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Summary. Some initial results on the study of conformon-P systems with negative
values are reported.

One model of these conformon-P systems is proved to be computationally universal
while another is proved to be at least as powerful as partially blind program machines.

1 Introduction

The subdivision of a cell into compartments delimited by membranes inspired
G. Păun to define a new class of (distributed and parallel) models of computa-
tion called membrane systems [8]. The hierarchical structure, the locality of in-
teractions, the inherent parallelism, and also the capacity (in less basic models)
for membrane division, represent the distinguishing hallmarks of membrane sys-
tems. Research on membrane systems, also called ‘P systems’ (where ‘P’ stays for
‘Păun’), has really flourished [9].

One of the lines of research within membrane systems deals with the study of
the generative power of models of these systems.

Recent results [3, 4] obtained with the use of Petri nets and P/T systems [10]
show that the study of the generative variants of computing systems based on
symbol objects (membrane systems, program machines, brane calculi, etc.) can
be facilitated if someone considers the number of unbounded elements present in
these systems. In the present paper we do not introduce the notation of Petri net
and P/T systems but only one result obtained with their use. These information
can be found in the just mentioned publications.

In particular [Corollary 2] from [4] indicates:
A P/T system with two unbounded elements has computational power equiva-

lent to the one of program machines;
A P/T system with only unbounded number of tokens has computational power

equivalent to the one of partially blind program machines;
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A P/T system with only unbounded number of places has computational power
equivalent to the one of restricted program machines (in this case restrictions in
the composition of building blocks are present).

There unbounded elements refers to some components of the P/T systems (as,
for instance, number of places and tokens) that are present in unbounded quantity.
In [4] it is also proved that maximal parallelism is equivalent to the presence of an
unbounded number of places. The results proved in [4] indicate that in the study
of a computing system the number and kind of unbounded elements can give an
indication (upper bounds and precise characterisation) of the computing power of
the system.

The research reported in the present paper does not have the level of generality
(i.e., the use of Petri nets) used in [4]. It refers to our initial results on the study of
conformon-P systems having one ‘extended’ unbounded element: the value of the
conformons ranges from −∞ to +∞, differently from previous studies in which it
was ranging from 0 to +∞.

2 Basic definitions

We assume the reader to have familiarity with basic concepts of formal language
theory [6] and program machines [7]. We indicate with N the set of positive integers,
N0 = {0} ∪N and Z = N0 ∪ {−i | i ∈ N} indicates the set of all integers (positive,
negative and zero).

2.1 Program machines

A program machine (also known as (multi)counter machines, multipushdown ma-
chines, register machines and counter automata) with n counters (n ∈ N) is defined
as M = (S, R, s0, sd), where S is a finite set of states, s0, sd ∈ S are respectively
called the initial and final states, R is the finite set of instructions of the form
(si, l−, sg, su) or (si, l+, sq), with si, sg, su, sq ∈ S, si 6= sd, 1 ≤ l ≤ n

A configuration of a program machine M with n counters is given by an element
in the n + 1-tuples (sj , Nn

0 ), sj ∈ S. Given two configurations (si, l1, . . . , ln) and
(s′j , l

′
1, . . . , l

′
n) we define a computational step as (si, l1, . . . , ln) ` (sj , l

′
1, . . . , l

′
n):

• if (si, l−, sg, su), l = lp and lp 6= 0, then sj = sg, l′p = lp − 1, l′k = lk, k 6=
p, 1 ≤ k ≤ n;
if l = lp and lp = 0, then sj = su, l′k = lk, 1 ≤ k ≤ n;
(informally: in state si if the content of counter l is greater than 0, then subtract
1 from that counter and change state into sg, otherwise change state into su);

• if (si, l+, sq), l = lp, then sj = sq, l
′
p = lp + 1, l′k = lk, k 6= p, 1 ≤ k ≤ n;

(informally: in state si add 1 to counter l and change state into sq).

The reflexive and transitive closure of ` is indicated by `∗.
A computation is a finite sequence of transitions between configurations of a

program machine M starting from the initial configuration (s0, l1, . . . , ln) with
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l1 6= 0, lk = 0, 2 ≤ k ≤ n. If the last of such configurations has sd as state,
then we say that M accepted the number l1. The set of numbers accepted by M
is defined as L(M) = {l1 | (s0, l1, · · · , ln) `∗ (sd, l

′′
1 , · · · , l′′n)}. For every program

machine it is possible to create another one accepting the same set of numbers and
having all counters empty in the final state.

Partially blind program machines (also known as partially blind multicounter
machines) were introduced in [5] and defined as program machines without test
on zero. The only allowed operations are increase and decrease of one unit per
time of the counters indicated as (si, l+, sq) and (si, l−, sg) respectively. In case
the machine tries to subtract from a counter having value zero it stops in a non
final state. In [5] it is also proved that such machines are strictly less powerful
than non blind ones.

2.2 Conformon-P system with negative values

A conformon-P system with negative values has conformons, a name-value pair, as
objects. If V is an alphabet (a finite set of letters), then we can define a conformon
as [α, a], where α ∈ V and a ∈ Z (in our previous works on conformons, see for
instance [1, 2], we considered a ∈ N0). We say that α is the name and a is the value
of the conformon [α, a]. If, for instance, V = A,B, C, . . ., then [A, 5], [C, 0], [Z,−14]
are conformons, while [AB, 21] and [D, 0.5] are not.

Two conformons can interact according to an interaction rule. An interaction
rule is of the form r : α

n→ β, where r is the label of the rule (a kind of name,
it makes easier to refer to the rule) α, β ∈ V and n ∈ N0, and it says that a
conformon with name α can give n from its value to the value of a conformon
having name β. If, for instance, there are conformons [G, 5] and [R, 9] and the rule
r : G

3→ R, one application of r leads to [G, 2] and [R, 12], another application of
r (to [G, 2] and [R, 12]) leads to [G,−1] and [R, 15].

The compartments (membranes) present in a conformon-P system have a label
(again, a kind of name which makes it easier to refer to a compartment), every
label being different. Compartments can be unidirectionally connected to each
other and for each connection there is a predicate. A predicate is an element of the
set {≥ n,≤ n | n ∈ Z}. Examples of predicates are: ≥ 5,≤ −2, etc.

If, for instance, there are two compartments (with labels) m1 and m2 and there
is a connection from m1 to m2 having predicate ≥ 4, then conformons having
value greater or equal to 4 can pass from m1 to m2. In a time unit any number of
conformons can move between two connected membranes as long as the predicate
on the connection is satisfied. Notice that we have unidirectional connections that
is: m1 connected to m2 does not imply that m2 is connected to m1. Moreover, each
connection has its own predicate. If, for instance, m1 is connected to m2 and m2 is
connected to m1, the two connections can have different predicates. It is possible
to have multiple connections (with different predicates) between compartments.
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The interaction with another conformon and the passage to another membrane
are the only operations that can be performed by a conformon.

Formally, a conformon-P system with negative values of degree m,m ≥ 1, is
a construct Π = (V, µ, αa, ack, L1, . . . , Lm, R1, . . . , Rm), where V is an alphabet;
µ = (N, E) is a directed labelled graph underlying Π. The set N contains vertices
(the membrane compartments), while the set E defines directed labelled edges (the
connections) between vertices.

In αa the value of α can either be input or output, in the former case Π is an
accepting device, in the latter case Π is a generating device, while a ∈ {1, . . . , m}
indicates the input or output membrane, respectively. ack ∈ N indicates the ac-
knowledgment membrane.

The multisets Li contain conformons associated to region i; Ri are finite sets
of rules for conformons interaction associated to region i.

A configuration of Π is an m-tuple indicating the multisets of conformons
present in each membrane of the system. A transition is the passage from one
configuration to another as the consequence of the application of operations.

A computation is a finite sequence of transitions between configurations of a
system Π starting from (L1, . . . , Lm), the initial configuration characterized by
the fact that no conformon is present in the acknowledgment membrane. If used
as a generating device, then the result of a computation is given by the multisets
of conformons associated to membrane a when any conformon is associated to
membrane ack. When this happens the computation is halted, that is no other
operation is performed even if it could. When a conformon is associated to the ac-
knowledge membrane the number of conformons (counted with their multiplicity)
associated to membrane a defines the number generated by Π.

If used as an accepting device, then the input is given by the multiset of con-
formons associated to a in the initial configuration. If Π reaches a configuration
with any conformon in ack, then no other operation is performed even if it could
and Π accepts the input.

Some of the conformon-P systems considered in this paper work under maximal
parallelism: in every configuration the maximum number of operations that can be
performed is performed. If in one configuration some operations are conflicting (so
that they cannot be executed together as they involve the same conformons), then
any maximum number of non conflicting operations is performed. The passage
of two conformons through the same connection is considered as two different
operations (similarly for the interactions of two different pairs of conformons due
to one rule).

2.3 Some modules for conformon-P systems

In the following we use the concept of module: a group of membranes with con-
formons and interaction rules in a conformon-P system able to perform a specific
task.
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An example of module is a splitter [1]: a module that, when a conformon [X, x]
with x ∈ {x1, . . . , xh}, xi < xi+1, 1 ≤ i ≤ h− 1 is associated with a specific mem-
brane of it, it may pass such a conformon to other specific membranes according to
its value x. A detailed splitter is depicted in Figure 1.a. Vertices outgoing a mod-
ule representation of a splitter, Figure 1.b, have as predicates elements in the set
{= n | N0}, this is a shorthand indicating the function performed by this module.

≤ x2

x1

≤ x1 ≤ xh−1

xh−1 xh

≤ xh

u1 uh−1 uh

(a)

[X, x]

[X, x]

p

= xh

spl

= x1

u1 uh

(b)

u2

uh+1

p ≥ xh−1

uh+1

x2

≥ x2 ≥ x3 ≥ xh[X, x]

[X, x]

Fig. 1. A detailed splitter (a) and its module representation (b)

It should be clear that if a splitter is part of a conformon-P system with max-
imal parallelism, then the number of steps required to a conformon to pass from
the uh+1 membrane to any other of the u membrane depends on the value of the
conformon. If we consider the splitter depicted in Figure 1.a, a conformon present
in membrane uh+1 requires only two steps to pass to membrane u1 but it requires
h + 1 steps to pass to membrane uh.

In order to have this time constant (equal to h+1 in the example), then delays
(i.e., sequences of membranes) have to be introduced. We make this assumption
for all the splitters considered in the proof of Theorem 1.

2.4 Figures in this paper

The representation of the conformon-P systems considered in this paper follows
some rules aimed to a more concise representation an to an easier understanding
of them.

The label of each membrane (a number) is indicated in bold on the top right
corner of each compartment. Splitters are depicted by a thicker line, their label
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(also in bold) starts with spl, and their edges have ‘=’ as predicate. The module
representation of a splitter is depicted in Figure 1.b.

Oval compartments with a label inside are shortcuts for membranes or modules.
Conformons present in the initial configuration of the system are depicted

in bold, the remaining conformons are the ones that could be present in the
membrane during the computation.

The predicate associated to an edge is indicated close to the edge.
Some predicates and the value of some conformons contain a slash (/). This is

a shorthand for multiple predicates or values. For instance, the conformon [A, 3/4]
indicates that in a membrane the conformons [A, 3] and [A, 4] can be present. If
there is a connection from membrane m1 to membrane m2 and the connection has
predicate ≤ 0/ ≥ 5, then this is equivalent to two connections from m1 to m2, one
with predicate ≤ 0 and the other with predicate ≥ 5.

If the conformon [A, a] is present in m copies in a certain membrane, then this
is indicated with ([A, a], m), where an unbounded number of copies is indicated
with +∞.

3 Results

Theorem 1. The class of numbers accepted by conformon-P systems with negative
values and with maximal parallelism coincides with the one accepted by program
machines.

Proof. This proofs follows from the one of [Theorem 2] from [1] (where priorities
between interaction rules are present) and from [Theorem 1] from [4].

Figure 1 represents such a conformon-P system used as accepting device sim-
ulating a program machine. During this proof we refer to this figure.

For each state si of the simulated program machine there is a conformon with
name si. For each instructions of the kind (si, l+, sq) ∈ R there is a conformon with
name s′q,l; for each instruction of the kind (si, l−, sg, su) ∈ R there are conformons
with name s′′g,l and s̄g,l. For the final state sd ∈ S there is one conformon with
name s′′′d .

The initial configuration of the conformon-P system with priorities has all
conformons with name s′q,l, s′′g,l and s′′′d and 0 as value in membrane 1; all the ones
with name s̄g,l and 1 as value in membrane 17; all the ones with name si and 0
as value in membrane 11 except the one with name of the initial state s0 that is
in membrane 1 with value 9 (in Figure 2 the generic conformon [si, 9] is present
in membrane 1); conformons [a, 8] and [c, 0] are initially present in membrane 6
and 13 respectively. Moreover for each counter l of the simulated machine there
are an unbounded number of occurrences of the conformons [l, 0] in membrane 8,
while the input membrane (membrane 14 in the figure) contains as many copies
of such conformons as the values kl of the counters at the initial configuration of
the simulated machine.
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Fig. 2. The conformons-P system related to Theorem 1

The addition of one unit to one counter l is simulated moving one occurrence
of the conformon [l, 0] from membrane 8 to membrane 14; the subtraction of one
unit is simulated with the passage of one occurrence of the same conformon from
membrane 14 to membrane 8.
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For each instruction of the type (si, l+, sq) ∈ R there is in membrane 1 the rule
si

6→ s′q,l; for each instruction of the kind (si, l−, sg, su) ∈ R, there is in membrane

1 the rule si
7→ s′′g,l; for sd ∈ S there is in membrane 1 the rule si

8→ s′′′d .
Only one conformons of the kind [si, 9] may be associated to membrane 1.

When such a conformon is present in membrane 1, then one of the interaction
rules indicate above can occur.

Let us consider now the case that the rule si
8→ s′′′d is applied. As there is only

one instance of [s′′′d , 0] then the newly created [s′′′d , 8] passes to spl1 and from here
to membrane 6. After the interaction two sets of rules are applicable: one with a
second interaction of si and s′′′d and another with the passage of [s′′′d , 8] and [si, 1]
to spl1. Maximal parallelism forces this last set to be applied.

In membrane 6 [s′′′d , 8] interacts with [a, 8] such that [s′′′d , 10] is created. When
this happens this conformon passes first to spl6 and then to membrane 7, the
acknowledgment membrane, halting in this way the computation.

It is important to notice that the presence of [a, 8] in membrane 6 is necessary
for the halting of the computation. If in a configuration the conformon [s′′′d , 8]
passes in membrane 6 but [a, 8] is not there, then the simulation does not halt.

If instead the interaction in membrane 1 involves the conformon with name si

and either s′q,l or s′′g,l (due to either (si, l+, sq) ∈ R or (si, li, sg, su) ∈ R), then the
following sets of applicable operations are.

1. the conformon with name si can interact again with the same instance of either
s′q,l or s′′g,l;

2. if there is either (si, l+, sq′) ∈ R or (si, l1, sg′ , su′) ∈ R, then the conformon
with name si can interact with an instance of either s′q′,l or s′′g′,l and the
conformon created in the previous interaction (either [s′q,l, 6] or [s′′g,l, 7]) can
pass to spl1;

3. both si and either [s′q,l, 6] or [s′′g,l, 7] can pass to spl1.

Because of maximal parallelism only the second and third set of operations in
the previous list can take place (as they contain two elements while the first set
contains only one element).

If the second set occurs, then the system never reaches an halting configuration.
This can be seen if, for instance, we consider the conformon [s′q,l, 6]. Once in spl1
this conformons passes to membrane 2, then to spl2 and from here to membrane 6
where it interacts with [a, 8]. As a consequence of this interaction the conformon
with name a passes to spl6 so that the system does never halt.

The role of [a, 8] in membrane 6 is just this: if in any stage during the compu-
tation the system performed an operation that does not follow the simulation of
the program machine, then a conformon passes to membrane 6 and interacts with
[a, 8] making it unavailable for [s′′′d , 8].

The creation of [si, 3] and [s′q,l, 6] in membrane 1 starts the simulation of the
instruction (si, l+, sq) ∈ R. As we said, the simulation of the addition of 1 to the
value of the counter is performed with the passage of one instance of [l, 0] from
membrane 8 to membrane 14. When in membrane 2 [si, 3] and [s′q,l, 6] interact,
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[si,−1] and [s′q,l, 10] are created and they pass to spl2 (in case [s′q,l, 6] passes to
spl2, then the system never halts). From spl2 [si,−1] and [s′q,l, 10] pass together to
membrane 3 where they interact, [si, 0] and [s′q,l, 9] are created and pass to spl3.
From here [si, 0] passes to membrane 11 while [s′q,l, 9] passes to membrane 8.

The membrane-splitter-membrane-splitter sequence that we just described
(membrane 2 - spl2 - membrane 3 - spl3) is present in other parts of the system.
This sequence allows to control the interaction of two conformons in a very precise
way and to discard the outcome (i.e., conformons) of undesired interactions.

Once in membrane 8 the conformon with name s′q,l goes under another
membrane-splitter sequence. In membrane 8 [s′q,l, 9] interacts with an instance
of [l, 0]. After this interaction three sets of applicable operations are possible, this
situation is similar to the one described before for membrane 1. In this case the
undesired computation sees a conformons [l, 5] passing from spl8 to membrane
6, while a proper simulation sees a conformon [l, 0] passing to membrane 14 and
[s′q,l, 9] passing to membrane 11.

In membrane 11 [s′q,l, 9] interacts with [sq, 0] such that [s′q,l, 3] and [sq, 6] are
created. Again a membrane-splitter sequence allows to create [s′q,l, 0] and [sq, 9]
and let them pass to membrane 1. The instruction (si, l+, sq) ∈ R has been per-
formed and the system simulates the program machine being in state q.

The simulation of the instruction (si, l−, sg, su) ∈ R starts with the interac-
tion of [si, 9] and [s′′g,l, 0]. If when this happens no [l, 0] conformon is present in
membrane 14, then the conformon [su, 9] passes to membrane 1, otherwise an oc-
currence of [l, 0] passes from membrane 14 to membrane 8 and the conformon
[sg, 9] passes to membrane 1.

One interaction of [si, 9] and [s′′g,l, 0] in membrane 1 creates [si, 2] and [s′′g,l, 7]
and, similarly to what described before, they can follow a membrane-splitter se-
quence at the end of which [si, 2] is in membrane 11 and [s′′g,l, 9] is in membrane
13.

In this last membrane [s′′g,l, 9] interacts with [c, 0] so that [s′′g,l, 7] and [c, 2]
are created, then these two conformons pass to spl11. From here [c, 2] passes to
membrane 14. The conformon [s′′g,l, 7] also passes to this membrane but only after
two steps (in the meantime it goes in membrane 15 and 16).

If in membrane 14 there is at least an occurrence of [l, 0], then [c, 2] interacts
with any of these so that [c,−3] and [l, 5] are created (at the same time [s′′g,l, 7]
pass to membrane 17). In this configurations a few things can happen. Similarly to
the second and third set of operations indicated in the list above [c,−3] can either
remain in membrane 14 and interact with another instance of [l, 0] (if present) or
it can pass to spl12 and from here to membrane 15. In any case [l, 5] passes to
spl13 and from here to membrane 15. If [c,−3] is not present in this membrane
when [l, 5] is present, then this last conformon passes to spl14 and from here to
membrane 6 (and here it interacts with [a, 8] such that the system never halts).

It should be clear now that if [c,−3] and [l, 5] do not move together out of
membrane 14 the system never halts. If they do so, then they pass to membrane
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15 at the same time. Here [l, 5] can either pass to spl14 (and then to membrane
6) or it can interact with [c,−3] so that [l, 0] and [c, 2] are created and they pass
together to spl14. From here [l, 0] passes to membrane 8 and [c, 2] to membrane 16
(where it waits until [s′′g,l, 7] arrives).

When [s′′g,l, 7] passes to membrane 14 it can be that the conformon with name
c is there or not. This last conformon can be in membrane 14 for two reasons:
either no occurrence of [l, 0] was in that membrane, or one occurrence of [l, 0] was
there and [c,−2] did not pass to spl12. We know from the above that in this last
case the system does not halt (because an [l, 2] is heading membrane 6), so we are
not going to discuss the consequences of the interaction between [s′′g,l, 7] and the
conformon with name c when this last has a negative value.

If [c, 2] is present in membrane 14 when [s′′g,l, 7] arrives there, too, then two
things can happen: the two conformons interact or not. In this last case [s′′g,l, 7]
passes to spl13 and from here to membrane 16 and no operation can happen in
the system. If instead the two conforms interact, then [s′′g,l, 11] and [c,−1] are
created and they pass to membrane 18 (through spl13 and spl12, respectively).
Here either [c,−2] passes to spl15 and no further operation is applied, or the two
conformons interact so to create [s′′g,l, 9] and [c, 0] and then these two conformons
pass to membrane 11 and 13, respectively. So when [s′′g,l, 9] is present in spl15, then
in the simulation the counter l was empty.

What happens to the conformon with name s′′g,l in membrane 11 is similar to
what discussed for the conformon with name s′q,l earlier on. The result of these
operations is that [sg, 9] and [s′′g,l, 0] are created and pass to membrane 1.

We still have to discuss the case in which no conformon with name c is present in
membrane 14 when [s′′g,l, 7] arrives. Here maximal parallelism forces this conformon
to pass to spl13 and from here to membrane 16 where [c, 2] is also present. This
means that if [c, 2] and [s′′g,l, 7] are present in membrane 16, then the simulation
of the subtraction of 1 from counter l has been performed.

When in membrane 16 [c, 2] and [s′′g,l, 7] interact so that [c, 0] and [s′′g,l, 9] are
created and pass to membrane 13 and 17, respectively. In this last membrane
[s′′g,l, 9] interacts with [s̄g,l, 1] so that [s′′g,l, 0] and [s̄g,l, 10] are created. Because
of maximal parallelism these last two conformons pass to membrane 1 and 11,
respectively.

What happens to the conformon with name s̄g,l in membrane 11 is similar to
what discussed for the conformon with name s′q,l earlier on. The result of these
operations is that [su, 9] and [s̄g,l, 1] are created and pass to membrane 1 and 17
respectively.

If on a given input the program machine reaches an halting state, then the
simulating conformon-P system can reach a final configuration.

The assumption that a program machine can simulate any such conformon-P
system derives from the Turing-Church thesis. ¤
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In the figure related to the following proof some conformons have a parametric
value of the kind a + bn, a, b ∈ N, n ≥ 0. This indicates all the possible values
that a conformons can have as a consequence of interactions. If, for instance, the
conformons [A, a], [C, c] and the interaction rule C

b→ A are present in the same
membrane, then the value of the A conformon can change into a + bn, where n
indicates the number of interactions between the A and the C conformon.

Theorem 2. Conformon-P systems with negative values and without maximal par-
allelism can simulate partially blind program machines.

Proof. This proof follows from the one of [Theorem 1] from [1].
Figure 2 represents such a conformon-P system used as an accepting device

simulating a program machine. During this proof we refer to this figure.
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Fig. 3. The conformons-P system related to Theorem 2

For each state si of the simulated program machine there is a conformon with
name si. For each instruction of the kind (si, l+, sq) ∈ R there is a conformon with
name s′q,l; for each instruction of the kind (si, l−, sg) ∈ R there is a conformon
with name s′′g,l. For the final state sd ∈ S there is one conformon with name s′′′d .
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The initial configuration of the conformon-P system has all conformons with
name s′q,l, s′′g,l and s′′′d and 0 as value in membrane 1; all the ones with name si

and 0 as value in membrane 8 except the one with name of the initial state s0 that
is in membrane 1 with value 7 (in Figure 3 the generic conformon [si, 7] is present
in membrane 1).

Moreover, for each counter l of the simulated machine there are an unbounded
number of occurrences of the conformons [l, 0] in membrane 5, while the input
membrane (membrane 4 in the figure) contains as many copies of such conformons
as the values kl of the counters at the initial configuration of the simulated machine.
The addition of one unit to one counter l is simulated moving one occurrence of
the conformon [l, 0] from membrane 5 to membrane 4; the subtraction of one
unit is simulated with the passage of one occurrence of the same conformon from
membrane 4 to membrane 5.

For each instruction of the type (si, l+, sq) ∈ R there is in membrane 1 the rule
si

6→ s′q,l; for each instruction of the kind (si, l−, v) ∈ R, there is in membrane 1

the rule si
5→ s′′g,l; for sd ∈ S there is in membrane 1 the rule si

4→ s′′′d .
For any configuration of the conformon-P system only one conformon of the

kind [si, 7] may be associated to membrane 1. As we already said, initially this
conformon is the one related to the initial state of the program machine.

When a conformon of the kind [si, 7] is present in membrane 1, then one of the
interaction rules indicate above can occur.

Let us consider now the case that the rule si
8→ s′′′d can be applied. Of course

this rule can be applied more than once, if this happens the value of the si confor-
mon goes below 0 and the one of the s′′′d conformon is 4n. If n is at least 1, then the
s′′′d conformon can pass to spl1, but only if n = 1, then [s′′′d , 4] passes to membrane
2, the acknowledgment membrane, halting in this way the computation.

This process of ‘filtering out’ (with splitters) conformons with an undesired
value is present in many places in this conformon-P system. If two conformons
over interacted, then the system never reaches an halting configuration.

If instead a rule of the kind si
6→ s′q,r is applied, then [s′q,r, 6 + 6n] can pass to

spl1, but only [s′q,r, 6] can pass to membrane 5. If in membrane 1 [si, 1] is produced,
then it passes to membrane 3 (through spl1).

In membrane 5 two things can happen:

1. s′q,l interacts several times with the same l conformon;
2. s′q,l interacts with different l conformons.

The only case such that [s′q,l, 1] is produced and passes to membrane 12
(through spl3) is when [s′q,l, 6] interacts only once with one [l, 0] conformons. In
all the other cases the value of the s′q,l conformon becomes negative and such a
conformon does not pass to membrane 12 (in this way the system never halts).

If [s′q,l, 1] is produced, then also one [l, 5] is produced and, once in membrane
12, these two conformons interact so that [s′q,l, 6] and [l, 0] are recreated (because of
spl4, an over interaction in membrane 12 leads the resulting conformons to remain
in that splitter) and they can pass to membrane 3 and 4, respectively.
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The passage of an instance of [l, 0] from membrane 5 to membrane 4 simulates
the subtraction of one unit from the l counter. If no [l, 0] conformon is present in
membrane 5 when a s′q,l conformon gets there, then the system never reaches an
halting configuration.

In membrane 3 si and s′q,l can interact such that [si,−n] and [s′q,l, 7+n], n ≥ 0
are produced and they pass to membrane 7 and 6 respectively. Only if n = 0
(which means that only one interaction took place), then [si, 0] and [s′q,l, 7] pass to
membrane 8. Here s′q,l interacts with sj and, in a way similar to what described
until now, this can lead to the production of [sj , 7] and [s′q,l, 0] and these two
conformons can pass to membrane 1.

The simulation of an instruction of the kind (si, l−, v) is performed in a similar
way.

If on a given input the partially blind program machine reaches an halting
state, then the simulating conformon-P system can reach a final configuration. ¤

4 Final Remarks

The results reported in this paper leave us perplex. How shall we interpret these
results in terms of unbounded elements [4]? Must the range of values (from −∞ to
+∞) be regarded as one or two unbounded elements or as no unbounded elements
at all? (because the two infinities ‘cancel’ each other)

In this last case [Corollary 2] from [4] is confirmed as Theorem 1 has two
unbounded elements (number of conformons and maximal parallelism) and Lemma
2 only one (number of conformons). This also implies that it is possible to prove
that a partially blind program machine can simulate any conformon-P system with
negative values without maximal parallelism.

In case the range of values is regarded as one unbounded element, then it should
be possible to prove that the computational power of conformon-P system with
negative values is equivalent to the one of program machines. This implies that
Theorem 1 is redundant (because it uses three unbounded elements).

In case the range of values is regarded as two unbounded elements, then some
of the results reported in [4] should be extended and made more general.

We believe that the range of values should be regarded an one unbounded
element.

Another problem on this line of research regards the characterization of blind
program machines in terms of unbounded elements. Blind program machines (also
known as blind multicounter machines) [5] are program machines that cannot sense
(so neither halt or check) if the value of a counter is zero. It is know that these
machines are strictly less computationally powerful then partially blind program
machines.
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G. Rozenberg, and A. Salomaa, editors, Membrane Computing, volume 4361 of Lec-
ture Notes in Computer Science, pages 395–408. Springer-Verlag, Berlin, Heidelberg,
New York, 2006. 7th International Workshop, WMC 2006, Leiden, The Netherlands,
July 17-21, 2006, Revised, Selected, and Invited Papers.

3. P. Frisco. P systems, Petri nets, and Program machines. In R. Freund, G. Lo-
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