
Towards a Complete Covering of SBML
Functionalities

Tommaso Mazza

’Magna Græcia’ University of Catanzaro, Italy
t.mazza@unicz.it

Summary. The complexity of biological systems is at times made worse by the diversity
of ways in which they are described: the organic evolution of the science over many
years has led to a myriad of conventions. This confusion is reflected by the in-silico
representation of biological models, where many different computational paradigms and
formalisms are used in a variety of software tools.

The Systems Biology Markup Language (SBML) is an attempt to overcome this
issue and aims to simplify the exchange of information by imposing a standardized way
of representing models. The success of the idea is attested to by the fact that more than
110 software tools currently support SBML in one form or another.

This work focuses on the translation of the Cyto-Sim simulation language (based
on a discrete stochastic implementation of P systems) to SBML. We consider the issues
both from the point of view of the employed software architecture and from that of the
mapping between the features of the Cyto-Sim language and those of SBML.

1 Introduction

Nowadays, very few common exchange formats exist. We face difficulties to ex-
change models among different analysis and simulation tools. Therefore, taking
advantage of the different tools power and capabilities is the main issue among
scientists.

To overcome this issue, in March 2001, a first step was taken. During the
First International Symposium on Computational Cell Biology, (Massachussetts,
USA), Michael Hucka presented a new simple, well-supported and with textual
substrate (XML) language adding components that reflect the natural conceptual
constructs used by modellers in the domain, SBML: Systems Biology Markup
Language.

In the following November 2002, M. Hucka talked again about The Systems
Biology Markup Language at the I3C 4th Quarter Technical Meeting (San Diego,
CA). On that occasion, starting from the observation of the enormous prolifera-
tion of software tools in this domain, he observed that a single package able to

426 T. Mazza

cover all needs does not exist. Different packages can have different niche strengths
and their strengths are often complementary. Moreover, he highlighted that much
likely, no single tool is able perform likewise in the near future because the range
of capabilities needed is large and new techniques and new tools evolve all the
time making simulations and results often not shareable or reusable. Finally, he
remarked that SBML is intended to be a common exchange format for transferring
network models among tools, even if it may not capture everything represented
by every tool (lossy transformation). At the same time, SBML is not suited to
represent experimental data and numerical results, even if with the addition of the
metadata support it may be suitable as a storage format for models too.

In May 2003, during the I3C May 2003 Meeting (Cambridge, MA) with a
presentation entitled Update on the Status of the Systems Biology Markup Lan-
guage (SBML) [17], M. Hucka dealt with the Related Efforts, the current status
of the features and the software libraries for SBML. In particular he talked about
similarities with CellML and the current joint work with the aim to bring them
together. He also discussed the adoption in SBML of some features from CellML,
like the MathML Subset and the Metadata specification. Moreover, he presented
BioPAX, specifying that it is oriented towards being a common exchange format
for databases of pathways Complementary efforts and then not a competing tool.
However, SBML and BioPAX teams will work together to define linkages between
SBML and BioPAX representations. Finally, he presented the version 1.0.1 of libs-
bml, a library designed to help modellers to read, write, manipulate, translate, and
validate SBML files and data streams. In the same year many other presentations
have been given by M. Hucka and others. In fact, in June 2003 MIPNETS Meeting
(Liverpool, UK), Finney presented The Systems Biology Workbench and Systems
Biology Markup Language [9], a project funded by Japan Science and Technol-
ogy Corporation ERATO program and started in the summer 2000. The project
goal was to provide software infrastructure which (i) enables sharing of simula-
tion/analysis software and models and (ii) enables collaboration between software
developers. Focused on biochemical modelling, it is an environment that enables
tools to interact using SBML to transfer models between tools and supporting
resource sharing.

All 2004 long was spent to delineate the limitations of the current SBML speci-
fication. In the same year Shapiro at al. talked about MathSBML [39], a Mathemat-
ica package designed for manipulating SBML models. It converts SBML models
into Mathematica data structures and provides a platform for manipulating and
evaluating these models. In [16], Hucka et al. summarise the current and upcoming
versions of SBML and their efforts at developing software infrastructure for sup-
porting and broadening its use. They also provided a brief overview of the many
available SBML-compatible software tools.

In the following year other interesting publications appeared. The one about
MIRIAM [26] is related to the way to define a minimum quality standard for
the encoding of biochemical models by means of a set of rules about quantitative
models of biological systems. These rules define procedures for encoding and an-

Towards a Complete Covering of SBML Functionalities 427

notating models represented in machine-readable form. In May 2005 as well, an
ideal test bed in the understanding of the cellular systems by means of computa-
tional modelling appeared in [42]. In this chapter one goes over (i) computing for
modelling cells, (ii) SBML and (iii) developing the International E. coli Alliance,
which has been created to tackle the whole cell problem. Again in [15] and [8], one
presents SBML as an XML-based exchange format for computational models of
biochemical networks, including overview, enhancements, several proposals for the
language extension, model composition and multi-component chemical species. In
[32], the first step forward is taken by the P System community for representing
P systems which model biological reaction networks as SBML models.

In 2006 a very good paper about the BioModels database was published, an
annotated resource of quantitative models of biomedical interest. Models are care-
fully curated to verify their correspondence to their source articles. They are also
extensively annotated, with (i) terms from controlled vocabularies, such as dis-
ease codes and Gene Ontology terms and (ii) links to other data resources, such
as sequence or pathway databases. Researchers in the biomedical and life science
communities can then search and retrieve models related to a particular disease,
biological process or molecular complex [25]. In February of the same year, the
joint work between CellML and SBML team groups had a big result, namely the
CellML2SBML tool [38] implemented as a suite of XSLT stylesheets that, when
applied consecutively, convert models expressed in CellML into SBML without
significant loss of information. One month later, Sarah Keating et al. presented
another similar conversion tool: SBMLToolbox [22] a toolbox that facilitates im-
porting and exporting models represented in SBML in and out of the MATLAB
environment and provides functionality that enables an experienced user of either
SBML or MATLAB to combine the computing power of MATLAB with the porta-
bility and exchangeability of an SBML model. Other two useful tools appeared in
October of the same year, they were SBMLSupportLayout and SBWAutoLayout,
supporting reading, creating, manipulating and writing layout information for bio-
chemical models. SBMLSupportLayout can read, update, add and render model
layout information. SBWAutoLayout can automatically layout models, graphically
manipulate model layouts and generate layout information for models without lay-
out information. Using them, researchers can study large or complex biochemical
networks and benefit from the ability to automatically create lucid visualizations
and store them in a portable and widely accepted format [5]. In the winter of
the same year, Bergmann and Sauro described the current state of the Systems
Biology Workbench talking about how users and developers can perceive SBW
and then focusing on currently available SBW modules [2]. Yet other four smart
tools have been presented in the current year: SBML ODE Solver Library [28]
(SOSlib), a programming library for symbolic and numerical analysis of chemical
reaction network models encoded in SBML; SBML-PET [43], a tool designed to
enable parameter estimation for biological models including signalling pathways,
gene regulation networks and metabolic pathways. It can estimate the parameters
by fitting a variety of experimental data from different experimental conditions.

428 T. Mazza

In the same year, Eccher and Priami presented a tool to translate SBML into
pi-calculus [6] while Gheorghe presented the P System Modelling Framework [10],
a framework able to simulate the evolution of multi-compartmental Gillespie al-
gorithm over a hierarchy of compartment structures.

In 2007, other tools have appeared. The first one has been SBMLR1, a tool able
to link R to libsbml for SBML parsing and output converting SBML to R graph
objects, and more. Another emerging project is SemanticSBML2: a suite of tools to
facilitate merging of SBML models for systems biology starting from all elements
in the SBML files described by MIRIAM-type annotations. SemanticSBML will
help to insert and check such annotations. The need to build a tool to facilitate
the quick creation and editing of models encoded in SBML has been growing with
the number of users and the increased complexity of the language. SBMLeditor
[36] tries to answer this need by providing a very simple, low level editor of SBML
files. Users can create and remove all the necessary bits and pieces of SBML in a
controlled way, that maintains the validity of the final SBML file.

As many tools have been implemented all around SBML just to highlight the
trust of developers on the standardizing initiatives related to the software bio-
logical infrastructures towards commons exchange formats. In particular, it is an
undeniable fact the increasing and unison consensus among developers in favour of
SBML. In fact, several languages have been recently developed to overcome these
kind of problems (integrations, standardizing, reuse of biological models) [27], [14],
[7], [40], [41], [12], [29], [1], [19], [18]. However, only two XML-based formats are
suitable for representing compartmental reaction network models with sufficient
mathematical depth that the descriptions can be used as direct input to simulation
software. The two are CellML [4], [13] and SBML[17]. The latter is becoming a de-
facto standard for a common representation supporting basic biochemical models.
In fact, today, SBML is supported by over 110 software systems. As a consequence,
many SBML models of gene regulatory networks and metabolic pathways that code
a considerably body of biological knowledge have been accumulated in reposito-
ries. Among all databases, I recall (i) the PANTHER Classification System, [31],
an unique resource that classifies genes by their functions, using published sci-
entific experimental evidence and evolutionary relationships to predict function
even in the absence of direct experimental evidence; (ii) KEGG [21], a knowledge
base for systematic analysis of gene functions, linking genomic information with
higher order functional information; (iii) JWS Online [34], a Systems Biology tool
for simulation of kinetic models from a curated model database and (iv) Reac-
tome [20], a curated resource of core pathways and reactions in human biology.
The information in this database is cross-referenced with the sequence databases
at NCBI, Ensembl and UniProt, the UCSC Genome Browser, HapMap, KEGG
(Gene and Compound), ChEBI, PubMed and GO. In addition to curated human
events, inferred orthologous events in 22 non-human species including mouse, rat,
chicken, zebra fish, worm, fly, yeast, two plants and E.coli are also available.
1 Web Site of SBMLR: http://cran.r-project.org/src/contrib/Descriptions/rsbml.html
2 Web Site of SemanticSBML: http://sysbio.molgen.mpg.de/semanticsbml/

Towards a Complete Covering of SBML Functionalities 429

Therefore, with the constant focus on SBML, in this paper I am going to inspect
in section 2 all the features and the internal structure of SBML, in the section 4
the software facilities employed and the software packages implemented to build
a pure Java library to handle SBML documents, in the section 3 I am going to
show how to use the library to encode and decode information from a SBML file
to Cyto-Sim model and vice-versa. In the section 5 I am going to test the software
package implemented on real SBML files taken from different data sources and in
the last section I am going to delineate the future works.

2 SBML Structure

In this paper I am going to take into consideration the latest stable release of SBML
highlighting differences with the previous versions. SBML is primarily oriented
to allow models to be encoded using XML. Major release of SBML are termed
levels and represent substantial changes to the composition and structure of the
language. The latest release3 is the SBML level 2. It represents an incremental
evolution of the level 1, therefore a valid SBML level 1 can be mapped in a valid
SBML level 2 file while only a subset of level 2 can be mapped in a level 1 file.
However, both levels remain separated and distinct. Instead, minor revisions of
whatever level of a SBML file will bring a new version. A new version carries
new corrections, adjusts and refinings of the language. Some languages features of
previous levels or versions can be deprecated or entirely removed in the time. A
feature can be directly removed, but not recommended, although the usual path to
completely remove a feature is to deprecate it before and then remove to maintain
backward compatibility as much as possible.

SBML allows models of arbitrary complexity to be represented. Each type in a
model is described using a specific type of data structure that organizes the rele-
vant information and derive directly or indirectly from a single abstract type called
Sbase. In addition to serving as the parent class for most other classes of objects in
SBML, this base type is designed to allow modeller or a software package to attach
arbitrary information to each major structure or list in an SBML model. Sbase
contains two default elements: (i) notes, intended to serve as a place for storing
optional information intended to be seen by humans; (ii) annotations, it is a con-
tainer for optional software-generated content not meant to be shown to humans.
All other types have at least other three parameters: (i) id, a mandatory field on
most SBML structures used to identify a component within the model definition;
(ii) name, an optional field, not intended to be used for cross-referencing purposes
within a model but just to provide a human-readable label for the component;
(iii) sboTerm, an optional field used to identify a term from an ontology where
vocabulary describes entities and processes in computational models.
3 at the writing time

430 T. Mazza

2.1 SBML in more depth ...

The top level of an SBML model definition consists of a list of all data type (figure
1), all being optional. These elements are contained in the model element directly
enveloped in the most outer element properly called sbml.

Fig. 1. List of all data types in a SBML model

SBML envelope: The root of a SBML file is an SBML element with three required
fields: two attributes (level and version) and exactly one child node (model).

Model: It is the highest level construct in a SBML document. It has got three
optional parameters: id, name, sboTerm and the hierarchy of data types just
before shown and in the exact order of the listed terms.

Function definitions: A function (or often called user-defined function) is a mere
textual macro containing a MathML lambda element, then its call can be
implemented as a textual substitutions. It has limited capabilities because
none external parameter can be referenced by a function.

Unit definitions: SBML optionally allows for the employment of units of measure-
ments for some mathematical entities (e.g. compartment size, reaction rates,
mathematical formulas, etc...). By means of two operative classes (UnitDefini-
tion and Unit), a new unit of measurement (UnitDefinition(newid, newname))
can be obtained by composition of the elementary ones already defined in
SBML (Unit(id, name)).

Towards a Complete Covering of SBML Functionalities 431

Compartment types: If compartments share either a common biological func-
tion or similar reactions or other underlying conceptual features, they can
be grouped assigning to them the same compartment type value. After defin-
ing a compartment type with its univocal identifier, it can be referred by each
compartment belonging to the category specified by that compartment type.

Species types: As compartments, if species share common characteristics, they
can be grouped in a same logical set specified by a new species type. The
existence of SpeciesType structures in a model has not effect on the model’s
numerical interpretation.

Compartments: A compartment represents a bounded space in which species are
located. Compartments can be arranged in hierarchical structures and can
have a static or dynamical size.

Species: A species refers to a multiset of entities of a specific species type that take
part in reactions and are located in a specific compartment. With a species it
is possible to specify a number of parameters to better explaining its charac-
teristic. For example for a species one can specify the substance quantity or
the concentrations, the charge, the substance unit, etc...

Parameters: As usual programming languages, they are variables that can be
used in mathematical formulas. They are defined as constant values and can
be global, if defined at the beginning of the model or local if defined within
the scope of a reaction. Local parameters overwrite the global ones with the
same name.

Initial Assignments: An initial assignment is an alternative way to set quantities
of species, size of compartments and value of parameters with complex math-
ematical expressions at the beginning of a simulation. It overwrites eventual
already existing numerical values for quantities, sizes and parameter with the
mathematical expression it carries.

Rules: A rule furnishes a supplementary way to set a variable of the system that
cannot be set otherwise by any reaction rules or initial assignments. There
are three kind of rules: (i) assignment, used to express equations that set the
values of the variables. As an initial assignment, it overrides eventual exist-
ing numerical values of species quantity, compartments size and parameters
value with its mathematical expression. It is forbidden to have both an initial
assignment and a assignment rule related to the same object; (ii) rate, it is
used to express equations that determine the rates of change of variables. It
can refer to species, compartments and parameters as before explained. In the
context of a simulation, it can have effect either at t = 0 to obtain consistent
initial conditions or at t > 0 during the simulation run. To avoid indetermina-
tion problems, for each object in a system, only one between assignment rules
and rate rules can exist; (iii) algebraic rule, used to express equations that are
neither assignments of model variables nor rates of changes. The only one role
is to distinguish this case from the other cases.

Constraints: Constraints are mathematical expressions used to check permissible
values of different quantities in a model. A constraint should be checked against

432 T. Mazza

a variable at all time and triggers a message warning if the conditions expressed
by the formula is not verified.

Reactions: Reactions are processes that result in the interconversion of substances
that can change their quantities. The participants of a reaction are called
reactants and products. They change their quantities according to their own
stoichiometric coefficient and the kinetic law which rules the reaction. All
participants must belong to the list of species. A reaction can be optionally
set as reversible, fast and can contains modifiers, namely species acting as
catalysts or inhibitors.

Events: Events defines changes of variables of a system when a triggering condi-
tion fires. In particular an event specify (i) under which mathematical condi-
tion, (ii) how and (iii) when a variable changes. The triggered events can be
delayed and applied to more than one variables at t > 0. As usual, events have
effect on species quantity, compartments size and parameters value.

2.2 Differences between SBML Level 1 and Level 2

Many significant changes characterize the new level 2. They cover the (i) identi-
fication of the objects, (ii) annotation within the model, (iii) language for kinetic
expressions, (iv) dimensionality of compartments and (v) rule specification.

In particular SBML Level 2 supports the inclusion of metadata. In fact, all
structures in SBML can be annotated with optional content in RDF. The top-
level Model structure can contain an optional list of global user-defined functions
expressed in MathML and organized in new structures of type FunctionDefinition
and can contain an optional list of event definitions organized in structures of type
Event. All data structures, including SBML and listOf elements, are now derived
from the type SBase. This means all major structures in SBML can have separate
annotations and metadata associated with them.

A new field, id, replaces the name field previously defined for most SBML
structures to identify each part of a model. Formulas in Level 2 are expressed using
MathML 2.0. The field named formula previously available on the KineticLaw and
Rule structures has been replaced by a MathML element named math containing
MathML content. In addition, stoichiometry numbers may now be expressed using
MathML, allowing for more flexibility in defining reactions. Unlike in SBML Level
1, unit identifiers in Level 2 are in a separate namespace from the namespace used
for models, functions, species, compartments, reactions and parameters and have
the additional fields multiplier and offset to enable the definition of non-SI units.

The Compartment structure has a new field, spatialDimensions, whose value is
a positive integer specifying the number of dimensions in space the compartment
possesses. This enables the definition of such things as two-dimensional mem-
branes. All fields representing initial conditions or parameter values, including
compartment sizes and species concentrations, are optional in Level 2. A missing
value for one of these fields implies that the value is either unknown, not required
for analysis, or should be obtained from an external source. The Compartment,

Towards a Complete Covering of SBML Functionalities 433

Species and Parameter structures each have a new boolean field named constant.
This field specifies whether the variables represented by these structures can be
changed by rules and reactions. In particular, the Species structure has a new
field, initialConcentration, for setting the initial value of a species in terms of its
concentration. This is in addition to the ability, carried over from Level 1, to set
the values in terms of amounts.

There is no longer a type field on Rule, and new structures AssignmentRule
and RateRule replace SBML Level 1’s ParameterRule, SpeciesConcentrationRule
and CompartmentVolumeRule. The Reaction structure has a new list of modifiers
in addition to the list of reactants and products. The listOfModifiers enumerates
species that affect a reaction but are neither created nor destroyed by the reaction.

3 SBML ⇔ Cyto-Sim

As deeply shown, SBML is a powerful and well defined language for modelling
biological interactive systems in standard way. The aim of my work has been to
make Cyto-Sim able to speak and understand SBML.

Cyto-Sim [3] is a stochastic simulator of biochemical processes in hierarchi-
cal compartments which may be isolated or may communicate via peripheral and
integral membrane proteins. It is available online as a Java applet [33] and as
standalone application. For security issue, although the functionalities of the ap-
plet has been reduced, it fully and correctly works. By means of it, it is possible to
model: (i) interacting species; (ii) compartmental hierarchies; (iii) species localiza-
tions inside compartments and membranes and (iv) rules and their and correlated
velocity formulas which govern the dynamics of the system to be simulated, as
chemical equations.

Some real biological systems have already been successfully simulated in the
past by means of Cyto-Sim. Now I am going to try to explain at first how to
translate a Cyto-Sim model into SBML (and vice-versa) and later I will test the
quality of the translation comparing the simulations available in literature against
those obtained by Cyto-Sim about the same models.

3.1 Speaking SBML

The conversion process from the Cyto-Sim syntax to the SBML one is quite
straightforward. In Cyto-Sim, users must declare the species present into the sys-
tem writing something like this:

/* Object Declaration */

object speciesA, speciesB, speciesC

This line of code corresponds to the following SBML chunk of code:

<listOfSpecies>

<species id="compartmentA_0_speciesA" name="speciesA"

434 T. Mazza

compartment="compartmentA" initialAmount="0.0"/>

<species id="compartmentB_0_speciesB" name="speciesB"

compartment="compartmentB" initialAmount="1.0"/>

<species id="compartmentC_2_speciesC" name="speciesC"

compartment="compartmentB" initialAmount="2.0"/>

</listOfSpecies>

Not all the information in this XML code can be retrieved by the previous
objects specification4. In fact, the compartment, membrane and initial amount
related to one species are reached both from the following code:

/* Compartments Declarations */

compartment compartmentA [ruleA]

compartment compartmentB [compartmentA, ruleB, ruleC,

speciesB, 100 speciesB@7000 : |2 speciesC|]

system compartmentB

and from this:

/* Rules Declarations */

rule ruleA {

speciesA k1-> *

|| + speciesA k2-> speciesA + ||

}

rule ruleB speciesB k3-> speciesC

rule ruleC |speciesC| k4-> || + speciesC

From the code related to the compartments we take information about (i) the
compartment hierarchy, (ii) which rule happens and in what compartment, (iii)
the declared initial quantities (species not declared in this context will not still
exist as default at the beginning of the simulation) and (iv) eventual re-feeding
events at specified evolution times. Considering now that a reaction happening
in a compartment acts only on the species within it, looking the localization of a
reaction we can infer the localization of its reactant species. Moreover it is possible
to notice that the rule ruleC acts on the species speciesC inside the membrane5

(membrane number 2) of the compartment compartmentB.
In SBML each compartment is quadruplicated to easily handle membranes.

<listOfCompartments>

<compartment id="compartmentA_0" compartmentType="compartmentA"

outside="compartmentA_1"/>

4 The figure between the compartment and the species names within the string assigned
to each species id corresponds to the membrane in which a species sits. For more
information about the syntax, look at [3]

5 Recall that in this context a compartment is surrounded by a membrane with a not
negligible thickness, therefore a compartment is logically divided into the internal
(membrane 0), internal and superficial (membrane 1), intra (membrane 2), external
and superficial (membrane 3) and external (membrane 4) membranes.

Towards a Complete Covering of SBML Functionalities 435

<compartment id="compartmentA_1" compartmentType="compartmentA"

outside="compartmentA_2"/>

<compartment id="compartmentA_2" compartmentType="compartmentA"

outside="compartmentA_3"/>

<compartment id="compartmentA_3" compartmentType="compartmentA"

outside="compartmentB_0"/>

<compartment id="compartmentB_0" compartmentType="compartmentB"

outside="compartmentB_1"/>

<compartment id="compartmentB_1" compartmentType="compartmentB"

outside="compartmentB_2"/>

<compartment id="compartmentB_2" compartmentType="compartmentB"

outside="compartmentB_3"/>

<compartment id="compartmentB_3" compartmentType="compartmentB"

outside="system_0"/>

<compartment id="system_0" compartmentType="system"

outside="system_1"/>

<compartment id="system_1" compartmentType="system"

outside="system_2"/>

<compartment id="system_2" compartmentType="system"

outside="system_3"/>

<compartment id="system_3" compartmentType="system"/>

</listOfCompartments>

Then a single compartment generates four independent concentric compart-
ments, as a matrioska doll toy, related to the same compartment but enclosing
different spatial areas and then species. To keep conceptually linked these com-
partments, a compartment type specification is provided.

<listOfCompartmentTypes>

<compartmentType id="compartmentA"/>

<compartmentType id="compartmentB"/>

<compartmentType id="system"/>

</listOfCompartmentTypes>

The previously seen reactions are easily translated into SBML differenting
the names of the grouped rules (e.g. the ruleA group contains two reactions.
Their names will become: ruleA.0 and ruleA.1). Moreover, the kinetic formulas
just touched (k1, k2, etc) before are expressed by MathML expressions inside
<kineticLaw> tags.

<listOfReactions>

[...]

<reaction id="ruleA.1" name="compartmentA_0_ruleA.1">

<listOfReactants>

<speciesReference species="compartmentA_0_speciesA"

stoichiometry="1.0"/>

</listOfReactants>

<!--listOfProducts>No Products</listOfProducts-->

<kineticLaw>

436 T. Mazza

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/>

<cn>k1_value</cn>

<ci>compartmentA_0_speciesA</ci>

</apply>

</math>

</kineticLaw>

</reaction>

</listOfReactions>

Cyto-Sim also requires the specification of a range of evolution times and of the
species whose quantities have to be plotted on the screen.

evolve 0 - 1000

plot compartmentA[speciesA], compartmentB[speciesB:|speciesC|]

This information can be encoded in SBML by the use of an annotation which is
auto-explicative.

<annotation>

<Cyto-Sim xmlns:cytosim="http://www.sbml.org/2001/ns/cytosim">

<plot>

<species>compartmentA_0_speciesA</species>

<species>compartmentB_0_speciesB</species>

<species>compartmentB_2_speciesC</species>

</plot>

<evolve>

<from>0</from>

<to>1000</to>

</evolve>

</Cyto-Sim>

</annotation>

3.2 Understanding SBML

The process to make an existing SBML file comprehensible to Cyto-Sim is more
complex than the opposite step. Keeping in mind the correspondences among
structures before shown, during this kind of translation we have to check some
restrictions and to guarantee some constraints which are now explained.

Parameters: SBML optionally carries global parameters, visible everywhere in the
file and local ones with more restricted scope. During the parsing time of an
SBML file, Cyto-Sim loads all global parameters putting them into a global
HashMap. In the case of local parameters inside kineticLaw of reactions, Cyto-
Sim considers local and global parameters together taking care to overwrite
eventual global parameters with the same name of local ones.

Towards a Complete Covering of SBML Functionalities 437

Species Quantities: SBML provides optional size for compartments. Cyto-Sim
handles quantities and not concentration for species, then each concentration
(if any) has to be converted into quantity. To do that, Cyto-Sim requires the
size specification for each compartment if there are any specification of the
species concentrations inside it.

Assignments: Cyto-Sim handles assignment rules at the moment of parsing and
use them to replace eventual existing fixed values specified for species quantity,
compartment size or parameters value. Up to now, it does not understand
initial assignments, rate rules and algebraic rules. These features will be made
available soon.

Functions: Cyto-Sim does not still handle λ-functions.
Units & Constraints: Cyto-Sim does not still make use of units of measurements

and costraints.

4 Binding to the SBML Schema

After having conceptually explained how Cyto-Sim converts SBML in its own
language and vice-versa, now I am going to show which software architecture gives
it the possibility to do that. I used two well known tools for this aim: the Java
Architecture for XML Binding (JAXB) package and the XML DOM parser, both
build-in the latest release of Java (Java Mustang).

JAXB [11] simplifies access to an XML document from a Java program by
presenting the XML document to the program in a Java format. The first step
in this process is to bind the schema for the XML document into a set of Java
classes that represents the schema. Binding a schema means generating a set of
Java classes that represents the schema. All JAXB implementations provide a
tool called binding compiler in order to bind a schema. In response, the binding
compiler generates a set of interfaces and a set of classes that implement the
interface. I obtained Java classes for each available XML levels and versions. I
mean SBML level 1 version 1, level 1 version 2, level 2 version 1 and level 2 version
2. Later, I compiled and packaged them into just one package. The second step is to
unmarshal an SBML document. Unmurshalling means creating a tree of content
objects that represents the content and the organization of the document. The
content tree is not a DOM-based tree. In fact, content trees produced through
JAXB can be more efficient in terms of memory use than DOM-based trees. The
content objects are instances of the classes produced by the binding compiler. In
addition to providing a binding compiler, JAXB provides runtime APIs for JAXB-
related operations such as marshalling. It is possible to validate source data against
an associated schema as part of the unmarshalling operation. If the data is found
to be invalid (that is, it doesn’t conform to the schema) the JAXB implementation
can report it and might take further action. JAXB providers have a lot of flexibility
here. The JAXB specification mandates that all provider implementations report
validation errors when the errors are encountered, but the implementation does

438 T. Mazza

not have to stop processing the data. Some provider implementations might stop
processing when the first error is found, others might stop even if many errors are
found. In other words, it is possible for a JAXB implementation to successfully
unmarshal an invalid XML document, and build a Java content tree. However, the
result will not be valid. The main requirement is that all JAXB implementations
must be able to unmarshal valid documents. I unmarshal and validate each SBML
file at runtime.

Fig. 2. Software Architecture for SBML Binding

The W3C Document Object Model (DOM) is a platform and language-neutral
interface that allows programs and scripts to dynamically access and update the
content, structure, and style of a document. The XML DOM is the tool to define (i)
a standard set of objects for XML, (ii) a standard way to access XML documents;
(iii) a standard way to manipulate XML documents. Cyto-Sim uses the DOM
parser contained into xerces2-j [35] built into the Java Mustang release. The DOM
parser is used to:

Check Levels and Versions: Cyto-Sim preliminary opens SBML files and checks
levels and versions (delegating validation and comprehension to JAXB). It
acquires knowledge about which JAXB context instantiating or, more clearly,
which SBML schema considering for binding, unmarshalling and validation;

Towards a Complete Covering of SBML Functionalities 439

Parse MathML expression: Due to intrinsic limitations of JAXB to handle re-
cursively nested xml tags, Cyto-Sim makes use of DOM to explore MathML
expressions and parse their components.

5 Experimental Tests

The capability of Cyto-Sim to understand all currently existing SBML levels and
versions has been tested on almost all official existing SBML files available on the
web. I successfully imported all SBML files generated by Gepasi [30], a software
package for modelling biochemical systems and the most part of the models stored
into the BioModels database [25]. Gepasi makes available 9 SBML level 1 version
1 files 6 while BioModels has 70 curated and 43 not curated models exported as
SBML level 2 version 1 files. I have also tested models from the PANTHER (130
SBML level 1 version 2 files) Classification System, and from KEGG (77 SBML
level 2 version 1 files). All SBML files were converted from KEGG by using a
conversion script kegg2sbml. Moreover, I retrieved some interesting models among
all 238 CellML models and tested them. To do that, I had to manually convert
from the CellML format to SBML by means of CellML2SBML [38] and later
import and simulate them with Cyto-Sim. All imported files have been successfully
parsed by Cyto-Sim. This testifies the quality of the conversion routines and of the
architecture employed. Summarising, I retrieved 567 models from the most known
and famous biological model containers available in SBML (or in formats having
reference to SBML), and tested them. I obtained a successful test, when Cyto-Sim
had been able to correctly parse the inferred model. In particular, now I am going
to show a couple of examples which Cyto-Sim has been able not only to correctly
parse, but also to simulate and get the same results shown in literature.

The first test is related to the model BIOMD0000000010 picked up from the
BioModels database. It concerns the functional organization of signal transduction
into protein phosphorylation cascades and in particular the mitogen-activated pro-
tein kinase (MAPK) cascades. It greatly enhances the sensitivity of cellular targets
to external stimuli [23]. In this paper it is demonstrated that a negative feedback
loop combined with intrinsic ultrasensitivity of the MAPK cascade can bring about
sustained oscillations in MAPK phosphorylation. The conversion of the SBML file
produces the following model with 1 compartment, 8 species and 10 reactions.

object MKKK, MKKK_P, MKK, MKK_P, MKK_PP, MAPK, MAPK_P, MAPK_PP

rule J0 MKKK ((1.0*2.5*MKKK)/((1+((MAPK_PP/9.0)^1.0))*(10.0+MKKK)))-> MKKK_P

rule J1 MKKK_P ((1.0*0.25*MKKK_P)/(8.0+MKKK_P))-> MKKK

rule J2 MKK ((1.0*0.025*MKKK_P*MKK)/(15.0+MKK))-> MKK_P

rule J3 MKK_P ((1.0*0.025*MKKK_P*MKK_P)/(15.0+MKK_P))-> MKK_PP

rule J4 MKK_PP ((1.0*0.75*MKK_PP)/(15.0+MKK_PP))-> MKK_P

6 among all, a very large model representing a set of 100 yeast cells in a liquid culture
whose dynamics is represented by means of 2000 reactions

440 T. Mazza

rule J5 MKK_P ((1.0*0.75*MKK_P)/(15.0+MKK_P))-> MKK

rule J6 MAPK ((1.0*0.025*MKK_PP*MAPK)/(15.0+MAPK))-> MAPK_P

rule J7 MAPK_P ((1.0*0.025*MKK_PP*MAPK_P)/(15.0+MAPK_P))-> MAPK_PP

rule J8 MAPK_PP ((1.0*0.5*MAPK_PP)/(15.0+MAPK_PP))-> MAPK_P

rule J9 MAPK_P ((1.0*0.5*MAPK_P)/(15.0+MAPK_P))-> MAPK

compartment uVol[J0, J1, J2, J3, J4, J5, J6, J7, J8, J9, 280.0 MAPK,

10.0 MKK_P, 10.0 MKK_PP, 10.0 MKKK_P, 10.0 MAPK_PP, 280.0 MKK,

10.0 MAPK_P, 90.0 MKKK]

system uVol

evolve 0-33000

plot uVol[MAPK,MAPK_PP]

In the figure 3, on the left is shown the simulation result coming from the literature
and on the right that one obtained with Cyto-Sim. The graphs are identical.

Fig. 3. Sustained oscillations in MAPK cascade

The second test is related to the glucose transport by the Bacterial Phospho-
enolpyruvate [37] whose model has been found in JWS Online. The resulting model
has 1 compartment, 17 species and 10 reactions.

object EI, PyrPI, EIP, HPr, EIPHPr, HPrP, EIIA, HPrPIIA, EIIAP, EIICB,

EIIAPIICB, EIICBP, EIICBPGlc, PEP, Pyr, GlcP, Glc

rule v1 PEP + EI ((1960.0*PEP*EI)-(480000.0*PyrPI))-> PyrPI

rule v2 PyrPI ((108000.0*PyrPI)-(294.0*Pyr*EIP))-> EIP + Pyr

rule v3 HPr + EIP ((14000.0*EIP*HPr)-(14000.0*EIPHPr))-> EIPHPr

rule v4 EIPHPr ((84000.0*EIPHPr)-(3360.0*EI*HPrP))-> HPrP + EI

rule v5 HPrP + EIIA ((21960.0*HPrP*EIIA)-(21960.0*HPrPIIA))-> HPrPIIA

rule v6 HPrPIIA ((4392.0*HPrPIIA)-(3384.0*HPr*EIIAP))-> EIIAP + HPr

rule v7 EIICB + EIIAP ((880.0*EIIAP*EIICB)-(880.0*EIIAPIICB))-> EIIAPIICB

rule v8 EIIAPIICB ((2640.0*EIIAPIICB)-(960.0*EIIA*EIICBP))-> EIICBP + EIIA

rule v9 EIICBP + Glc ((260.0*EIICBP*Glc)-(389.0*EIICBPGlc))-> EIICBPGlc

rule v10 EIICBPGlc ((4800.0*EIICBPGlc)-(0.0054*EIICB*GlcP))-> EIICB + GlcP

Towards a Complete Covering of SBML Functionalities 441

compartment compartment_cyto_sim[v1, v2, v3, v4, v5, v6, v7, v8, v9, v10,

0.0 EIICBPGlc, 5.0 EIICBP, 25.0 HPrP, 2.0 EIP, 20.0 EIIA, 5.0 EIICB,

25.0 HPr, 2800.0 PEP, 0.0 PyrPI, 0.0 EIPHPr, 50.0 GlcP, 900.0 Pyr,

0.0 HPrPIIA, 20.0 EIIAP, 500.0 Glc, 0.0 EIIAPIICB, 3.0 EI]

system compartment_cyto_sim

evolve 0-10000

plot compartment_cyto_sim[HPrP,EIIAPIICB,HPrPIIA]

In the figure 4 it is possible to notice that both graphs represent the same behav-
iour. The differences are due to the deterministic (on the left) or stochastic (on
the right) nature of the simulations.

Fig. 4. Glucose Transport by the Bacterial Phosphoenolpyruvate

At the end, I tested the whole human reactome derived from Reactome. The
actual release of the human reactome I used is an SBML file containing 28 com-
partments (even including internal membranes of the same compartment), 3054
species (in all their forms) and 1979 interactions represented by means of reac-
tions. Cyto-Sim is able to parse and even to simulate it, although at the moment
it cannot have meaning because of the lack of quantitative parameters (reaction
rates and initial species quantities).

6 Conclusion

kosmopolitês (citizen of the world), has been used to describe a wide variety of
important views in moral and socio-political philosophy. The nebulous core shared
by all cosmopolitan views is the idea that all human beings, regardless of their
political affiliation, do (or at least can) belong to a single community, and that this
community should be cultivated. Different versions of cosmopolitanism envision
this community in different ways, some focusing on political institutions, others
on moral norms or relationships, and still others focusing on shared markets or
forms of cultural expression [24].

442 T. Mazza

In the context of the present work, a citizen of the world is anyone who speaks
and understands a common language, who can travel to the ends of the earth
without worrying about misunderstanding or being misunderstood. Limited com-
prehension of language is the greatest barrier for people who need to spread infor-
mation and ideas. This is exactly the case for scientists who wish to share their
results and models with the widest possible audience.

In this paper I have presented an extended overview of the SBML story, contin-
ually remarking on the increasing interest of scientists both to support and write
their biological models in SBML. I talked about the internal structure of SBML,
in order to focus on its expressive potentialities, and later I presented a possi-
ble software architectural arrangement to allow simple binding to SBML schemas
and correct unmarshalling of SBML files. Finally, I presented tests performed on
two models coming from separate databases. I demonstrated the correctness of
the translation routines and highlighted the similarities of the obtained simulation
results.

Today there are more than 600 models written in SBML, ready to be more
accurately studied, confirmed or refuted. Challenging existing knowledge is the
means to increase understanding and therefore to grow knowledge. The best way
to achieve this is to maximize the number of people that speak the same language,
in this case SBML. My work sits perfectly in this context and my hope is that it
has wide application.

References

1. Brown et al. Altman, R.B. Ribonucleic acid markup language.
http://www.smi.stanford.edu/projects/helix/riboml/, 2002.

2. F. T. Bergmann and H. M. Sauro. Sbw - a modular framework for systems biology. In
Proceedings of the 37th conference on Winter simulation, pages 1637 – 1645. Winter
Simulation Conference, 2006.

3. M. Cavaliere and S. Sedwards. Modelling cellular processes using membrane systems
with peripheral and integral proteins. Computational Methods in Systems Biology,
Lecture Notes in Computer Science series, 4210/2006:108–126, 2006.

4. A.A. Cuellar, C.M. Lloyd, P.F. Nielsen, D.P. Bullivant, D.P. Nickerson, and P.J.
Hunter. An overview of cellml 1.1, a biological model description language. Simula-
tion, 79(12):740–747, 2003.

5. A. Deckard, F. T. Bergmann, and H. M. Sauro. Supporting the sbml layout extension.
Bioinformatics, 22(23):2966–2967, October 2006.

6. C. Eccher and C. Priami. Design and implementation of a tool for translating sbml
into the biochemical stochastic pi-calculus. Bioinformatics, 22(24):3075–308, October
2006.

7. D. Fenyo. The biopolymer markup language. Bioinformatics, 15(4):339–340, 1999.
8. A. Finney. Developing SBML Beyond Level 2: Proposals for Development, volume

3082/2005, pages 242–247. Springer Berlin / Heidelberg, April 2005.
9. A.M. Finney and M. Hucka. Systems biology markup language: Level 2 and beyond.

Biochem Soc Trans, 31:1472–1473, 2003.

Towards a Complete Covering of SBML Functionalities 443

10. M. Gheorghe. P system modelling framework. http :
//www.dcs.shef.ac.uk/ marian/PSimulatorWeb/PSystemsapplications.htm,
2006.

11. Project GlassFish. The jaxb project. https://jaxb.dev.java.net/.
12. D. Hanisch, R. Zimmer, and T. Lengauer. Proml - the protein markup language

for specification of protein sequences, structures and families. In Silico Biology,
2(3):313–324, 2002.

13. W.J. Hedley, M.R. Nelson, D.P. Bullivant, and P.F. Nielson. A short introduction
to cellml. Philos. Trans. R. Soc. Lond. A, 359:1073–1089, 2001.

14. H. Hermjakob and et al. Montecchi-Palazzi. The hupopsis molecular interaction
format - a community standard for the representation of protein interaction data.
Nature Biotechnol., 22(2):177–183, 2004.

15. M. Hucka and A. Finney. Escalating model sizes and complexities call for standard-
ized forms of representation. Molecular Systems Biology, 1(2005.0011):Published
online, May 2005.

16. M. Hucka, A. Finney, B.J. Bornstein, S.M. Keating, B.E. Shapiro, J. Matthews, B.L.
Kovitz, M.J. Schilstra, A. Funahashi, J.C. Doyle, and H. Kitano. Evolving a lingua
franca and associated software infrastructure for computational systems biology: the
systems biology markup language (sbml) project. Systems Biology, 1(1):41–53, June
2004.

17. M. Hucka and A. et al. Finney. The systems biology markup language (sbml): a
medium for representation and exchange of biochemical network models. Bioinfor-
matics, 19(4):524–531, 2003.

18. Doubletwist Inc. Agave: architecture for genomic annotation, visualization and ex-
change. http://www.agavexml.org, 2001.

19. LabBook Inc. Bsml (bioinformatics sequence markup language) 2.2.
http://www.labbook.com/products/xmlbsml.asp, 2002.

20. G. Joshi-Tope, M. Gillespie, I. Vastrik, P. D’Eustachio, E. Schmidt, B. de Bono,
B. Jassal, GR Gopinath, GR Wu, L. Matthews, S. Lewis, E. Birney, and L. Stein.
Reactome: a knowledgebase of biological pathways. Nucleic Acids Res., 33:D428–
D432, January 2005.

21. M. Kanehisa and S. Goto. Kegg: Kyoto encyclopedia of genes and genomes. Nucleic
Acids Research, 28(1):27–30, 2000.

22. S. M. Keating, B. J. Bornstein, A. Finney, and M. Hucka. Sbmltoolbox: an sbml
toolbox for matlab users. Bioinformatics, 22(10):1275–1277, 2006.

23. B. N. Kholodenko. Negative feedback and ultrasensitivity can bring about oscillations
in the mitogen-activated protein kinase cascades. Eur. J. Biochem, 267:1583–1588,
2000.

24. P. Kleingeld and E. Brown. Cosmopolitanism. In The Stanford Encyclopedia of
Philosophy. Edward N. Zalta, Winter 2006.

25. N. Le Novre, B Bornstein, A. Broicher, M. Courtot, M. Donizelli, H. Dharuri, L. Li,
H. Sauro, M. Schilstra, B. Shapiro, J. L. Snoep, and Hucka M. Biomodels database:
a free, centralized database of curated, published, quantitative kinetic models of
biochemical and cellular systems. Nucleic Acids Research, 34:D689–D691, 2006.

26. N. Le Novre, A. Finney, and Hucka M. et. al. Minimum information requested in
the annotation of biochemical models (miriam). Nature Biotechnology, 23:1509–1515,
2005.

27. Y.M. Liao and H. Ghanadan. The chemical markup language. Anal. Chem.,
74(13):389A–390A, 2002.

444 T. Mazza

28. R. Machn, A. Finney, S. Mller, J. Lu, S. Widder, and C. Flamm. The sbml ode solver
library: a native api for symbolic and fast numerical analysis of reaction networks.
Bioinformatics, 22(11):1406–1407, March 2006.

29. D.C. McArthur. An extensible xml schema definition for automated
exchange of protein data: Proximl (protein extensible markup language).
http://www.cse.ucsc.edu/douglas/proximl/, 2001.

30. P. Mendes. Gepasi: a software package for modeling the dynamics, steady states,
and control of biochemical and other systems. Comput. Applic. Biosci., 9:563–571,
1993.

31. H. Mi, B. Lazareva-Ulitsky, A. Loo, R. amd Kejariwal, J. Vandergriff, S. Rabkin,
N. Guo, A. Muruganujan, O. Doremieux, and M.J. et al. Campbell. The panther
database of protein families, subfamilies, functions and pathways. Nucleic Acids Res,
33:D284–D288, 2005.

32. I. Nepomuceno, J.A. Nepomuceno, and F.J. Romero-Campero. A tool for using the
sbml format to represent p systems which model biological reaction networks. In
Third Brainstorming Week on Membrane Computing, pages 219–228, Jan 2005.

33. The Microsoft Research University of Trento. Centre for Computational and Systems
Biology. Web page of cyto-sim. http : //www.cosbi.eu/RptySoftCytoSim.php, 2006.

34. B.G. Olivier and J.L. Snoep. Web-based modelling using jws online. Bioinformatics,
20:2143–2144, 2004.

35. Apache XML project. Xerces2 java parser 2.9.0. http://xml.apache.org/xerces2-j/,
2004.

36. N. Rodriguez, M. Donizelli, and N. Le Novre. Sbmleditor: effective creation of models
in the systems biology markup language (sbml). Bioinformatics, 8(79):Published
online, March 2007.

37. J. M. Rohwer, N. D. Meadowi, S. Rosemani, H. V. Westerhoff, and P. W. Postma.
Understanding glucose transport by the bacterial phosphoenolpyruvate:glycose phos-
photransferase system on the basis of kinetic measurements in vitro. The Journal of
Biological Chemistry, 275(45):34909–34921, March 2000.

38. M. J. Schilstra, L. Li, J. Matthews, A. Finney, M. Hucka, and N. Le Novre.
Cellml2sbml: conversion of cellml into sbml. Bioinformatics, 22(8):1018–1020, Feb-
ruary 2006.

39. B. E. Shapiro, M. Hucka, A. Finney, and Doyle J. Mathsbml: a package for manip-
ulating sbml-based biological models. Bioinformatics, 20(16):2829–2831, November
2004.

40. P.T. Spellman and M. et al. Miller. Design and implementation of microarray gene
expression markup language (mage-ml). Genome Biol., 3(9):0046.0041–0046.0049,
2002.

41. C.F. Taylor and N.W. et al. Paton. A systematic approach to modeling, capturing,
and disseminating proteomics experimental data. Nature Biotechnol., 21:247–254,
2003.

42. B. L. Wanner, Finney A., and M. Hucka. Modeling the E. coli cell: The need for
computing, cooperation, and consortia, volume 13 of Topics in Current Genetics,
pages 163–189. Springer Berlin / Heidelberg, May 2005.

43. Z. Zhike and E. Klipp. Sbml-pet: a systems biology markup language-based para-
meter estimation tool. Bioinformatics, 22(21):2704–2705, 2006.

