
Optimizing Membrane System Implementation
with Multisets and Evolution Rules Compression

Abraham Gutiérrez, Luis Fernández, Fernando Arroyo, Ginés Bravo

Natural Computing Group
Universidad Politécnica de Madrid, Spain
{abraham, setillo, farroyo, gines}@eui.upm.es

Summary. Nowadays, several research works on implementation of P systems have been
focused on the massively parallel character of the model. In particular, it is possible to find
out implementation of P system on cluster of processors, networks of processors, FPGA’s
ad hoc designed, and microcontrollers. Several published time analysis have proved that
there is a very strong relationship between communication and evolution rules application
time in membranes of the system. This relation determines the number of membranes
that can be allocated per processor in order to obtain the minimum evolution time for
the P system. This fact presents a problem related to hardware technologies which have a
small amount of memory for storing multisets of objects and evolution rules, in particular
microcontrollers.

The aim of this work is to present an algorithm for compressing information of mul-
tisets and evolution rules stored in membranes. In particular, this algorithm has to com-
press information, without penalizing evolution rules application and communication
times with complex processes for compressing and decompressing such information. At
the same time, keeping the same parallelism degree obtained in P systems implementa-
tion over distributed architectures presented in previous research works, but storing more
membranes per processor.

1 Introduction

Membrane computing is a new computational model based on the membrane struc-
ture of living cells [14]. It must be stressed that they are not intended to model
the functioning of biological membranes. Rather, they explore the computational
character of several membranes features that can be used for modelling new com-
putational paradigms inspired in Nature. This model has become, during last
years, a powerful framework to develop new ideas in theoretical computation and
to connect Biology with Computer Science.

The membrane structure of a P System is a hierarchical arrangement of mem-
branes, embedded in a skin that separates the system from its environment. A
membrane with no other membrane inside is called elementary. Each membrane
defines a region that contains a multiset of objects, and a set of evolution rules.

346 A. Gutiérrez et al.

The objects are represented by symbols from a given alphabet. The objects can
pass through membranes and membranes can change their permeability, they can
be dissolved, or they can be divided. These features are used in defining transi-
tions between system configurations, and sequences of transitions are used to define
computations. Membrane systems are synchronous, in the sense that a global clock
is assumed, i.e., the same clock holds for all regions of the system. At each time
unit, a transformation of a system configuration takes place by applying rules in
all regions, in a nondeterministic and maximally parallel manner.

Nowadays, membrane systems have been sufficiently characterized from a theo-
retical point of view. Their computational power has been settled – many variants
are computationally complete. Among their most relevant characteristics appears
the fact that they can solve non polynomial time problems in polynomial time,
but this is achieved by the consumption of an exponential number of resources, in
particular, the number of membranes that evolve in parallel.

An overview of membrane computing software can be found in [2] [15]. How-
ever, the way in which these models can be implemented is a persistent problem
today, because ”the next generation of simulators may be oriented to solve (at
least partially) the problems of information storage and massive parallelism by
using parallel language programming or by using multiprocessor computers” [2].
In this sense, information storage in membrane computation implementation is
an example of Parkinson’s First Law [13]: ”storage and transmission requirements
grow double than storage and transmission improvements”.

This work focuses upon the problem due to the storage of multisets and rules
information for the membranes in P-systems implementation. In particular, we
pretend to get the highest compression level for the information without penalizing
compression and decompression time with cost-consuming operations. Thus, we
intend to reach a compression ratio that complies with the parallelism level reached
in previous research works for P-systems implementation.

The structure of this work is as follows: first, related works in P-systems imple-
mentation are presented; next two sections present requirements for information
compression in membrane systems and the proposed compression schema; then we
analyze the obtained results for a set of tests for a well known P-system. Finally,
authors present reached conclusions.

2 Related Works

First works over massively parallel implementation for P-systems started with
Syropoulos [19] and Ciobanu [3] that in their distributed implementations of P
systems use Java Remote Method Invocation (RMI) and the Message Passing
Interface (MPI) respectively, on a cluster of PC connected by Ethernet. These
authors do not carry out a detailed analysis about the importance of the time
used during communication phase in the total time of P system evolution; although
Ciobanu stated that ”the response time of the program has been acceptable. There

Optimizing Membrane System Implementation 347

are however executions that could take a rather long time due to unexpected
network congestion”.

Recently, in [20] and [1] they present analysis for distributed architectures that
are technology independent, based on: the allocation of several membranes in the
same processor; the use of proxies for communication among processors; and, token
passing in the communication. These solutions avoid communication collisions,
and reduce the number and size of communication among membranes. All this
allows to obtain a better step evolution time than in others suggested architectures
congested quickly by the network collisions when the number of membranes grows
up. Table 1 summarizes minimum times (Tmin), optimal amount of processors
needed to implement the P system Popt, membranes allocated at each one of them
Kopt to reach those minimum times, the throughput obtained with corresponding
processors Thproc and communications Thcom for the architecture. These analysis
consider the P-system number of membranes (M) that would evolve, the maximum
time used by the slowest membrane in applying its rules (Tapl), and the maximum
time used by the slowest membrane for communication (Tcom).

Distributed Architecture [20] Distributed Architecture [1]

Tmin = 2
p

2 M Tapl Tcom − 2 Tcom Tmin = 2
p

M Tapl Tcom + Tcom

Popt =
q

M Tapl

2 Tcom
Popt =

q
M Tapl

Tcom

Kopt =
q

2 M Tcom
Tapl

Kopt =
q

M Tcom
Tapl

Thproc∼ 50% Thproc∼ 50%

Thcom∼ 50% Thcom∼ 100%

Table 1. Distributed architecture parameters depending on application rules time (Tapl),
communication time (Tcom) and number of membranes (M)

It may be concluded that to reach minimum times over distributed architec-
tures, there should be a balance between the time dedicated to evolution rules
application and the time used for communication among membranes. So, depend-
ing from the existing relation between both times, and from the number of mem-
branes in the P-system, it is possible to determine the number of processors and
the number of membranes that can be allocated at each one of them to obtain the
evolution minimum time.

The difference between both architectures lies on the different topology for the
processors net and the policy for token passing. Thus, [1] reaches a throughput near
to a 100% of the communication line. With a 40% of increment in the parallelism
level produced by the increment of the number of processors in the architecture,
which permit to obtain a reduction over the 70% in the evolution time. Both works
conclude that, for a specific number of membranes M , if it is possible that:

1. Tapl be N faster, the number of membranes that would be hosted in a proces-
sor would be multiplied by

√
N , the number of required processors would be

348 A. Gutiérrez et al.

divided by the same factor and the time required to perform an evolution step
would improve approximately with the same factor

√
N .

2. Tcom be N faster, the number of required processors would be multiplied by√
N , the number of membranes that would be hosted in a processor would be

divided by the same factor and the time required to perform an evolution step
would improve approximately by the same factor

√
N .

Table 2 summarizes the importance of reducing Tapl and Tcom over the dis-
tributed architectures parameters (minimum evolution time, optimum number of
processors and optimum number of membranes per processor).

Conditions Tmin Popt Kopt

Tapl be N faster and Tcom be equal Tmin√
N

Popt√
N

Kopt ·
√

N

Tapl be equal and Tcom be N’ faster Tmin√
N′ Popt ·

√
N ′ Kopt√

N′

Tapl be N faster and Tcom be N’ faster Tmin√
N′·

√
N

Popt·
√

N′
√

N

Popt·
√

N√
N′

Table 2. Repercussion on distributed architecture parameters depending on Tapl and
Tcom

All the previous analysis for distributed architectures is independent of specific
technology. In this sense, as it usually happens, implementation of these systems
has been addressed from two different approaches: software and hardware mod-
els. The main research lines are: simulation over local networks using cluster of
microprocessors, hardware ad-hoc, and generic hardware such as microcontrollers:

1. The hardware specifically designed has the possible advantage of being a mas-
sively parallel solution [17] [5] [12]. Their weak point resides in the lack of
flexibility that presents, because this type of solutions only allows the simu-
lation of a specific kind of membrane systems (for each membrane system a
specific hardware is needed). They are also very enclosed solutions because
they may be applied only to a very little range of problems (reduced number
of objects in the alphabet and small number of evolution rules).

2. The solutions based on cluster of microprocessors and local networks have as
main advantage the use of very common and well-known architectures. They
are floppy systems also because a change at software level allows the simulation
of any kind of membrane systems. Its main problem is that the best simulation
times are reached always with few units, so the obtained solutions have a low
degree of parallelism.

3. The solution, based on the use of microcontrollers [9] [10], seeks to be an
intermediate point between hardware specifically designed and simulation us-
ing cluster of microprocessors. Microcontroller architecture is as flexible as a
cluster of microprocessors and less enclosed and floppier than the hardware
specifically designed. Microcontroller architecture has more level of potential
parallelism than cluster of microprocessors but does not have intrinsic parallel

Optimizing Membrane System Implementation 349

nature of the hardware specifically designed. Therefore, it is the cheapest ar-
chitecture. But, in return, in [10] it is admitted that it is needed “the definition
of more and more efficient data structures and algorithms oriented to minimize
the quantity of memory required for the multisets and evolution rules storage
that define the membrane”.

Thus, in hardware solutions and solutions based upon microprocessors nets, the
amount of information that has to be stored and transmitted is very important. In
the first case, the main problem is due to their low storage capacity. So, reducing
this amount of information needed to represent a membrane, means to be able
to extend the variety of problems that can be solved with this technology. In the
second case, reducing the amount of information to transmit means to minimize
the bottleneck in processor communication and so, increase the parallelism level.

3 Compression Requirements

First, unlike other environments, where it is admissible a lossy information system
(i.e. multimedia contents transmission), in our environment it is essential to have
a lossless information compression system.

Almost all the compression methods require two phases: the first for analysis
followed by a second one for conversion. First, an initial analysis of the information
is done to identify repeated strings. From this analysis, an equivalences table is
created to assign short codes to those strings. In a second phase, information
is transformed using equivalent codes for repeated strings. Besides, this table is
required with the information for its future compression/decompression. On the
other hand, we must realize that a higher compression without any information loss
will take more processing time. Bitrate is always variable and it is used mainly
in text compression [18]. Because all of this, in spite of the fact that there are
compression systems that are able to reach entropy limit - highest limit for data
compression (i.e. Huffman codes) - they are not the ideal candidates for our system
because of the following reasons:

1. Table storage will increase the needs for memory resources and would decrease
compression goal.

2. Time for the phase of evolution rules application is penalized with compres-
sion/decompression processes when accessing compressed information on the
P-system. This reduces parallelism level from distributed systems and increases
evolution time.

3. And also, despite of the fact that communication phase time will be reduced
because a lowest amount of information is transmitted, this will be counter-
acted by the time needed for decompression in the destination.

This way, as it is said in the goal of this work, compression schema for infor-
mation from P-system membranes should accomplish following requirements:

350 A. Gutiérrez et al.

1. there should be no information loss;
2. it should use the lowest amount of space for storage and transmission;
3. it should not penalize time for rules application phase and communication

among membranes while processing compressed information. Thus, this means
that the system should:
a) encode information for a direct manipulation in both phases without hav-

ing to use coding/decoding processes.
b) do the compression in a previous stage to the P-system evolution
c) therefore, abandon entropy limit to be able to maintain parallelism level

and evolution time reached in previous research works.

4 Compression Schema

This work pretends to compress the information from multisets that are present
in regions and rules antecedents and consequents from each one of the P-system
membranes. But it does not address the compression of another kind of informa-
tion, such as priorities, membrane targets in rule consequents nor dissolving rule
capability.

Representation for multisets information in related literature is Parikh’s vector
[4]. Data compression is very associated with its representation. Proposed compres-
sion schema is presented here in three consecutive steps beginning with Parikh’s
vector codification over the P-system alphabet. To show it, each of the successive
steps will be applied over the following P-System [14]. See figure 1.

Fig. 1. A P System generating n2, n ≥ 1

4.1 Parikh’s Vector over P System Alphabet

Each region of a membrane can potentially host an unlimited number of objects,
represented by the symbols from a given alphabet V. We use V* to denote the

Optimizing Membrane System Implementation 351

set of all strings over the alphabet V (we consider only finite alphabets). For
a ∈ V and x ∈ V* we denote by |x|a the number of occurrences of a in x.
Then, for V = {a1, ..., an}, the Parikh vector associated with V is the mapping
on V ∗ denoted by ψV (x) = (|x|ai

, · · · , |x|an
) for each x ∈ V ∗. Our representation

considers an order in the set of objects, hence the byte’s order reflects the order of
the objects within the alphabet and consequently, the position directly indicates
which symbol’s multiplicity is being stored.

Figure 2 shows an example for Parikh’s vector associated to a multiset over
the alphabet V = {a, b, c, d, e, f}.

Fig. 2. Example for Parikh’s vector over the alphabet V = {a, b, c, d, e, f}

Figure 3 shows previous P-system information by the use of Parikh’s vector
over the alphabet V = {a, b, b′, c, f} for all the multisets that are present in each
region and evolution rules for each membrane.

As we can see, codification using Parikh’s vector over the P system alphabet
requires 90 storage units for the multiplicities present in the multisets

4.2 Parikh’s Vector for each Membrane’s Alphabet

First step in compression considers only the alphabet subset for the P system
that may exist in each of the regions for the membrane system, whatever are the
possible configurations for the P system evolution. This subset may be calculated
by a static analysis, previous to P system evolution time. In order to determine
membranes alphabets in a given P system it is needed to consider the following
facts:

1. Every object present at the region in the P system initial configuration belongs
to its membrane’s alphabet.

2. Every object present at the consequent in a membrane’s evolution rule with
target “here” belongs to its membrane’s alphabet.

3. Every object present at the consequent in a membrane’s evolution rule with
target “in” to another membrane, belongs to the target membrane’s alphabet.

4. Every object present at the consequent in a membrane’s evolution rule with
target “out”, belongs to it’s father alphabet.

352 A. Gutiérrez et al.

Fig. 3. A P System generating n2, n ≥ 1 representing multiset and evolution rules with
Parikh’s vector associated with V alphabet

5. Every object present at any membrane’s alphabet with a evolution rule with
dissolution capability belongs to it’s father alphabet.

We will designate alphabet for a membrane i, Vi ⊆ V , where ∀ Vi , , |Vi| ≤ |V |.
For the example in figure 1, alphabets for the four membranes are: V1 = {a, b, b′, f};
V2 = {a, b, b′, f}; V3 = {a, b, f}; and V4 = {c}. According to these alphabets, each
of the multisets in the region and the antecedents for a membrane evolution rules
are codified by the Parikh’s vector over its membrane alphabet. On the other hand,
consequent multisets in each evolution rule are codified by the Parikh’s vector over
the target membrane alphabet.

Figure 4 shows previous P System information using Parikh’s vector for each
membrane alphabet.

Optimizing Membrane System Implementation 353

Fig. 4. A P System generating n2, n ≥ 1 representing multiset and evolution rules with
Parikh’s vector associated with the membranes’ alphabet

Now, P system codification by the use of Parikh’s vector over each membrane
specific alphabet, requires 63 storage units for present multiplicities in multisets.
This codification reduces information size over a 70,0% concerning previous codi-
fication.

4.3 Parikh’s vector without null values

Next compression step is an alteration over the Run Length Encoding (RLE) algo-
rithm [11], used mainly to compress FAX transmissions. In this lossless codifica-
tion, data sequences with same value (usually zeros) are stored as a unique value
plus its count. RLE compression factor is, approximately:

354 A. Gutiérrez et al.

E (X)
E {log2 x}

where X is a discrete random variable that represents the number of successive
zeros between two ones and E(X) is its expected value (average). Compression
value stands between 20% and 30%.

In our case, what we pretend is to eliminate all the null values in Parikh’s vector,
that is, to eliminate all the references to the alphabet elements in a membrane that
do not appear in its multiset. This information may be considered as redundant
cause it may be obtained from the new coded information. In a formal way, let
V = {a1, a2, . . . , an} be an ordered finite alphabet, ∀x ∈ V ∗, the encoded Parikh
vector associated with V is defined by ΨE

V (x) = {(|x|ai
, i) | |x|ai

6= 0}. Figure 5
shows an example for Parikh’s vector without null values associated to a multiset
over the ordered alphabet V = {a, b, c, d, e, f}.

Fig. 5. Example for Parikh’s vector without null values over the alphabet V =
{a, b, c, d, e, f}

Concerning to multiplicities of objects present in multisets, there is two dif-
ferent situations: for the cases with multisets present at a membrane region, in-
dependently from the initial configuration, its multiplicities values are variable
depending on the evolution that takes the membrane system in a non determinis-
tic way; on the other hand, for the cases with multisets present at the evolution
rules antecedents and consequents, its multiplicities values are constant and known
previously to the P system evolution.

According to this situation, the evolution second step encodes without null
values just the information that belongs to constant multisets present at evolution
rules. Thus, we get a more compressed and lossless representation. The reason
that does this representation possible is the fact that the absence of these null
values multiplicities does not affect none of the multisets operations (addition,
subtraction, applicability, scalar product, . . .)

Figure 6 shows previous P system information using Parikh’s vector without
null values over each membrane’s ordered alphabet.

Now, the P system codification using Parikh’s vector without null values over
each membrane’s ordered alphabet requires 46 storage units for the multiplicities

Optimizing Membrane System Implementation 355

Fig. 6. A P System generating n2, n ≥ 1 representing multiset and evolution rules with
Parikh’s vector associated with membranes alphabet and without null values

present at the multisets. This codification, in figure’s 1 example, reduces informa-
tion size until a 51,1% from the initial codification.

4.4 Storage Unit Compression

Last compression step concerns storage unit size for each of the P system infor-
mation values. Depending on the storage unit size (measured in bits), we will be
able to codify a greater or smaller range of values. In membrane computing, that
does not allow negative values, given a size t bits for the storage unit, the range
for possible values will vary from 0 to 2t − 1.

In this section, we will have to take into account separately multisets present
at the membrane’s regions in front of the ones present at evolution rules. For
the first, storage unit size depends on the value range we want to reach during

356 A. Gutiérrez et al.

evolution while not having an overflow. Instead of it, for the second ones, we have
to take into account, as it was shown in previous sections, that each membrane’s
ordered alphabet and their multiplicities are constant. Thus, an analysis previous
to the P system evolution allows calculating the value ranges that are present in
constant multisets for evolution rules and, so, the size that is needed to get their
codification:

1. value range for multiplicities present at the antecedents and consecuent for
each membrane (from 0 to 2 in example in figure 1; 2 bits needed for its
codification).

2. value range for Parikh’s vector positions over the ordered alphabet for each
membrane (from 1 to 4 in example in figure 1; 2 bits needed for its codification).

Table 3 presents the size, in bits, needed to represent P system information
from figure 1, with different storage unit sizes, using two different representations:
the original representation (Parikh’s vector over P system alphabet) and our com-
pression schema (Parikh’s vector without null values over membrane’s alphabet).
Last row shows compression rates obtained for different storage units sizes. In par-
ticular, it has been considered that the minimum storage unit size should be 8 bits
according to actual technologies. In this work, we do not address the possibility of
encoding several values at the same byte, which would increase more compression
rates.

Storage unit size

Representational Schema 8 bits 16 bits 32 bits 64 bits

Parikh’s vector for the P sys-
tem alphabet

720 bits 1440 bits 2880 bits 5760 bits

Parikh’s vector whithout null
values associated with mem-
brane alphabets

368 bits 464 bits 656 bits 1040 bits

Compression degree 51.1% 32.2% 22.8% 18.1%

Table 3. Size in bits for representing P system information with different size for storage
units and different representations

5 Analysis of Results

At this section we present the analysis of results obtained from the compression
schema. First we analyze the schema compression itself. Afterwards we analyze
the impact that compression has over the times for evolution rules application and
communication among membranes. Finally, we analyze the global impact over
distributed architectures parameters: evolution minimum time, optimum number
of processors and membranes in each processor.

Optimizing Membrane System Implementation 357

For the analysis of the following sections, we will do a review over a test set
composed by the P System published in [14] and [16]. Table 4 describes the con-
sidered P System set.

P System Task Reference

A. First example [14]

B. Decidability: n mod k = 0 [14]

C. Generating: n2, n ≥ 1(1st version) [14]

D. Generating: n2, n ≥ 1 (2nd version) [16]

Table 4. P System used for testing

5.1 Compression Schema Analysis

Table 5 shows compression rates reached for each P system from table 4, consid-
ering different storage unit sizes. Last row presents average compression rates for
each storage size.

Storage unit size

P System 8 bits 16 bits 32 bits 64 bits

A. 59.8% 37.8% 26.8% 21.3%

B. 75.0% 47.7% 34.1% 27.3%

C. 51.1% 32.1% 22.8% 18.1%

D. 52.2% 33.3% 23.9% 19.2%

Average compression degree 59.5% 37.7% 26.9% 21.5%

Table 5. Compression degree for P System from Table 4

Considering the worst case for this compression schema (8 bits for all the stor-
age units), at least, we reach a compression rate of 75,0%, which implies a increase
of a 33,3% for memory availability to store information. For average compression
rate (59,5%), it is reached an increase of 68,0% of memory availability. So we atten-
uate the storage problem for information in distributed architectures implemented
with low storage capacity microcontrollers based technologies. Using this compres-
sion schema, it will be possible allocate more membranes in each microcontroller
and so, it will be possible to reach minimum times at the same time that we are
maximizing resources.

On the other hand, it has to be underlined that the compression process is
done by an previous analysis to the P system evolution. Thus, evolution rules
application and communication among membranes phases are not penalized with
compression/decompression processes.

358 A. Gutiérrez et al.

5.2 Impact Analysis for Evolution Rules Application Time

Published parallel and sequential algorithms [6] [7] [21] [22] [8] for evolution rules
application are based upon a limited set of multisets primitive operations. These
are calculation of: applicability, maximum applicability, antecedent/consequent
addition and subtraction over its region multiset and the scalar product of a an-
tecedent/consequent.

Algorithmic complexity of any of these operations is determined by the rep-
resentation of multiset information present at the evolution rules. In worst case,
using representation trough Parikh’s vector over the P system alphabet, complex-
ity will be equal to its alphabet cardinal. On the other hand, using representation
through the proposed compression schema, complexity in worst case will be equal
to the multiset support that is present at the evolution rule antecedent/consequent.
Table 6 presents, for each of the P system in table 4, its alphabet support, the
average support for multisets present in its evolution rules and a percentage based
relation among both cardinals. Last row presents these cardinals average values
and their relation.

P System | V | | support(w) | %

A. 4 1.05 26.3%

B. 4 1.50 37.5%

C. 5 1.13 22.6%

D. 5 1.13 22.6%

Average 4.5 1.20 26.7%

Table 6. Alphabet Cardinality and support average from P systems of Table 4

According to these empirical values, each of the primitive operations previously
mentioned will decrease its execution time approximately until a 26,7%. And con-
sequently, evolution rules application time will be approximately 3,75 times faster.

5.3 Impact Analysis for Communication among Membranes Time

Communication among membranes addresses submission of multisets present at
the applied application rules consequents and, in case of dissolution, the region
multiset itself. Depending on information representation, the data packet size to
transmit will be smaller or bigger. Table 7 shows, for each of the P systems shown in
table 4, information compression rate for its communications for different storage
units sizes. Last row presents compression rates average.

According to these empirical values, a reduction until a 55,6% of the informa-
tion to transmit among membranes may be reached in the worst case. Considering
that communication is a linear process that depends upon the amount of informa-
tion to transmit, communication time among membranes will be approximately
1,80 times faster.

Optimizing Membrane System Implementation 359

Storage unit size

P System 8 bits 16 bits 32 bits 64 bits

A. 55.0% 45.0% 40.0% 37.5%

B. 60.0% 50.0% 45.0% 42.5%

C. 54.0% 44.0% 39.0% 36.5%

D. 53.3% 44.4% 40.0% 37.8%

Average 55.6% 45.9% 41.0% 38.6%

Table 7. Compression degree for communication units from P systems of Table 4

5.4 Global Impact Analysis

Finally, we present a impact analysis of this compression schema over distributed
architecture parameters. In particular, we examine, following criteria shown in ta-
ble 2, implication in optimum number of processors and membranes per processor
and minimum evolution time.

On one side, time reduction for evolution rules application increases the number
of membranes per processor. It also decreases the number of processors and evolu-
tion time. According to the previous empirical data, from a rule application time
3,75 times faster, we get an increment of a 93,5% for membranes per processor, a
reduction until a 51,6% for number of processors and for evolution time.

On the other hand, time reduction for communication among membranes in-
creases the number of processors. It also decreases the number of membranes per
processor and evolution time. According to the previous empirical data, from a
communication time 1,80 times faster, we get, for the worst case, a 34,2% incre-
ment for number of processors and a reduction until a 74,5% for the number of
membranes per processor and for evolution time.

Taking in account both factors, reduction for application and communication
time, counteract their effects over the number of processors and the number of
membranes per processor. According to the previous empirical data, we get a
reduction of a 69,3% for the number of processors, an increment of a 44,3% for the
number of membranes per processor and a reduction until a 38,5% for evolution
time.

6 Conclusions

In this work has been presented a schema for compressing multisets and evolution
rules for P system membranes. This compressing schema is a variant from Run
Length Encoding starting form the Parikh’s vector considering the specific mem-
brane alphabet. Empirical results over a reduced set of classical P systems show
degrees of compression varying from 51.1 % to 18.1% depending on the size in bits
needed for storing objects multiplicities for multisisets of objects in membranes
of the P systems. This is a way for allocating more membranes per processor in

360 A. Gutiérrez et al.

the implementation of P system on distributed architectures having a low memory
capability.

On the other hand, the compression schema does not penalize evolution rule
application nor communication times during P system evolution. The schema does
not required compression/decompression process during P system evolution. The
whole compression process is performed by mean of a static analysis previous to
the P system evolution. These facts, thanks to the representation of information
established, improve the system performance reducing evolution rule application
and communication times, what is very important because it implies a direct im-
plication on reducing the evolution time of the membrane systems.

References

1. G. Bravo, L. Fernández, F. Arroyo, J. Tejedor, Master-Slave Parallel Architecture for
Implementing P Systems. The 8th WSEAS International Conference on Mathematics
and Computers in Business and Economics (MCBE’07). Vancouver (Canada) June,
2007. (accepted).

2. G. Ciobanu, M. Pérez-Jiménez, Gh. Păun, eds, Applications of Membrane Computing,
Natural Computing Series, Springer Verlag, October, 2006.

3. G. Ciobanu, G. Wenyuan, A P System running on a Cluster of Computers, Membrane
Computing. International Workshop, WMC2003, Tarragona, Spain. Lecture Notes in
Computer Science, 2933, Springer, Berlin, 2004, 123-150.

4. J. Dassow, Parikh Mapping and Iteration. Lecture Notes In Computer Science (Vol.
2235) ISBN:3-540-43063-6. Proceedings of the Workshop on Multiset Processing:
Multiset Processing, Mathematical, Computer Science, and Molecular Computing
Points of View, 2000, 85 - 102.

5. L. Fernández, V.J. Mart́ınez, F. Arroyo, L.F. Mingo, A Hardware Circuit for Selecting
Active Rules in Transition P Systems, Workshop on Theory and Applications of P
Systems. Timisoara (Romania), September, 2005, 45 - 48.

6. L. Fernández, F. Arroyo, J. Castellanos, J.A. Tejedor, I. Garćıa, New Algorithms
for Application of Evolution Rules based on Applicability Benchmarks. International
Conference on Bioinformatics and Computational Biology(BIOCOMP06), Las Vegas
(EEUU), July, 2006, 94 - 100.

7. L. Fernández, F. Arroyo, J.A. Tejedor, J. Castellanos, Massively Parallel Algorithm
for Evolution Rules Application in Transition P Systems. Preproceedings of Mem-
brane Computing, International Workshop (WMC7), Leiden (The Netherlands) July,
2006, 337-343.

8. F.J. Gil, L. Fernández, F. Arroyo, J.A. Tejedor. Delimited Massively Parallel Al-
gorithm based on Rules Elimination for Application of Active Rules in Transition
P Systems. Fifth International Conference Information Research and Applications
(i.TECH-2007). Varna (Bulgary) June, 2007. (accepted).

9. A. Gutiérrez, L. Fernández, F. Arroyo, V. Mart́ınez, Design of a Hardware Ar-
chitecture based on Microcontrollers for the Implementation of Membrane Systems,
SYNASC 2006, 8th International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing Timisoara, Romania. September 26-29, 2006, 39-42.

Optimizing Membrane System Implementation 361

10. A. Gutiérrez, L. Fernández, F. Arroyo, S. Alonso, Hardware and Software Architec-
ture for Implementing Membrane Systems: A case of study to Transition P Systems,
DNA13 2007, 13th International Meeting on DNA Computing Memphis, EEUU.
June 4-8, 2007. (accepted).

11. D.A. Lelewer, D.S. Hirschberg, Data Compression. ACM Computing, Springer Ver-
lag, New York, USA. Verlag Surveys, ACM CR 8902-0069, 1987.

12. V. Mart́ınez, L. Fernández, F. Arroyo and A. Gutiérrez, A Hardware Circuit for
the Application of Active Rules in a Transition P Systems Region, Fourth Inter-
national Conference Information Research and Applications, Bulgaria, Varna June
20-25, 2006, 45 -48.

13. C.N. Parkinson.Parkinson’s Law, or the Pursuit of Progress, John Murray, 1957.
14. Gh. Păun, Computing with Membranes, Journal of Computer and System Sciences,

61 (2000), and Turku Center of Computer Science-TUCS Report n 208, 1998.
15. Gh. Păun, Membrane Computing. Basic Ideas, Results, Applications, Pre-

Proceedings of First International Workshop on Theory and Application of P Sys-
tems, Timisoara, Romania, September 26-27, 2005, 1-8

16. Gh. Păun, G. Rozenberg, A Guide to Membrane Computing, Theoretical Computer
Science, vol 287, 2000. 73-100.

17. B. Petreska, C. Teuscher, A Reconfigurable Hardware Membrane System. Prepro-
ceedings of the Workshop on Membrane Computing (A.Alhazov, C.Martn-Vide and
Gh.Paun, eds) Tarragona, July 17-22 2003, 343-355.

18. D. Salomon. Data Compression: The Complete Reference. Springer. ISBN 0-387-
40697-2. LCCN QA76.9 D33S25. 2004.

19. A. Syropoulos, E.G. Mamatas, P.C. Allilomes, K.T. Sotiriades, A Distributed Sim-
ulation of P Systems, Preproceedings of the Workshop on Membrane Computing;
Tarragona, 2003, 455-460

20. J.A. Tejedor, L. Fernández, F. Arroyo, G. Bravo. An Architecture for Attacking the
Bottleneck Communication in P System, AROB 12th ’07, XII International Sym-
posium on Artificial Life and Robotics, Oita, JAPAN, January 25-27, 2007, 500 -
505.

21. J.A. Tejedor, L. Fernández, F. Arroyo, A. Gutiérrez. Algorithm of Active Rule Elimi-
nation for Application of Evolution Rules. The 8th WSEAS International Conference
on Mathematics and Computers in Business and Economics (MCBE’07). Vancouver
(Canada) June, 2007. (accepted).

22. J.A. Tejedor, L. Fernández, F. Arroyo, S. Gómez. Algorithm of Rules Application
based on Competitiveness of Evolution Rules. Eight Workshop on Membrane Com-
puting, Thessaloniki (Greece), June 25-28, 2007. (submitted)

