We recall that any P system
may be seen at the most abstract level as a multiset rewriting system with only
one compartment, encoding the membrane as part of the object representation.
However, this approach completely ignores the inner structure of the system be-
cause all structural information is hidden (by an encoding) which makes it difficult
do deduce any compartment-related information or to model (processes in) biolog-
ical systems. At a lower level of abstraction, a P system may be seen as networks
of cells (compartments) evolving with multi-cell multiset rewriting rules. At the

318 R. Freund, S. Verlan

lowest level, the graph/tree structure appears as well as a specialization of rules
which are of a very particular form. This last level is usually used in the area of P
systems because it permits to easily specify the system and to incorporate different
new types of rules.

It is worth noting that in the definition of membrane systems the application
of rules often is defined in a quite informal way. This is related to the fact that
for a long time only the maximally parallel derivation mode was considered and
a P system was supposed to work only in this mode. Recent developments in P
systems area have revealed that other derivation modes as the minimally paral-
lel derivation mode might be considered [5] and allow for many interesting new
results, yet depending on specific interpretations of this notion. Moreover, differ-
ent halting conditions have been investigated (see [10], [1]), too. All these articles
have shown that there is a need for a formal definition of part of the semantics
of membrane systems as the derivation step and the halting procedure like it was
done for splicing test tube systems [6] or networks of language processors [7]. In
particular, this is important for a classification of P systems as well as for their
implementation. For approaches to find operational and logic based semantics for
P systems we refer to [4] and [2]; a Petri net semantics for membrane systems is
discussed in [12].

This article is an attempt to fulfill the goal of formally defining a procedural
semantics for a quite large number of well-known variants of P systems considered
so far in the literature, but, of course, we do not at all claim to have captured all
the variants having already appeared in the literature. In order to be quite general
we place our reasoning at the abstract level of networks of cells, already considered
in a slightly different way in [3]. We adapt an implementational point of view and
also give a formal definition of the derivation step, the halting condition and the
procedure for obtaining the result of a computation. Moreover, we give examples
of applying our concepts to some well-known variants of P systems.

2 Preliminaries

We recall some of the notions and the notations we use (for further details see
[8] and [17]). Let V be a (finite) alphabet; then V ∗ is the set of all strings (a
language) over V , and V + = V ∗ − {λ} where λ denotes the empty string. FIN
(FIN (V))denotes the set of finite languages (over the alphabet V), and RE, REG,
and MATλ denote the families of recursively enumerable and regular languages
as well as matrix languages, respectively. For any family of string languages F ,
PsF denotes the family of Parikh sets of languages from F and NF the family of
Parikh sets of languages from F over a one-letter alphabet. By N we denote the set
of all non-negative integers, by Nk the set of all vectors of non-negative integers.

Let V be a (finite) set, V = {a1, ..., an}. Then a finite multiset S over V is a
mapping fS : V −→ N. The mapping fS specifies the number of occurrences of each
x ∈ V in S. The size of the multiset S is |S| = ∑

x∈V fS (x). A multiset S over V

A Formal Framework for P Systems 319

can also be represented by any string x that contains exactly fS (ai) symbols ai for
all 1 ≤ i ≤ n, e.g., by a

fS(a1)
1 ...a

fS(an)
n , or else by the set

{
a

fS(ai)
i | 1 ≤ i ≤ n

}
. The

support of S is the set supp(S) = {a ∈ V | f(a) ≥ 1}. For example, the multiset
over {a, b, c} defined by the mapping a → 3, b → 1, c → 0 can be specified by a3b
or

{
a3, b

}
, its support is {a, b}.

The set of all finite multisets over the set V is denoted by 〈V,N〉. We may also
consider mappings fS of form the fS : V −→ N∞ where N∞ = N ∪ {∞}, i.e.,
elements of S may have an infinite multiplicity; we shall call such multisets where
fS (ai) = ∞ for at least one i, 1 ≤ i ≤ n, infinite multisets. The set of all such
multisets S over V with fS : V −→ N∞ is denoted by 〈V,N∞〉.

Let x and y be two multisets over V , i.e., from 〈V,N〉 or 〈V,N∞〉. Then x is
called a submultiset of y, written x ≤ y or x ⊆ y, if and only if fx (a) ≤ fy (a) for
all a ∈ V ; if, moreover, fx (a) < fy (a) for some a ∈ V , then x is called a strict
multiset of y. Observe that for all n ∈ N, n+∞ = ∞, and ∞−n = ∞. The sum of
x and y, denoted by x+y or x∪y, is a multiset z such that fz(a) = fx(a)+fy(a) for
all a ∈ V . The difference of two multisets x and y, denoted by x−y or x\y, provided
that y ⊆ x, is the multiset z with fz(a) = fx(a)−fy(a) for all a ∈ V . Observe that
in the following, when taking the sum or the difference of two multisets x and y
from 〈V,N∞〉, we shall always assume {fx(a), fy(a)} ∩ N 6= ∅.

If X = (x1, . . . , xn) and Y = (y1, . . . , yn) are vectors of multisets over V , then
X ≤ Y if and only if xi ⊆ yi for all i, 1 ≤ i ≤ n; in the same way, sum and
difference of vectors of multisets are defined by taking the sum and the diference,
respectively, in each component.

3 Network of Cells

In this section we consider a general framework for describing membrane systems
with a static membrane structure. We consider membrane systems as a collection
of interacting cells containing multisets of objects [3].

Definition 3.1 A network of cells of degree n ≥ 1 (an NC of degree n ≥ 1, for
short) is a construct

Π = (V,w1, w2, . . . , wn, R)

where

1. V is a finite alphabet;
2. wi ∈ 〈V,N∞〉, for all 1 ≤ i ≤ n, is the multiset initially associated to cell i;
3. R is a finite set of interaction rules of the form

(X → Y ; P, Q)

where X = (x1, . . . , xn), Y = (y1, . . . , yn), xi, yi ∈ 〈V,N〉, 1 ≤ i ≤ n, are
vectors of multisets over V and P = (p1, . . . , pn), Q = (f1, . . . , fn), pi, fi,
1 ≤ i ≤ n are finite sets of multisets over V .

320 R. Freund, S. Verlan

We remark that in the definition given above wi might be an infinite multiset.
However, in most of the cases, only one cell, called the environment, will contain
an infinite multiset. Hence we define Infinite(Π) as the vector specifying the
symbols with infinite multiplicity. More exactly,

Infinite(Π) = (inf1, . . . , infn) where infi = {a ∈ V | fwi
(a) = ∞} , 1 ≤ i ≤ n.

Moreover, we define inf ′i , 1 ≤ i ≤ n, to be the infinite submultisets of wi taking
into account only the symbols with infinite multiplicity, i.e., finf ′i (a) = ∞ for
fwi

(a) = ∞ and finf ′i (a) = 0 for fwi
(a) < ∞, a ∈ V , as well as w′i, 1 ≤ i ≤ n, to

be the finite submultisets of wi taking into account only the symbols with finite
multiplicity, i.e., fw′i (a) = 0 for fwi

(a) = ∞ and fw′i (a) = fwi
(a) for fwi

(a) < ∞,
a ∈ V .

Remark 3.1 We will also use the notation

((x1, 1) . . . (xn, n) → (y1, 1) . . . (yn, n) ; (p1, 1) . . . (pn, n) , (f1, 1) . . . (fn, n))

for a rule (X → Y ; P, Q). Moreover, if some pi or fi is an empty set or some xi

or yi is equal to the empty multiset, 1 ≤ i ≤ n, then we may omit it from the
specification of the rule.

A network of cells consists of n cells, numbered from 1 to n, that contain
(possibly infinite) multisets of objects over V ; initially cell i contains multiset wi.
Cells can interact with each other by means of the rules in R. An interaction rule

((x1, 1) . . . (xn, n) → (y1, 1) . . . (yn, n) ; (p1, 1) . . . (pn, n) , (f1, 1) . . . (fn, n))

rewrites objects xi from cells i into objects yj in cells j, 1 ≤ i, j ≤ n if cells k,
1 ≤ k ≤ n, contain all multisets from pk and do not contain any multiset from
fk. In other words, the first part of the rule specifies the rewriting of symbols,
the second part of the rule specifies permitting conditions and the third part of
the rule specifies the forbidding conditions. In the next section we give a precise
definition for the application of an interaction rule.

For an interaction rule r of the form above, the set

{i | xi 6= λ or fi 6= ∅ or pi 6= ∅ or yi 6= λ}

induces a relation between the interacting cells. However, this relation need not
give rise to a structure relation like a tree as in P systems or a graph as in tis-
sue P systems (e.g., see [15] for definitions of P systems and tissue P systems),
though most models of membrane systems with a static membrane structure can
be seen as special variants of NCs, and moreover, a lot of important features of
membrane systems, in particular the derivation step and the halting condition,
may be described at the level of NCs.

A Formal Framework for P Systems 321

4 Systems with a Static Structure

In this section we consider networks of cells having a static structure, i.e., the
number of cells does not change during the evolution of the system. We first define
a transition step and then halting conditions.

Definition 4.1 Consider a network of cells Π = (V, w1, w2, . . . , wn, R). A con-
figuration of Π is an n-tuple of finite multisets C = (u1, . . . , un) satisfying
infi ∩ ui = ∅. The initial configuration of Π is defined as C0 = (w′1, . . . , w

′
n)

where w′i, 1 ≤ i ≤ n, are the finite multisets from 〈V,N〉 with fw′i (a) = 0 for
fwi

(a) = ∞ and fw′i (a) = fwi
(a) for fwi

(a) < ∞, a ∈ V .

Definition 4.2 We say that an interaction rule r = (X → Y ;P,Q) is eligible for
the configuration C = (u1, . . . , un) if and only if for all i, 1 ≤ i ≤ n, we have

• pi ⊆ ui ∪ inf ′i (pi is a submultiset of ui ∪ inf ′i),
• fi " ui ∪ inf ′i (fi is not a submultiset of ui ∪ inf ′i), and
• xi ⊆ ui ∪ inf ′i (xi is a submultiset of ui ∪ inf ′i).

Moreover, we require that xj∩(V − infj) 6= ∅ for at least one j, 1 ≤ j ≤ n. This
last condition ensures that at least one symbol appearing only in a finite number
of copies is involved in the rule. The set of all rules eligible for C is denoted by
Eligible (Π,C).

The marking algorithm.

Let C = (w1, . . . , wn) be a configuration of a network of cells Π and let R′ be
a finite multiset over M with M consisting of the (copies of) rules r1, . . . , rk,
where each ri = (Xi → Yi; Pi, Qi) ∈ Eligible (Π, C), Xi = (xi,1, . . . , xi,n), Yi =
(yi,1, . . . , yi,n), 1 ≤ i ≤ k. Moreover, set x′i,j , 1 ≤ j ≤ n, to be the finite multisets
from 〈V,N〉 with fx′i,j

(a) = 0 for a ∈ infj and fx′i,j
(a) = fxi,j (a) for a /∈ infj ,

a ∈ V , as well as y′i,j , 1 ≤ j ≤ n, to be the finite multisets from 〈V,N〉 with
fy′i,j

(a) = 0 for a ∈ infj and fy′i,j
(a) = fyi,j (a) for a /∈ infj , a ∈ V . Then:

1. consider a vector of multisets Marked0 (Π, C, r1, . . . , rk) = (λ, . . . , λ) of size n
and let i = 1;

2. if X ′
i ≤ C −Markedi−1 (Π, C, r1, . . . , rk), then set

Markedi (Π, C, r1, . . . , rk) = C −Markedi−1 (Π, C, r1, . . . , rk)−X ′
i,

otherwise, end the algorithm and return false;
3. if i = k then end the algorithm and return true, otherwise set i to i + 1 and

return to step 2.

If the marking algorithm returns true for the pair (C,R′) then we say that
the configuration C may be marked by R′, and we define Marked (Π,C, R′) =
Markedk (Π,C, r1, . . . , rk).

322 R. Freund, S. Verlan

Definition 4.3 Consider a configuration C and R′ ⊆ Eligible (Π,C) (i.e., a mul-
tiset of eligible rules). We say that the multiset of rules R′ is applicable to C
if the marking algorithm as described above returns true and the configuration
Marked (Π,C, R′). The set of all multisets of rules applicable to C is denoted by
Applicable (Π, C).

Definition 4.4 Consider a configuration C and a multiset of rules R′ ∈
Applicable (Π, C). According to the marking algorithm described above, we define
the configuration being the result of applying of R′ to C as

Apply (Π, C,R′) = C −Marked (Π, C, R′) + Σ1≤i≤kY ′
i .

We remark that Apply(R′, C) is again a configuration.

For the specific derivation modes to be defined in the following, the selection
of multisets of rules applicable to a configuration C may only be a specific subset
of Applicable (Π, C).

Definition 4.5 For the derivation mode ϑ, the selection of multisets of rules ap-
plicable to a configuration C is denoted by Applicable (Π, C, ϑ).

Definition 4.6 For the asynchronous derivation mode (asyn),

Applicable (Π, C, asyn) = Applicable (Π, C) ,

i.e., there are no particular restrictions on the multisets of rules applicable to C.

Definition 4.7 For the sequential derivation mode (sequ),

Applicable (Π,C, sequ) = {R′ | R′ ∈ Applicable (Π,C) and |R′| = 1} ,

i.e., any multiset of rules R′ ∈ Applicable (Π,C, sequ) has size 1.

The most important derivation mode considered in the area of P systems from
the beginning is the maximally parallel derivation mode where we only select
multisets of rules R′ that are not extensible, i.e., there is no other multiset of rules
R′′) R′ applicable to C.

Definition 4.8 For the maximally parallel derivation mode (max),

Applicable (Π, C,max) = {R′ | R′ ∈ Applicable (Π, C) and there is
no R′′ ∈ Applicable (Π,C) with R′′) R′} .

A derivation mode closely related to the maximally parallel one, yet not con-
sidered so far in the literature is the following one, where we not only demand that
the chosen multiset R′ is not extensible, but also contains the maximal number of
rules among all multisets from Applicable (Π,C, max):

A Formal Framework for P Systems 323

Definition 4.9 For the maximal in rules maximally parallel derivation mode
(maxrulemax),

Applicable (Π,C, maxrulemax) = {R′ | R′ ∈ Applicable (Π,C, max) and
there is no R′′ ∈ Applicable (Π,C, max)
with |R′′| > |R′|} .

In the minimally parallel derivation mode, we need an additional feature for
the set of rules R, i.e., we consider a partition of R into disjoint subsets R1 to
Rh. For any set of rules R′ ⊆ R, let ‖R′‖ denote the number of sets of rules Rj ,
1 ≤ j ≤ h, with Rj ∩R′ 6= ∅.

There are several possible interpretations of this minimally parallel derivation
mode which in an informal way can be described as applying multisets such that
from every set Rj , 1 ≤ j ≤ h, at least one rule – if possible – has to be used (e.g., see
[5]). We start with the basic variant where in each derivation step we only choose
a multiset of rules R′ from Applicable (Π, C, asyn) that cannot be extended to
R′′ ∈ Applicable (Π, C, asyn) with R′′ % R′ as well as (R′′ −R′) ∩ Rj 6= ∅ and
R′ ∩ Rj = ∅ for some j, 1 ≤ j ≤ h, i.e., extended by a rule from a set of rules Rj

from which no rule has been taken into R′.

Definition 4.10 For the minimally parallel derivation mode (min),

Applicable (Π, C, min) = {R′ | R′ ∈ Applicable (Π, C, asyn) and
there is no R′′ ∈ Applicable (Π,C, asyn)
with (R′′ −R′) ∩Rj 6= ∅
and R′ ∩Rj = ∅ for some j, 1 ≤ j ≤ h} .

As in the case of the maximally parallel derivation mode, also for the minimally
parallel derivation mode we may choose only multisets of rules with the maximal
number of rules thus obtaining the maximal minimally parallel derivation mode:

Definition 4.11 For the maximal in rules minimally parallel derivation mode
(maxrulemin),

Applicable (Π, C,maxrulemin) = {R′ | R′ ∈ Applicable (Π,C, min) and
there is no R′′ ∈ Applicable (Π,C, min)

with |R′′| > |R′|} .

In the case of the minimally parallel derivation mode, we have two more very
interesting variants of possible interpretations, the first one maximizing the sets
of rules involved in a multiset to be applied (maxsetmin), and the second one de-
manding that all sets of rules that could contribute should contribute (allasetmin):

Definition 4.12 For the maximal in sets minimally parallel derivation mode
(maxsetmin),

Applicable (Π,C, maxsetmin) = {R′ | R′ ∈ Applicable (Π, C,min) and
there is no R′′ ∈ Applicable (Π, C,min)

with ‖R′′‖ > ‖R′‖} .

324 R. Freund, S. Verlan

Definition 4.13 For the using all applicable sets minimally parallel derivation
mode (allasetmin),

Applicable (Π,C, allasetmin) = {R′ | R′ ∈ Applicable (Π, C,min) and
for all j, 1 ≤ j ≤ h,
Rj ∩Applicable (Π,C) 6= ∅
implies Rj ∩R′ 6= ∅} .

The ideas of taking only multisets of rules involving the maximal number of
sets of rules and of taking only multisets of rules involving all sets of rules that
can contribute now can also be taken over for the maximally parallel derivation
mode:

Definition 4.14 For the maximal in sets maximally parallel derivation mode
(maxsetmax),

Applicable (Π, C,maxsetmax) = {R′ | R′ ∈ Applicable (Π, C,max) and
there is no R′′ ∈ Applicable (Π, C,max)

with ‖R′′‖ > ‖R′‖} .

Definition 4.15 For the using all applicable sets maximally parallel derivation
mode (allasetmax),

Applicable (Π, C, allasetmax) = {R′ | R′ ∈ Applicable (Π, C,max) and
for all j, 1 ≤ j ≤ h,
Rj ∩Applicable (Π,C) 6= ∅
implies Rj ∩R′ 6= ∅} .

Finally, we should like to mention that the derivation modes maxsetX and
allasetX with X ∈ {max,min} could be extended by the constraint that a
maximal number of rules has to be used, too, thus yielding derivation modes
maxsetmaxruleX and allasetmaxruleX with X ∈ {max,min}. Demanding to use
at least one rule from every set Rj , 1 ≤ j ≤ h, would be another option, yet this
case will be covered by the variant of partial halting defined in the succeeding
subsection when being combined with derivation modes as maxsetX and allasetX
with X ∈ {max,min}.

For all the derivation modes defined above, we now can define how to obtain
a next configuration from a given one by applying an applicable multiset of rules
according to the constraints of the underlying derivation mode:

Definition 4.16 Given a configuration C of Π and a derivation mode ϑ, we may
choose a multiset of rules R′ ∈ Applicable (Π, C, ϑ) in a non-deterministic way
and apply it to C. The result of this transition step from the configuration C with
applying R′ is the configuration Apply (Π,C, R′), and we also write C =⇒(Π,ϑ) C ′.
The reflexive and transitive closure of the transition relation =⇒(Π,ϑ) is denoted
by =⇒∗

(Π,ϑ).

A Formal Framework for P Systems 325

There are several other derivation modes considered in the literature, e.g., we
may apply (at most) k rules in parallel in every derivation step, but we leave the
task to define such derivation modes in the general framework elaborated in this
paper to the reader.

Definition 4.17 A configuration C is said to be accessible in Π with respect to
the derivation mode ϑ if and only if C0 =⇒∗

(Π,ϑ) C (C0 is the initial configuration
of Π). The set of all accessible configurations in Π is denoted by Accessible (Π).

Definition 4.18 A derivation mode ϑ is said to be deterministic (det-ϑ) if
|Applicable (Π,C, ϑ)| = 1 for any accessible configuration C.

4.1 Halting conditions

A halting condition is a predicate applied to an accessible configuration. The sys-
tem halts according to the halting condition if this predicate is true for the current
configuration. In such a general way, the notion halting with final state or signal
halting can be defined as follows:

Definition 4.19 An accessible configuration C is said to fulfill the signal halting
condition or final state halting condition (S) if and only if

S (Π, ϑ) = {C ′ | C ′ ∈ Accessible (Π) and State (Π, C ′, ϑ)} .

Here State (Π,C ′, ϑ) means a decidable feature of the underlying configuration
C ′, e.g., the occurrence of a specific symbol (signal) in a specific cell.

The most important halting condition used from the beginning in the P systems
area is the total halting, usually simply considered as halting :

Definition 4.20 An accessible configuration C is said to fulfill the total halting
condition (H) if and only if no multiset of rules can be applied to C with respect
to the derivation mode anymore, i.e.,

H (Π, ϑ) = {C ′ | C ′ ∈ Accessible (Π) and Applicable (Π, C ′, ϑ) = ∅} .

The adult halting condition guarantees that we still can apply a multiset of
rules to the underlying configuration, yet without changing it anymore:

Definition 4.21 An accessible configuration C is said to fulfill the adult halting
condition (A) if and only if

A (Π, ϑ) = {C ′ | C ′ ∈ Accessible (Π) , Applicable (Π,C ′, ϑ) 6= ∅ and
Apply (Π, C ′, R′) = C ′ for every R′ ∈ Applicable (Π,C ′, ϑ)} .

326 R. Freund, S. Verlan

We should like to mention that we could also consider A (Π, ϑ) ∪ H (Π,ϑ)
instead of A (Π,ϑ).

For introducing the notion of partial halting, we have to consider a partition
of R into disjoint subsets R1 to Rh as for the minimally parallel derivation mode.
We then say that we are not halting only if there still is a multiset of rules R′ from
Applicable (Π, C) with R′ ∩Rj 6= ∅ for all j, 1 ≤ j ≤ h:

Definition 4.22 An accessible configuration C is said to fulfill the partial halting
condition (h) if and only if

h (Π,ϑ) = {C ′ | C ′ ∈ Accessible (Π) and there is
no R′ ∈ Applicable (Π,C ′) with
R′ ∩Rj 6= ∅ for all j, 1 ≤ j ≤ h} .

4.2 Goal and result of a computation

The computations with a network of cells may have different goals, e.g., to generate
(gen) a (vector of) non-negative integers in a specific output cell (membrane) or
to accept (acc) a (vector of) non-negative integers placed in a specific input cell at
the beginning of a computation. Moreover, the goal can also be to compute (com)
an output from a given input or to output yes or no to decide (dec) a specific
property of a given input.

The results not only can be taken as the number (N) of objects in a specified
output cell, but, for example, also be taken modulo a terminal alphabet (T) or by
subtracting a constant from the result (−k).

Such different tasks of a network of cells may require additional parameters
when specifying its functioning, e.g., we may have to specify the output/input
cell(s) or the terminal alphabet.

We shall not go into the details of such definitions here, we just mention that
the goal of the computations γ ∈ {gen, acc, com, dec} and the way to extract the
results ρ are two other parameters to be specified and clearly defined when defining
the functioning of a network of cells or a membrane system.

4.3 Taxonomy of networks of cells and (tissue) P systems

For a particular variant of networks of cells or especially P systems/tissue P sys-
tems we have to specify the derivation mode, the halting condition as well as the
procedure how to get the result of a computation, but also the specific kind of
rules that are used, especially some complexity parameters.

For networks of cells, we shall use the notation

OmCn (ϑ, φ, γ, ρ) [parameters for rules]

to denote the family of sets of vectors obtained by networks of cells Π =
(V, w1, w2, . . . , wn, R) of degree n with m = |V |, as well as ϑ, φ, ρ indicating the

A Formal Framework for P Systems 327

derivation mode, the halting condition, and the way how to get results, respec-
tively; the parameters for rules describe the specific features of the rules in R. If
any of the parameters m and n is unbounded, we replace it by ∗.

For P systems, with the interaction between the cells in the rules of the cor-
responding network of cells allowing for a tree structure as underlying interaction
graph, we shall use the notation

OmPn (ϑ, φ, γ, ρ) [parameters for rules] .

Observe that usually the environment is not counted when specifying the number of
membranes in P systems, but this usually hides that in many cases the environment
takes an important role in the functioning of the system.

For tissue P systems, with the interaction between the cells in the rules of
the corresponding network of cells allowing for a graph structure as underlying
interaction graph, we shall use the notation

OmtPn (ϑ, φ, γ, ρ) [parameters for rules] .

As a special example, let us now consider symport/antiport P systems.

A specific example: P systems with symport/antiport rules

For definitions and results concerning P systems with symport/antiport rules,
we refer to the original paper [13] as well as to the overview given in [16]. An
antiport rule is a rule of the form ((x, i) (u, j) → (x, j) (u, i)) usually written as
(x, out;u, in), xu 6= λ, where j is the region outside the membrane i in the
underlying graph structure. A symport rule is of the form ((x, i) → (x, j)) or
((u, j) → (u, i)).

The weight of the antiport rule (x, out;u, in) is defined as max {|x| , |u|}. Using
only antiport rules with weight k induces the type of rules α usually written as
antik. The weight of a symport rule (x, out) or (u, in) is defined as |x| or |u|,
respectively. Using only symport rules with weight k induces the type of rules α
usually written as symk. If only antiport rules (x, out;u, in) of weight ≤ 2 and
with |x| + |u| ≤ 3 as well as symport rules of weight 1 are used, we shall write
anti2′ .

As is well known,

O∗P2 (max,H, gen, N) [anti2′] = NRE.

Observe that we only need one membrane separating the environment and the skin
region, but this means that two regions corresponding to two cells are involved.

A general result

For any network of cells using rules of type α, with a derivation mode ϑ, ϑ ∈
{allasetmin, asyn, sequ}, and partial halting, we only get Parikh sets of matrix
languages (regular sets of non-negative integers):

328 R. Freund, S. Verlan

Theorem 1. For every ϑ ∈ {allasetmin, asyn, sequ},
O∗C∗ (ϑ, h, gen, T) [α] ⊆ PsMATλ and O∗C∗ (ϑ, h, gen,N) [α] ⊆ NREG.

The proof follows the ideas of a similar result proved for a general variant of P
systems with permitting contexts in [1] and therefore is omitted. We should like
to mention that this result is still valid if we take the derivation mode maxsetmin
instead of allasetmin (because when using partial halting we always have to take
at least one rule from every set of rules), yet we do not know whether it also holds
for the derivation modes min and/or maxrulemin.

5 Conclusions

The main purpose of this paper is to elaborate a general framework for static
P systems and tissue P systems, but there are many variants of membrane sys-
tems not yet covered by this general framework, especially dynamic changes of the
number of cells cannot be handled with the current version. Yet we have already
started to extend our approach to such dynamic variants like P systems with ac-
tive membranes. Moreover, also spiking neural P systems require some efforts for
being captured within this framework. Our approach aims at formalizing the main
features of membrane systems in such a way that derivation modes and halting
conditions can be defined in a clear and unambiguous way to avoid that different
interpretations of notions and concepts in the P systems area yield incomparable
results (as a special example consider the variants described for the minimally par-
allel derivation mode). Moreover, specifying the marking algorithm in a procedural
way should allow for easier and unambiguous implementations. Considering vari-
ants of (tissue) P systems at such a high level of abstraction allows for establishing
quite general results.

References

1. A. Alhazov, R. Freund, M. Oswald, S. Verlan: Partial versus total halting in P sys-
tems. Proc. Fifth Brainstorming Week on Membrane Computing, Sevilla, 2007, to
appear.

2. O. Andrei, G. Ciobanu, D. Lucanu: A rewriting logic framework for operational
semantics of membrane systems, Theoretical Computer Science 373, 3 (2007), 163–
181.

3. F. Bernardini, M. Gheorghe, M. Margenstern, S. Verlan: Networks of Cells and Petri
Nets. Proc. Fifth Brainstorming Week on Membrane Computing, Sevilla, 2007, to
appear.

4. G. Ciobanu, O. Andrei, D. Lucanu: Structural operational semantics of P systems.
In: [9], 1–23.

5. G. Ciobanu, L. Pan, Gh. Păun, M.J. Pérez-Jiménez: P systems with minimal paral-
lelism, accepted for TCS.

A Formal Framework for P Systems 329

6. E. Csuhaj-Varjú, L. Kari, and G. Păun: Test tube distributed systems based on
splicing. Computers and AI 15 (2–3) (1996), 211–232.

7. E. Csuhaj-Varjú: Networks of Language Processors. Current Trends in Theoretical
Computer Science (2001), 771–790.

8. J. Dassow, Gh. Păun: On the power of membrane computing, Journal of Universal
Computer Science 5 (2) (1999), 33–49.

9. R. Freund, G. Lojka, M. Oswald, Gh. Păun (Eds.): Pre-Proceedings of Sixth Inter-
national Workshop on Membrane Computing (WMC6), Vienna, June 18-21, 2005.

10. R. Freund, M. Oswald: P systems with partial halting, accepted, 2007.
11. R. Freund, Gh. Păun, M.J. Pérez-Jiménez: Tissue-like P systems with channel states.

Theoretical Computer Science 330 (2005), 101–116.
12. J. Kleijn, M. Koutny, G. Rozenberg: Towards a Petri net semantics for membrane

systems. In: [9], 439–460.
13. A. Păun, Gh. Păun: The power of communication: P systems with symport/ antiport,

New Generation Computing 20, 3 (2002), 295–306.
14. Gh. Păun: Computing with membranes, J. of Computer and System Sciences 61, 1

(2000), 108–143, and TUCS Research Report 208 (1998) (http://www.tucs.fi).
15. Gh. Păun: Membrane Computing. An Introduction. Springer-Verlag, Berlin, 2002.
16. Y. Rogozhin, A. Alhazov, R. Freund: Computational power of symport/antiport:

history, advances, and open problems. In: R. Freund, Gh. Păun, G. Rozenberg, A.
Salomaa (Eds.): Membrane Computing. 6th International Workshop WMC 2005, Vi-
enna, Austria, Lecture Notes in Computer Science 3850, Springer-Verlag, 2006, 1–30.

17. G. Rozenberg, A. Salomaa (Eds.): Handbook of Formal Languages (3 volumes),
Springer-Verlag, Berlin, 1997.

18. Gh. Păun, Y. Sakakibara, and T. Yokomori: P systems on graphs of restricted forms.
Publicationes Matimaticae 60, 2002.

19. Gh. Păun and T. Yokomori: Membrane computing based on splicing. In: E. Winfree
and D. K. Gifford (Eds.), DNA Based Computers V, volume 54 of DIMACS Se-
ries in Discrete Mathematics and Theoretical Computer Science, 217–232. American
Mathematical Society, 1999.

20. The P Systems Web Page: http://psystems.disco.unimib.it.

