
Solving Numerical NP-Complete Problems with
Spiking Neural P Systems

Alberto Leporati, Claudio Zandron
Claudio Ferretti, Giancarlo Mauri

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano – Bicocca
Via Bicocca degli Arcimboldi 8, 20126 Milano, Italy

{leporati,zandron,ferretti,mauri}@disco.unimib.it

Summary. Starting from an extended nondeterministic spiking neural P system that
solves the Subset Sum problem in a constant number of steps, recently proposed in a
previous paper, we investigate how different properties of spiking neural P systems affect
the capability to solve numerical NP–complete problems. In particular, we show that
by using maximal parallelism we can convert any given integer number from the usual
binary notation to the unary form, and thus we can initialize the above P system with
the required (exponential) number of spikes in polynomial time. On the other hand, we
show that this conversion cannot be performed in polynomial time if the use of maximal
parallelism is forbidden. Finally, we show that by selectively using nondeterminism and
maximal parallelism (that is, for each neuron in the system we can specify whether it
works in deterministic or nondeterministic way, as well as in sequential or maximally
parallel way) there exists a uniform spiking neural P system that solves all the instances
of Subset Sum of a given size.

1 Introduction

Membrane systems (also called P systems) were introduced in [16] as a new class of
distributed and parallel computing devices, inspired by the structure and function-
ing of living cells. The basic model consists of a hierarchical structure composed by
several membranes, embedded into a main membrane called the skin. Membranes
divide the Euclidean space into regions, that contain some objects (represented
by symbols of an alphabet) and evolution rules. Using these rules, the objects
may evolve and/or move from a region to a neighboring one. Usually, the rules
are applied in a nondeterministic and maximally parallel way; moreover, all the
objects that may evolve are forced to evolve. A computation starts from an initial
configuration of the system and terminates when no evolution rule can be applied.
The result of a computation is the multiset of objects contained into an output

406 A. Leporati et al.

membrane, or emitted to the environment from the skin of the system. For a sys-
tematic introduction to P systems we refer the reader to [18], whereas the latest
information can be found in [23].

In an attempt to pass from cell-like to tissue-like architectures, in [14] tissue
P systems were defined, in which cells are placed in the nodes of a (directed)
graph. Since then, this model has been further elaborated, for example, in [4]
and [21], with recent results about both theoretical properties [1] and applications
[15]. This evolution has led to explore also neural-like architectures, yielding to
the introduction of spiking neural P systems (SN P systems, for short) [8], based
on the neurophysiological behavior of neurons sending electrical impulses (spikes)
along axons to other neurons. We recall that this biological background has already
led to several models in the area of neural computation, e.g., see [12, 13, 6].

Similarly to tissue P systems, in SN P systems the cells (neurons) are placed
in the nodes of a directed graph, called the synapse graph. The contents of each
neuron consist of a number of copies of a single object type, called the spike. The
firing rules assigned to a cell allow a neuron to send information to other neurons
in the form of electrical impulses (also called spikes) which are accumulated at the
target cell. The application of the rules depends on the contents of the neuron;
in the general case, applicability is determined by checking the contents of the
neuron against a regular set associated with the rule. As inspired from biology,
when a cell sends out spikes it becomes “closed” (inactive) for a specified period of
time, that reflects the refractory period of biological neurons. During this period,
the neuron does not accept new inputs and cannot “fire” (that is, emit spikes).
Another important feature of biological neurons is that the length of the axon
may cause a time delay before a spike arrives at the target. In SN P systems this
delay is modeled by associating a delay parameter to each rule which occurs in the
system. If no firing rule can be applied in a neuron, there may be the possibility
to apply a forgetting rule, that removes from the neuron a predefined number of
spikes.

In the original model of SN P systems defined in [8], computations occur as
follows. A configuration specifies, for each neuron of the system, the number of
spikes it contains and the number of computation steps after which the neuron
will become “open” (that is, not closed). Starting from an initial configuration, a
positive integer number is given in input to a specified input neuron. The number
is encoded as the interval of time steps elapsed between the insertion of two spikes
into the neuron (note that this is a unary encoding). To pass from a configuration
to another one, for each neuron a rule is chosen among the set of applicable rules,
and is executed. The computation proceeds in a sequential way into each neuron,
and in parallel among different neurons. Generally, a computation may not halt.
However, in any case the output of the system is considered to be the time elapsed
between the arrival of two spikes in a designated output cell. Defined in this way,
SN P systems compute functions of the kind f : N → N (they can also indirectly
compute functions of the kind f : Nk → N by using a bijection from Nk to N). By
neglecting the output neuron we can define accepting SN P systems, in which the

Solving Numerical NP-Complete Problems with SN P Systems 407

natural number given in input is accepted if the computation halts. On the other
hand, by ignoring the input neuron (and thus starting from a predefined input
configuration) we can define generative SN P systems.

In [8] it was shown that generative SN P systems are universal, that is, can
generate any recursively enumerable set of natural numbers. Moreover, a char-
acterization of semilinear sets was obtained by spiking neural P systems with a
bounded number of spikes in the neurons. These results can also be obtained with
even more restricted forms of spiking P systems; for example, [7] shows that at
least one of these features can be avoided while keeping universality: time delay
(refractory period) greater than 0, forgetting rules, outdegree of the synapse graph
greater than 2, and regular expressions of complex form. Finally, in [19] the be-
havior of spiking neural P systems on infinite strings and the generation of infinite
sequences of 0 and 1 was investigated, whereas in [2] spiking neural P systems
were studied as language generators (over the binary alphabet {0, 1}).

In [10] we have shown that by slightly extending the original definition of SN
P system given in [8] and [9], it is possible to solve any given instance of Subset
Sum by using a nondeterministic (extended) SN P system. The solution is given
in the so called semi–uniform setting, that is, for every fixed instance of Subset
Sum a specific SN P system that solves it is built. In particular, the rules of the
system and the number of spikes which occur in the initial configuration depend
upon the instance to be solved. A drawback of this solution is that in general
the number of spikes needed to initialize the system is exponential with respect
to the usually agreed instance size of Subset Sum. However, in this paper we
show that this preparation can be performed in polynomial time by traditional
SN P systems that, endowed with the power of maximal parallelism, read from
the environment the k-bit integer numbers v1, v2, . . . , vn encoded in binary and
produce v1, v2, . . . , vn spikes, respectively, in n specified neurons. We also prove
that this operation cannot be performed in polynomial time if the use of maxi-
mal parallelism is forbidden. Then we design an SN P system that performs the
opposite conversion: it takes a given (k-bit) number N of spikes occurring in a
certain neuron, and produces the coefficients of the binary encoding of N in k pre-
defined neurons. Thanks to these two modules, that allow us to move from binary
to unary encoding and back, we finally design a uniform family {Π(〈n, k〉}n,k∈N
of SN P systems, where Π(〈n, k〉) solves all possible instances ({v1, v2, . . . , vn}, S)
of Subset Sum such that all vi and S are k-bit positive integer numbers. As we
will see, the construction of Π(〈n, k〉) relies upon the assumption that different
subsystems can work under different regimes: deterministic vs. nondeterministic,
and sequential vs. maximally parallel.

The rest of this paper is organized as follows. In section 2 we give some math-
ematical preliminaries, and we define the standard version of SN P systems (as
found in [9]) as well as a slightly extended version. In section 3 we recall from [10]
how the NP–complete problem Subset Sum can be solved in constant time by
exploiting nondeterminism in our extended SN P systems. In section 4 we convert
positive integer numbers from binary notation to the unary form through max-

408 A. Leporati et al.

imally parallel SN P systems, and we use such a convertion as an initialization
stage to solve Subset Sum. In section 5 we perform also the opposite conversion,
and we design a family of SN P systems that solves Subset Sum in a uniform
way (according to the above definition). Section 6 concludes the paper and gives
some directions for future research.

2 Preliminaries

Let us start by recalling the standard definition of a spiking neural P system, taken
from [9]. A spiking neural membrane system (SN P system, for short), of degree
m ≥ 1, is a construct of the form

Π = (O, σ1, σ2, . . . , σm, syn, in, out),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, σ2, . . . , σm are neurons, of the form σi = (ni, Ri), with 1 ≤ i ≤ m, where:

a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the following two forms:

(1) E/ac → a; d, where E is a regular expression over a, and c ≥ 1, d ≥ 0
are integer numbers; if E = ac, then it is usually written in the following
simplified form: ac → a; d;

(2) as → λ, for s ≥ 1, with the restriction that for each rule E/ac → a; d of
type (1) from Ri, we have as 6∈ L(E) (where L(E) denotes the regular
language defined by E);

3. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m}, with (i, i) 6∈ syn for 1 ≤ i ≤ m, is the
directed graph of synapses between neurons;

4. in, out ∈ {1, 2, . . . , m} indicate the input and the output neurons of Π.

The rules of type (1) are called firing (also spiking) rules, and they are applied
as follows. If the neuron σi contains k ≥ c spikes, and ak ∈ L(E), then the rule
E/ac → a; d ∈ Ri can be applied. The execution of this rule removes c spikes from
σi (thus leaving k − c spikes), and prepares one spike to be delivered to all the
neurons σj such that (i, j) ∈ syn. If d = 0, then the spike is immediately emitted,
otherwise it is emitted after d computation steps of the system. (Observe that, as
usually happens in membrane computing, a global clock is assumed, marking the
time for the whole system, hence the functioning of the system is synchronized.)
If the rule is used in step t and d ≥ 1, then in steps t, t + 1, t + 2, . . . , t + d− 1 the
neuron is closed, so that it cannot receive new spikes (if a neuron has a synapse
to a closed neuron and tries to send a spike along it, then that particular spike is
lost), and cannot fire new rules. In the step t + d, the neuron spikes and becomes
open again, so that it can receive spikes (which can be used starting with the step
t + d + 1) and select rules to be fired.

Solving Numerical NP-Complete Problems with SN P Systems 409

Rules of type (2) are called forgetting rules, and are applied as follows: if the
neuron σi contains exactly s spikes, then the rule as → λ from Ri can be used,
meaning that all s spikes are removed from σi. Note that, by definition, if a firing
rule is applicable then no forgetting rule is applicable, and vice versa.

In each time unit, if a neuron σi can use one of its rules, then a rule from Ri

must be used. Since two firing rules, E1 : ac1 → a; d1 and E2 : ac1 → a; d2, can
have L(E1) ∩ L(E2) 6= ∅, it is possible that two or more rules can be applied in a
neuron. In such a case, only one of them is chosen nondeterministically. Thus, the
rules are used in the sequential manner in each neuron, but neurons function in
parallel with each other.

The initial configuration of the system is described by the numbers n1, n2, . . .,
nm of spikes present in each neuron, with all neurons being open. During the
computation, a configuration is described by both the number of spikes present
in each neuron and by the state of each neuron, which can be expressed as the
number of steps to count down until it becomes open (this number is zero if the
neuron is already open). A computation in a system as above starts in the initial
configuration. In order to compute a function f : Nk → N, one possibility is to
introduce k natural numbers n1, n2, . . . , nk in the system by “reading” from the
environment a binary sequence z = 0b10n110n21 . . . 10nk10g, for some b, g ≥ 0; this
means that the input neuron of Π receives a spike in each step corresponding to
a digit 1 from the string z. Note that we input exactly k + 1 spikes. The result
of the computation is also encoded in the distance between two spikes: we impose
to the system to output exactly two spikes and halt (sometimes after the second
spike) hence producing a spike train of the form 0b′10r10g′ , for some b′, g′ ≥ 0
and with r = f(n1, n2, . . . , nk). As discussed in [9], there are other possibilities to
encode natural numbers read from and/or emitted to the environment by SN P
systems; for example, we can consider the number of spikes arriving to the input
neuron and leaving from the output neuron, respectively, or the number of spikes
read/produced in a given interval of time.

If we do not specify an input neuron (hence no input is taken from the envi-
ronment) then we use SN P systems in the generative mode; we start from the
initial configuration, and the distance between the first two spikes of the output
neuron (or the number of spikes, etc.) is the result of the computation. Note that
generative SN P systems are inherently nondeterministic, otherwise they would
always reproduce the same sequence of computation steps, and hence the same
output. Dually, we can neglect the output neuron and use SN P systems in the
accepting mode; for k ≥ 1, the natural number n1, n2, . . . , nk are read in input
and, if the computation halts, then the numbers are accepted.

We define the description size of an SN P system Π as the number of bits which
are necessary to describe it. Since the alphabet O is fixed, no bits are necessary
to define it. In order to represent syn we need at most m2 bits, whereas we can
represent the values of in and out by using log m bits each. For every neuron
σi we have to specify a natural number ni and a set Ri of rules. For each rule
we need to specify its type (firing or forgetting), which can be done with 1 bit,

410 A. Leporati et al.

and in the worst case we have to specify a regular expression and two natural
numbers. If we denote by N the maximum natural number that appears in the
definition of Π, R the maximum number of rules which occur in its neurons,
and S the maximum size required by the regular expressions that occur in Π
(more on this later), then we need a maximum of log N + R(1 + S + 2 log N)
bits to describe every neuron of Π. Hence, to describe Π we need a total of m2 +
2 log m+m

(
log N +R(1+S+2 log N)

)
bits. Note that this quantity is polynomial

with respect to m, R, S and log N . Since the regular languages determined by
the regular expressions that occur in the system are unary languages, the strings
of such languages can be bijectively identified with their lengths. Hence, when
writing the regular expression E, instead of writing unions, concatenations and
Kleene closures among strings we can do the same by using the lengths of such
strings. (Note that, when concatenating two languages L1 and L2 represented in
this way, the lengths in L1 are summed with the lengths of L2 by combining
them in all possible ways). In this way we obtain a representation of E which
is succint, that is, exponentially more compact than the usual representation of
regular expressions. As we have seen in [10], this succint representation yields some
difficulties when we try to simulate a deterministic accepting SN P system that
contains general regular expressions, by a deterministic Turing machine. However,
as shown in [7], it is possible to restrict our attention to particularly simple regular
expressions, without loosing computational completeness. For these expressions,
the membership problem (is a given string into the language generated by the
regular expression?) is polynomial also when representing the instances in succint
form, and thus they do not yield problems when simulating the system with a
deterministic Turing machine.

In what follows it will be convenient to consider also the following slightly
extended version of SN P systems. Precisely, we will allow rules of the type E/ac →
ap; d, where c ≥ 1, p ≥ 0 and d ≥ 0 are integer numbers. The semantics of this kind
of rules is as follows: if the contents of the neuron matches the regular expression
E, then the rule can be applied. When the rule is applied, c spikes are removed
from the contents of the neuron and p spikes are prepared to be delivered to all
the neurons which are directly connected (through an arc of syn) with the current
neuron. If d = 0, then these p spikes are immediately sent, otherwise the neuron
becomes closed for the next d computation steps, after which the p spikes will be
sent. As before, a closed neuron does not receive spikes from other neurons, and
does not apply any rule. If p = 0, then we obtain a forgetting rule as a particular
case of our general rules.

Also in the extended SN P systems it may happen that, given two rules
E1/ac1 → ap1 ; d1 and E2/ac2 → ap2 ; d2, if L(E1) ∩ L(E2) 6= ∅ then for some
contents of the neuron both the rules can be applied. In such a case, one of them
is nondeterministically chosen. Note that we do not require that forgetting rules are
applied only when no firing rule can be applied. We say that the system is determin-
istic if, for every neuron that occurs in the system, any two rules E1/ac1 → ap1 ; d1

and E2/ac2 → ap2 ; d2 in the neuron are such that L(E1)∩L(E2) = ∅. This means

Solving Numerical NP-Complete Problems with SN P Systems 411

that, for any possible contents of the neuron, at most one of the rules that occur
in the neuron may be applied.

By using an input neuron and an output neuron, we have SN P systems that
compute functions of the kind f : N → N (as well as functions of the kind f :
Nk → N, by appropriate bijections between Nk and N), and hence we cover both
the generative and the accepting cases. If out = 0, then it is understood that
the output is sent to the environment (as the number of spikes produced by the
system, as the distance between the first two spikes, etc.). As usual, to use an SN
P system in the generative mode we do not consider the input neuron, whereas by
ignoring the output neuron we obtain an accepting SN P system.

The description size of an extended SN P system is defined exactly as we have
done for standard systems, the only difference being that now we require (at most)
three natural numbers to describe a rule.

3 Solving Numerical NP–complete Problems with Extended
Spiking Neural P Systems

Let us start by recalling the nondeterministic extended SN P system introduced
in [10] to solve the NP–complete problem Subset Sum in a constant number of
computation steps. The Subset Sum problem can be defined as follows.

Problem 1. Name: Subset Sum.

• Instance: a (multi)set V = {v1, v2, . . . , vn} of positive integer numbers, and
a positive integer number S.

• Question: is there a sub(multi)set B ⊆ V such that
∑

b∈B

b = S?

If we allow to nondeterministically choose among the rules which occur in the
neurons, then the extended SN P system depicted in Figure 1 solves any given
instance of Subset Sum in a constant number of steps. We emphasize the fact
that such a solution occurs in the semi-uniform setting, that is, for every instance
of Subset Sum we build an SN P system that specifically solves that instance.

Let (V = {v1, v2, . . . , vn}, S) be the instance of Subset Sum to be solved. In
the initial configuration of the system, the leftmost neurons contain (from top to
bottom) v1, v2, . . . , vn spikes, respectively, whereas the rightmost neurons contain
zero spikes each. In the first step of computation, in each of the leftmost neurons
of the SN P system depicted in Figure 1 it is nondeterministically chosen whether
to include or not the element vi in the (candidate) solution B ⊆ V ; this is ac-
complished by nondeterministically choosing among one rule that forgets vi spikes
(in such a case, vi 6∈ B) and one rule that propagates vi spikes to the rightmost
neurons. At the beginning of the second step of computation a certain number
N = |B| of spikes, that corresponds to the sum of the vi which have been chosen,
occurs in the rightmost neurons. We have three possible cases:

412 A. Leporati et al.

Fig. 1. A nondeterministic extended SN P system that solves the Subset Sum problem
in constant time

• N < S: in this case neither the rule a∗/aS → a; 0 nor the rule a∗/aS+1 → a; 1
(which occur in the neuron at the top and at the bottom of the second layer,
respectively) fire, and thus no spike is emitted to the environment;

• N = S: only the rule a∗/aS → a; 0 fires, and emits a single spike to the
environmnent. No further spikes are emitted;

• N > S: both the rules a∗/aS → a; 0 and a∗/aS+1 → a; 1 fire. The first rule
immediately sends one spike to the environment, whereas the second rule sends
another spike at the next computation step (due to the delay associated with
the rule).

Hence, by counting the number of spikes emitted to the environment at the second
and third computation steps we are able to read the solution of the given instance
of Subset Sum: the instance is positive if and only if a single spike is emitted.

The proposed system is generative; its input (the instance of Subset Sum to
be solved) is encoded in the initial configuration. We stress once again that the
ability to solve Subset Sum in constant time derives from the fact that the system
is nondeterministic. As it happens with Turing machines, nondeterminism can be
interpreted in two ways: (1) the system “magically” chooses the correct values vi

(if they exist) that allow to produce a single spike in output, or (2) at least one of
the possible computations produces a single spike in output.

The formal definition of the extended (generative) SN P system depicted in
Figure 1 is as follows:

Π = ({a}, σ1, . . . , σn+2, syn, out) ,

where:

Solving Numerical NP-Complete Problems with SN P Systems 413

• σi = (vi, {avi → λ, avi → avi ; 0}) for all i ∈ {1, 2, . . . , n};
• σn+1 = (0, {a∗/aS → a; 0});
• σn+2 = (0, {a∗/aS+1 → a; 1);
• syn =

⋃n
i=1{(i, n + 1), (i, n + 2)};

• out = 0 indicates that the output is sent to the environment.

However, here we are faced with a problem that we have already met in [11],
and that we will meet again in the rest of the paper. In order to clearly expose the
problem, let us consider the following algorithm that solves Subset Sum using
the well known Dynamic Programming technique [3]. In particular, the algorithm
returns 1 on positive instances, and 0 on negative instances.

Subset Sum({v1, v2, . . . , vn}, S)
for j ← 0 to S

do M [1, j] ← 0
M [1, 0] ← M [1, v1] ← 1
for i ← 2 to n

do for j ← 0 to S
do M [i, j] ← M [i− 1, j]

if j ≥ vi and M [i− 1, j − vi] > M [i, j]
then M [i, j] ← M [i− 1, j − vi]

return M [n, S]

In order to look for a subset B ⊆ V such that
∑

b∈B b = S, the algorithm uses an
n × (S + 1) matrix M whose entries are from {0, 1}. It fills the matrix by rows,
starting from the first row. Each row is filled from left to right. The entry M [i, j]
is filled with 1 if and only if there exists a subset of {v1, v2, . . . , vi} whose elements
sum up to j. The given instance of Subset Sum is thus a positive instance if and
only if M [n, S] = 1 at the end of the execution.

Since each entry is considered exactly once to determine its value, the time
complexity of the algorithm is proportional to n(S +1) = Θ(nS). This means that
the difficulty of the problem depends on the value of S, as well as on the magnitude
of the values in V . In fact, let K = max{v1, v2, . . . , vn, S}. If K is polynomially
bounded with respect to n, then the above algorithm works in polynomial time.
On the other hand, if K is exponential with respect to n, say K = 2n, then the
above algorithm may work in exponential time and space. This behavior is usually
referred to in the literature by telling that Subset Sum is a pseudo–polynomial
NP–complete problem.

The fact that in general the running time of the above algorithm is not poly-
nomial can be immediately understood by comparing its time complexity with the
instance size. The usual size for the instances of Subset Sum is Θ(n log K), since
for conciseness every “reasonable” encoding is assumed to represent each element
of V (as well as S) using a string whose length is O(log K). Here all logarithms are
taken with base 2. Stated differently, the size of the instance is usually considered
to be the number of bits which must be used to represent in binary S and all the

414 A. Leporati et al.

integer numbers which occur in V . If we would represent such numbers using the
unary notation, then the size of the instance would be Θ(nK). But in this case we
could write a program which first converts the instance in binary form and then
uses the above algorithm to solve the problem in polynomial time with respect
to the new instance size. We can thus conclude that the difficulty of a numerical
NP–complete problem depends also on the measure of the instance size we adopt.

The problem we mentioned above about the SN P system depicted in Figure
1 is that the rules avi → λ and avi → avi ; 0 which occur in the leftmost neurons,
as well as those that occur in the rightmost neurons, check for the existence of
a number of spikes which may be exponential with respect to the usually agreed
instance size of Subset Sum. Moreover, to initialize the system the user has to
place a number of objects which may also be exponential. This is not fair, because
it means that the SN P system that solves the NP–complete problem has in general
an exponential size with respect to the binary string which is used to describe it;
an exponential effort is thus needed to build and initialize the system, that easily
solves the problem by working in unary notation (hence in polynomial time with
respect to the size of the system, but not with respect to its description size). This
problem is in some aspects similar to what has been described in [11], concerning
traditional P systems that solve NP–complete problems.

4 Solving Subset Sum with Inputs Encoded in Binary

Similarly to what we have done in [11], in this section we show that the ability
of the SN P system depicted in Figure 1 to solve Subset Sum does not derive
from the fact that the system is initialized with an exponential number of spikes,
at least if we allow the application of rules in the maximal parallel way.

In this paper, maximal parallelism is intended exactly as in traditional P sys-
tems. Since in SN P systems we have only one kind of objects (the spike), this
means that at every computation step the (multi)set of rules to be applied in a
neuron is determined as follows. Let k denote the number of spikes contained in
the neuron. First, one rule is nondeterministically chosen among those which can
be applied. If such a rule consumes c spikes, then the selection process is repeated
to the remaining k − c spikes, until no rule can be applied. Note that a rule may
eventually be chosen many times, and thus at the end of the process we obtain
a multiset of rules. However let us note that, for our purposes, it will suffice to
define maximally parallel neurons that contain just one rule. Hence, the process
with which the neuron chooses the rules to be applied is uninfluent: at every com-
putation step the only existing rule is chosen, and is applied as many times as
possible (i.e., maximizing the number of spikes which are consumed).

Consider the SN P system depicted in Figure 2, in which all the neurons work
in the maximal parallel way. Assume that a sequence of spikes comes from the
environment, during k consecutive time steps. Such spikes can be considered as
the binary encoding of a k-bit natural number N , by simply interpreting as 1 (resp.,

Solving Numerical NP-Complete Problems with SN P Systems 415

Fig. 2. A maximally parallel SN P system that converts a binary encoded positive integer
number to unary form

0) the presence (resp., the absence) of a spike in each time step. The system works
as follows. In the first step, the most significant bit of N enters into the neuron
labelled with 0. Simultaneously, neuron st fires and sends a spike to neuron out,
that will contain the resulting unary encoding of N . This is done in order to
close such a neuron, so that it does not receive the intermediate results produced
by neurons 0, 1, . . . , k − 1 during the conversion. During the next k − 1 steps,
all subsequent bits of N enter into the system. Neurons 0, 1, . . . , k − 1 act as a
shift register, and they duplicate every spike before sending both copies to the
neighbouring neuron. In this way, since rules are applied in the maximally parallel
way, at the end of the k-th step each neuron j, with j ∈ {0, 1, . . . , k − 1}, will
contain 2j spikes if the j-th bit of N is 1, otherwise it will contain 0 spikes. At the
(k + 1)-th step, neuron out becomes open again, and receives exactly N spikes.
Two little annoying details are that this neuron emits a “spurious” spike at the
(k + 1)-th computation step, and that it becomes again closed for further k − 1
time steps. The first spike emitted from the subsystem has obviously to be ignored,
whereas during the (2k)-th step neuron out emits the N spikes we are interested
in. Note that this module can be used only once, since neuron st initially contains
just one spike. By making neuron st work in the sequential mode (instead of the
maximally parallel mode), and slightly complicating the structure of the system,
we can also convert a sequence of n numbers arriving from the environment in n ·k
consecutive time steps.

By looking at Figure 3, we can see that for any instance ({v1, v2, . . . , vn}, S)
of Subset Sum it is possible to build a maximally parallel nondeterministic SN P
system that solves it as follows. During the first k computation steps, the system
reads n sequences of spikes, each one encoding in binary the natural number vi.
Each sequence goes to an SN subsystem which performs the conversion from binary

416 A. Leporati et al.

Fig. 3. A nondeterministic SN P system that solves the Subset Sum problem by working
in the maximal parallel way (but for the neuron Sum)

to unary, as illustrated in Figure 2. Thus in the (2k)-th step, for all i ∈ {1, 2, . . . , n},
vi spikes reach the neuron labelled with vi. At the next step, each of these neurons
nondeterministically decides whether to propagate the spikes it has received, or to
delete them. Hence, the rules of neurons vi are applied not only in the maximal
parallel way, but also in a nondeterministic way (in the sense that one of the two
rules is nondeterministically chosen, and then is applied in the maximal parallel
way). In step 2k + 2, the neuron labelled with Sum checks whether the number
of spikes it has gathered is equal to S; if so, it fires one spike to the environment,
thus signalling that the given instance of Subset Sum is positive. Conversely, the
instance is negative if and only if no spike is emitted from the system during the
(2k + 2)-nd computation step. The forgetting rules which occur in neuron Sum
are needed so that at step k + 2 all the spurious spikes that (eventually) reach
the neuron (coming from the modules that have performed the conversions from
binary to unary) are removed from the system, and are not added to the spikes
that arrive at step 2k+1. Of course, here we are assuming that S > n; if this is not
the case, then the rules must be modified accordingly. Note that neuron Sum is
deterministic, and works in the sequential way. We also observe that, if desired, we
can use two neurons instead of one in the last layer of the system, as we have done
in Figure 1. The first neuron would be just like Sum, the only difference being
that the rule aS → a; 0 becomes a∗/aS → a; 0. The second neuron would contain
the same forgetting rules as Sum, and the firing rule a∗/aS+1 → a; 1 instead of
aS → a; 0. In this way, the instance would be signalled as positive if and only if a
single spike is emitted during the steps 2k + 2 and 2k + 3.

This solution to the Subset Sum problem is still semi–uniform: a single system
is able to solve all the instances that have the same value of S, and in which
all vi are k-bit numbers. A way to make the system uniform would be to read

Solving Numerical NP-Complete Problems with SN P Systems 417

from the environment also the value of S, encoded in binary form, and send a
corresponding number of spikes to a predefined neuron. The problem would thus
reduce to comparing with S the number of spikes obtained by nondeterministically
choosing some of the vi. In the next section we will operate in a similar way;
however, instead of comparing the contents of two neurons, expressed in unary
form, we will operate as follows: we will keep S in binary form, and we will convert
the sum of vi from unary to binary. In this way, the problem to compare S with
the sum of vi is reduced to a bit-by-bit comparison.

Fig. 4. A maximally parallel SN P system that converts a unary encoded positive integer
number to binary form

Before doing all this, let us show that the conversion from binary to unary of
a given natural number cannot be performed in polynomial time without using
maximal parallelism. Let Π be a deterministic SN P system that works in the
sequential way: all the neurons compute in parallel with respect to each other,
but in each neuron only one rule is chosen and applied at every computation step.
To be precise, even if the contents of the neuron would allow to apply the chosen
rule many times (such as it happens, for example, with the rule a → a2; 0 and
five spikes occurring in the neuron), only one instance of the rule is applied (in
the example, one spike is consumed and two spikes are produced). Without loss of
generality, we can assume that the regular expressions that occur in Π have the
form ai with i ≤ 3 or a(aa)+, which suffice to obtain computationally complete
SN P systems [7]. Let m be the number of neurons in Π, and let t(k) be the
polynomial number of steps needed by Π to convert the k-bit natural number N
given in input from the binary to the unary form. Moreover, let Q be the maximum
number of spikes produced by any rule of Π. Since in the worst case every neuron
is connected with every other neuron, the total number of spikes occurring in the
system is incremented by at most mQ units during each computation step. If we
denote by M the number of spikes occurring in the initial configuration, then
after t(k) computation steps the number of spikes in the system will be at most
M + mQt(k). This quantity is polynomial with respect to both the number of
steps and the description size of Π, and thus it cannot cover the exponential gap
that exists between the number of objects needed to represent N in binary and in
unary form.

418 A. Leporati et al.

5 A Uniform Family of SN P Systems for Subset Sum

Let us present now a uniform family {Π(〈n, k〉)}n,k∈N of SN P systems such
that for every n and k in N, the system Π(〈n, k〉) solves all possible instances
({v1, v2, . . . , vn}, S) of Subset Sum in which v1, v2, . . . , vn and S are all k-bit
natural numbers.

Fig. 5. The uniform SN P system Π(〈n, k〉) that solves all instances of Subset Sum
composed by k-bit natural numbers

As told in the previous section, we first need a subsystem that allows to convert
natural numbers from the unary to the binary form. Consider the system depicted
in Figure 4. All the neurons work in the maximally parallel way. Initially, neuron

Solving Numerical NP-Complete Problems with SN P Systems 419

Fig. 6. An SN P system that delays of k steps the sequence of spikes given in input

in contains N spikes, where N is the k-bit integer number we want to convert.
In the first computation step, all the spikes contained in neuron in are sent to
neuron 0 (thus entering into the subsystem), thanks to the rule a → a applied in
the maximally parallel way. In the second step, rule a2 → a in neuron 0 halves
the number of spikes (indeed, computing an integer division by 2) and sends the
result to neuron 1. If the initial number of spikes was even, then in neuron 0 no
spikes are left; instead, if the initial number of spikes was odd, then exactly one
spike will remain in neuron 0. Hence, the number of spikes remaining in neuron
0 is equal to the value of the least significant bit of the binary encoding of N .
The computation proceeds in a similar way during the next k − 1 steps; in each
step, the next bit (from the least significant to the most significant) of the binary
encoding of N is computed. Note that the bits that have already been computed
are unaffected by subsequent computation steps. After k computation steps, the
neurons labelled with 0, 1, . . . , k − 1 contain all the bits of the binary encoding of
N . In order to use such bits, we can connect these neurons to other k neurons,
which should be kept closed during the conversion by means of a trick similar to
that used in Figure 2.

The SN P system Π(〈n, k〉) that solves all the instances ({v1, v2, . . . , vn}, S)
of Subset Sum which are composed by k-bit natural numbers is depicted (in a
schematic way) in Figure 5. The sequences of spikes that encode v1, v2, . . . , vn and
S in binary form arrive simultaneously from the environment, and enter into the
system from the top. The values v1, . . . , vn are first converted to unary and then
some of them are summed, as before; the sequence of bits in S, instead, is just
delayed (using the subsystem depicted in Figure 6) so that it arrives in the “Bit
by bit comparison” subsystem simultaneously with the binary representation of
the sum of the vi. Such a binary representation is obtained through the subsystem
depicted in Figure 4. The bit-by-bit comparison subsystem (depicted in Figure
7) emits a spike if and only if all the bits of the two integer numbers given in
input match, that is, if and only if the two numbers are equal. If we denote by
x =

∑k−1
i=0 xi2i and y =

∑k−1
i=0 yi2i the numbers to be compared, the subsystem

computes the following boolean function:

Compare(x0, . . . , xk−1, y0, . . . , yk−1) =
k−1∧

i=0

(¬(xi ⊕ yi)
)

= ¬
(

k−1∨

i=0

(xi ⊕ yi)

)

where ⊕ denotes the logical xor operation. The subsystem works as follows. Bits
xi and yi are xored by the neurons depicted on the top of Figure 7. The neuron

420 A. Leporati et al.

Fig. 7. A standard SN P system that compares two k-bit natural numbers

labelled with ∨ computes the logical or of its inputs: precisely, it emits one spike
if and only if at least one spike enters into the neuron. Neuron out receives the
output produced by ∨ and computes its logical negation (not). In order to be
able to produce one spike if no spikes come from out, we use two auxiliary neurons
that send to out one spike at every computation step. The number of neurons, as
well as the total number of rules, used by Π(〈n, k〉) is polynomial with respect to
n and k.

We conclude by observing that the output of the SN P system depicted in
Figure 5 has to be observed exactly after 3k +6 computation steps. One spike will
eventually be emitted by the system before this time, since the conversion from
binary to unary of v1, v2, . . . , vn produces some spurious spikes before emitting
the result. These spurious spikes are added in neuron sum, and the result of this
addition is first converted to binary and then sent to the comparison subcircuit.
However, by carefully calibrating the delay subsystem this value does not interfere
with the bits of S, that will arrive to the comparison subsystem only later. From a
direct inspection of the system in Figure 5, it is easily seen that the correct delay
to be applied is of 3k + 2 steps.

Solving Numerical NP-Complete Problems with SN P Systems 421

6 Conclusions and Directions for Future Research

In this paper we have continued the study concerning the computational power
of SN P systems, started in [10]. In particular, by slightly extending the original
definition of SN P systems given in [8] and [9] we have shown that by exploiting
nondeterminism it is possible to solve numerical NP–complete problems such as
Subset Sum and Partition (which can be considered as a particular case of
Subset Sum).

However, a drawback of this solution is that the system may require to specify
an exponential number of spikes both when defining the rules and when describing
the contents of the neurons in the initial configuration. Hence, we have shown that
the numbers v1, v2, . . . , vn occurring in the instance of Subset Sum can be given
to the system in binary form, and subsequently converted to the unary form in
polynomial time. In this way we have proved that the capability of the above
system to solve Subset Sum does not derive from the fact that it requires an
exponential effort to be initialized.

The new SN P system thus obtained still provides a semi–uniform solution,
since for each instance of the problem we need to build a specifically designed SN
P system to solve it. Thus, we have finally proposed a family {Π(〈n, k〉)}n,k∈N
of SN P systems such that for all n, k ∈ N, Π(〈n, k〉) solves all the instances
({v1, v2, . . . , vn}, S) of Subset Sum such that v1, v2, . . . , vn and S are all k-bit
natural numbers. This solution assumes that for each neuron (or, at least, for
each subsystem) it is possible to choose whether such a neuron (resp, subsystem)
works in a deterministic vs. nondeterministic way, and in the sequential vs. the
maximally parallel way.

In [10] we have also studied the computational power of deterministic accepting
SN P systems working in the sequential way. In particular, we have shown that they
can be simulated by deterministic Turing machines with a polynomial slowdown.
This means that they are not able to solve NP–complete problems in polynomial
time unless P = NP, a very unlikely situation. In future work, we will address
the study of the computational power of deterministic accepting SN P systems
working in the maximally parallel way.

Acknowledgments

We gratefully thank Gheorghe Păun for introducing the authors to the stimulating
subject of spiking neural P systems, and for asking us a “Milano theorem” (in the
spirit of [22]) about their computational power, during the Fifth Brainstorming
Week on Membrane Computing, held in Seville from January 29th to February
2nd, 2007.

We are also truly indebted with Mario de Jesús Pérez-Jiménez for stimulating
observations and suggestions made on a previous version of this paper.

422 A. Leporati et al.

References

1. A. Alhazov, R. Freund, M. Oswald. Cell/symbol complexity of tissue P systems with
symport/antiport rules. International Journal of Foundations of Computer Science,
17(1):3–26, 2006.

2. H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez. On String Languages
Generated by Spiking Neural P Systems. In M.A. Gutiérrez-Naranjo, Gh. Păun,
A. Riscos-Núñez, F.J. Romero-Campero (eds.), Fourth Brainstorming Week on Mem-
brane Computing, Vol. I RGCN Report 02/2006, Research Group on Natural Com-
puting, Sevilla University, Fénix Editora, 169–194.

3. T.H. Cormen, C.H. Leiserson, R.L. Rivest. Introduction to Algorithms. MIT Press,
Boston, 1990.

4. R. Freund, Gh. Păun, M.J. Pérez-Jiménez. Tissue-like P Systems with Channel
States. Theoretical Computer Science, 330(1):101–116, 2005.

5. M.R. Garey, D.S. Johnson. Computers and Intractability. A Guide to the Theory on
NP–Completeness. W.H. Freeman and Company, 1979.

6. W. Gerstner, W. Kistler. Spiking Neuron Models. Single Neurons, Populations, Plas-
ticity. Cambridge University Press, 2002.

7. O.H. Ibarra, A. Păun, Gh. Păun, A. Rodŕıguez-Patón, P. Sośık, S. Woodworth.
Normal Forms for Spiking Neural P Systems. Theoretical Computer Science, 372(2-
3):196–217, 2007.

8. M. Ionescu, Gh. Păun, T. Yokomori. Spiking neural P systems. Fundamenta Infor-
maticae, 71(2-3):279–308, 2006.

9. M. Ionescu, A. Păun, Gh. Păun, M.J. Pérez-Jiménez. Computing with spiking neural
P systems: Traces and small universal systems. In C. Mao, T. Yokomori, B.-T. Zhang
(eds.), DNA Computing, 12th International Meeting on DNA Computing (DNA12),
Seoul, Korea, June 5-9, 2006, Revised Selected Papers. LNCS 4287, Springer, 2006,
1–16.

10. A. Leporati, C. Zandron, C Ferretti, G. Mauri. On the Computational Power of Spik-
ing Neural P Systems. In M.A. Gutiérrez-Naranjo et al. (eds.), Fifth Brainstorming
Week on Membrane Computing, Research Group on Natural Computing, Sevilla Uni-
versity, Fénix Editora, 2007 (in print).

11. A. Leporati, C. Zandron, M.A. Gutiérrez-Naranjo. P systems with input in binary
form. International Journal of Foundations of Computer Science, 17(1):127–146,
2006.

12. W. Maass. Computing with spikes. Special Issue on Foundations of Information
Processing of TELEMATIK, 8(1):32–36, 2002.

13. W. Maass, C. Bishop (eds.). Pulsed Neural Networks, MIT Press, Cambridge (MA),
1999.

14. C. Mart́ın-Vide, J. Pazos, Gh. Păun, A. Rodŕıguez-Patón. A new class of symbolic
abstract neural nets: Tissue P systems. In Proceedings of COCOON 2002, Singapore,
LNCS 2387, Springer-Verlag, Berlin, 290–299.

15. M. Oswald. Independent agents in a globalized world modelled by tissue P systems.
Conf. Artificial Life and Robotics, 2006.

16. Gh. Păun. Computing with Membranes. Journal of Computer and System Sciences,
61:108–143, 2000. See also Turku Centre for Computer Science — TUCS Report No.
208, 1998. Available at: http://www.tucs.fi/Publications/techreports/ TR208.php

17. Gh. Păun. Computing with Membranes. An Introduction. Bulletin of the EATCS,
67(2):139–152, 1999.

Solving Numerical NP-Complete Problems with SN P Systems 423

18. Gh. Păun. Membrane Computing. An Introduction. Springer–Verlag, Berlin, 2002.
19. Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg. Infinite spike trains in spiking neural

P systems. Submitted for publication.
20. Gh. Păun, G. Rozenberg. A Guide to Membrane Computing. Theoretical Computer

Science, 287(1):73–100, 2002.
21. Gh. Păun, Y. Sakakibara, T. Yokomori. P Systems on Graphs of Restricted Forms.

Publicationes Mathematicae Debrecen, 60:635–660, 2002.
22. C. Zandron, C. Ferretti, G. Mauri. Solving NP–Complete Problems Using P Sys-

tems with Active Membranes. In I. Antoniou, C.S. Calude, M.J. Dinneen (eds.),
Unconventional Models of Computation, Springer-Verlag, London, 2000, 289–301.

23. The P systems Web page: http://psystems.disco.unimib.it/

