
Active Membrane Systems Without Charges and

Using Only Symmetric Elementary Division

Characterise P

Niall Murphy1 and Damien Woods2

1 Department of Computer Science, National University of Ireland, Maynooth, Ireland
nmurphy@cs.nuim.ie

2 Department of Computer Science, University College Cork, Ireland
d.woods@cs.ucc.ie

Summary. In this paper we introduce a variant of membrane systems with elementary
division and without charges. We allow only elementary division where the resulting
membranes are identical; we refer to this using the biological term symmetric division.
We prove that this model characterises P. This result characterises the power of a class
of membrane systems that fall under the so called P conjecture for membrane systems.

1 Introduction

The P-conjecture states that recogniser membranes systems with division rules
(active membranes [5]), but without charges, characterise P. This was shown for
a restriction of the model: without dissolution rules [4]. However, it has been
shown that systems with dissolution rules and non-elementary division characterise
PSPACE [2, 8]. In this setting, using dissolution rules allows us to jump from P
to PSPACE. As a step towards finding a bound (upper or lower) on systems with
only elementary division rules, we propose a new restriction, and show that it has
an upper bound of P.

Using our restriction insists that the two membranes that result from an ele-
mentary division rule must be identical. This models the usual biological process of
cell division [1] and we refer to it using the biological term “symmetric division”.
We refer to division where the two resulting daughter cells are different by the
biological term “asymmetric division”. In nature asymmetric division occurs, for
example, in stem cells as a way to achieve cell differentiation.

Since our model is uniform via polynomial time deterministic Turing machines
it trivially has a lower bound of P. All recogniser membrane systems with division
rules are upper bounded by PSPACE [8]. In this paper we show that systems with
symmetric elementary division and without charges are upper bounded by P. From
an algorithmic point of view, this result result allows one to write a polynomial time
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algorithm that models certain membrane systems which use exponential numbers
of membranes and objects.

2 Preliminaries

In this section we define membrane systems and complexity classes. These defini-
tions are from Păun [5, 6], and Sośık and Rodŕıguez-Patón [8].

2.1 Recogniser membrane systems

Active membranes systems are membrane systems with membrane division rules.
Division rules can either only act on elementary membranes, or else on both ele-
mentary and non-elementary membranes. An elementary membrane is one which
does not contain other membranes (a leaf node, in tree terminology). In Defini-
tion 1 we make a new distinction between two types of elementary division rules.
When we refer to symmetric division (es) we mean division where the resulting two
child membranes are identical. When the two child membranes are not identical
we refer to the rule as being asymmetric (e).

Definition 1. An active membrane system without charges using elementary di-
vision is a tuple Π = (V,H, µ,w1, . . . , wm, R) where,

1. m > 1 the initial number of membranes;
2. V is the alphabet of objects;
3. H is the finite set of labels for the membranes;
4. µ is a membrane structure, consisting of m membranes, labelled with elements

of H;
5. w1, . . . , wm are strings over V , describing the multisets of objects placed in the

m regions of µ.
6. R is a finite set of developmental rules, of the following forms:

a) [ a → v ]h,
for h ∈ H, a ∈ V, v ∈ V ∗

b) a[h ]h → [h b ]h,
for h ∈ H, a, b ∈ V

c) [h a ]h → [h ]h b,
for h ∈ H, a, b ∈ V

d) [h a ]h → b,
for h ∈ H, a, b ∈ V

(es) [h a ]h → [h b ]h [h b ]h,
for h ∈ H, a, b ∈ V

(e) [h a ]h → [h b ]h [h c ]h,
for h ∈ H, a, b, c ∈ V .

These rules are applied according to the following principles:



Active Membrane Systems Without Charges Characterise P 457

• All the rules are applied in maximally parallel manner. That is, in one step, one
object of a membrane is used by at most one rule (chosen in a non-deterministic
way), but any object which can evolve by one rule of any form, must evolve.

• If at the same time a membrane labelled with h is divided by a rule of type (e)
or (es) and there are objects in this membrane which evolve by means of rules
of type (a), then we suppose that first the evolution rules of type (a) are used,
and then the division is produced. This process takes only one step.

• The rules associated with membranes labelled with h are used for membranes
with that label. At one step, a membrane can be the subject of only one rule of
types (b)-(e).

In this paper we study the language recognising variant of membrane systems
which solves decision problems. A distinguished region contains, at the beginning
of the computation, an input – a description of an instance of a problem. The result
of the computation (a solution to the instance) is “yes” if a distinguished object yes
is expelled during the computation, otherwise the result is “no”. Such a membrane
system is called deterministic if for each input a unique sequence of configurations
exists. A membrane system is called confluent if it always halts and, starting form
the same initial configuration, it always gives the same result, either always “yes”
or always “no”. Therefore, given a fixed initial configuration, a confluent membrane
system can non-deterministically choose from various sequences of configurations,
but all of them must lead to the same result.

2.2 Complexity classes

Complexity classes have been defined for membrane systems [7]. Consider a deci-
sion problem X, i.e. a set of instances {x1, x2, . . .} over some finite alphabet such
that to each x1 there is an unique answer “yes” or “no”. We consider a family
of membrane systems to solve each decision problem so that each instance of the
problem is solved by some class member.

We denote by |xi| the size of any instance xi ∈ X.

Definition 2 (Uniform families of membrane systems). Let D be a class of
membrane systems and let f : N → N be a total function. The class of problems
solved by uniform families of membrane systems of type D in time f , denoted by
MCD(f), contains all problems X such that:

• There exists a uniform family of membrane systems, ΠX = (ΠX(1);ΠX(2); . . .)
of type D: each ΠX(n) is constructable by a deterministic Turing machine with
input n and in time that is polynomial of n.

• Each ΠX(n) is sound: ΠX(n) starting with an input (encoded by a determin-
istic Turing machine in polynomial time) x ∈ X of size n expels out a distin-
guished object yes if an only if the answer to x is “yes”.

• Each ΠX(n) is confluent: all computations of ΠX(n) with the same input x of
size n give the same result; either always “yes” or else always “no”.
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• ΠX is f-efficient: ΠX(n) always halts in at most f(n) steps.

Semi-uniform families of membrane systems ΠX = (ΠX(x1);ΠX(x2); . . .)
whose members ΠX(xi) are constructable by a deterministic Turing machine with
input xi in a polynomial time with respect to |xi|. In this case, for each instance
of X we have a special membrane system which therefore does not need an input.
The resulting class of problems is denoted by MCS

D(f). Obviously, MCD(f) ⊆
MCS

D(f) for a given class D and a complexity [3] function f .
We denote by

PMCD =
⋃

k∈N

MCD(O(nk)), PMCS
D =

⋃

k∈N

MCS
D(O(nk))

the class of problems solvable by uniform (respectively semi-uniform) families of
membrane systems in polynomial time. We denote by AM the classes of membrane
systems with active membranes. We denote by EAM the classes of membrane sys-
tems with active membranes and only elementary membrane division. We denote
by AM0

−a (respectively, AM0
+a) the class of all recogniser membrane systems with

active membranes without charges and without asymmetric division (respectively,
with asymmetric division). We denote by PMCS

EAM0

−a

the classes of problems

solvable by semi-uniform families of membrane systems in polynomial time with
no charges and only symmetric elementary division.

We let poly(n) be the set of polynomial (complexity) functions of n.

3 An upper bound on PMCS

EAM0

−a

In this section we give an upper bound of P on the membrane class PMCS
EAM0

−a

.

We provide a random access machine (RAM) algorithm that simulates this class
using a polynomial number of registers of polynomial length, in polynomial time.
We begin with an important definition and an informal description of our contri-
bution.

Definition 3 (Equivilance class of membranes). An equivalence class of
membranes is a multiset of membranes where: each membrane shares a single
parent, each has the same label, and each has identical contents. Further, only
membranes without children can be part of an equivalence class of size greater
than one; each membrane with one or more children has its own equivalence class
of size one.

Throughout the paper, when we say that a membrane system has |E| equivalence
classes, we mean that |E| is the minimum number of equivalence classes that
includes all membranes of the system.

While it is possible for a computation path of PMCS
EAM0

−a

to use an exponen-

tial number of equivalence classes, our analysis guarantees that there is another,
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equally valid, computation path that uses at most a polynomial number of equiv-
alence classes. Our algorithm finds this path in polynomial time. Moreover, via
our algorithm, after a single timestep the increase in the number of equivalence
classes is never greater than |E0||V |, the product of the number of initial equiv-
alence classes and the number of object types in the system. Since the system is
confluent, our chosen computation path is just as valid to follow as any alternative
path.

In Section 3.2 we prove that by using our algorithm:

• Type (a) rules do not increase the number of equivalence classes since the rule
has the same effect on each membrane of a given equivalence class.

• Type (c) rules do not increase the number of equivalence classes since objects
exit all child membranes for the parent membrane (which is already an equiv-
alence class with one membrane).

• Type (d) rules do not increase the number of equivalence classes since the rule
is applied to all membranes in the equivalence class. The contents and child
membranes are transfered to the parent (already an equivalence class).

• Type (es) rules do not increase the number of equivalence classes, the number
of membranes in the existing equivalence classes simply increases.

Type (b) rules require a more detailed explanation. In Section 3.3 we show that
there is a deterministic polynomial sequential time algorithm that finds a compu-
tation path that uses only a polynomial number of equivalence classes.

Our RAM algorithm operates on a number of registers that can be thought of
as a data structure (see Section 3.1). The data structure stores the state of the
membrane system at each timestep. It compresses the amount of information to be
stored by storing equivalence classes instead of explicitly storing all membranes.
Each equivalence class contains the number of membranes in the class, a reference
to each of the distinct objects in one of those membranes, and the number of
copies (in binary) of that object. Type (a) rules could therefore provide a way to
create exponential space. However, we store the number of objects in binary thus
we store it using space that is the logarithm of the number of objects.

Our RAM algorithm operates in a deterministic way. To introduce determinism
we sort all lists of object multisets by object multiplicity, then lexicographically.
We sort all equivalence classes by membrane multiplicity, then by label, and then
by object. We sort all rules by rules type, matching label, matching object, and
then by output object(s). The algorithm iterates through the equivalence classes
and applies all rules of type (a), (c), (d), and (es). It then checks to see if any rules
of type (b) are applicable. If so, it takes each object in its sorted order and applies
it to the relevant membranes in their sorted order.

Theorem 1. PMCS
EAM0

−a

⊆ P

The proof is in the remainder of this section.



460 N. Murphy, D. Woods

3.1 Structure of RAM Registers

Our RAM uses a number of binary registers that is a polynomial (poly(n)) of the
length n of the input. The length of each register is bounded by a polynomial
of n. For convenience our registers are grouped together in a data structure (as
illustrated in Figure 1).

Fig. 1. A representation of our polynomial sized registers as a data structure.

Object registers

For each distinct object type vi, the following registers are used to encode the
object in an equivalence class ek ∈ E.

The register v represents the type of the object, vi ∈ V (see Definition 1).
Throughout the computation, the size of the set V is fixed so this register does
not grow beyond its initial size.

The copies register is the multiplicity of the distinct object vi encoded in
binary. At time 0 we have |vi| objects. At time 1 the worst case is that each object
evolves via a type (a) rule to give a number of objects that is poly(n). This is an
exponential growth function, however, since we store it using binary, the register
length does not grow beyond space that is poly(n).

The register used represents the multiplicity vi objects that have been used
already in this computation step. It is always the case that used ≤ copies for
each object type vi.

Equivalence class registers

The following registers are used to store information about each equivalence class.
To conserve space complexity we only explicitly store equivalence classes (rather



Active Membrane Systems Without Charges Characterise P 461

than explicitly storing membranes); the number of equivalence classes is denoted
|E|.

The register h stores the label of equivalence class ek and is an element of the
set H (see Definition 1). The size of register h is fixed and is bounded by poly(n).

The register parent stores a reference to the equivalence class (a single mem-
brane in this case) that contains this membrane. This value is bounded by the
polynomial depth of the membrane structure. Since the depth of the membrane
structure is fixed throughout a computation, the space required to store a parent
reference is never greater than a logarithm of the depth.

The children register references all of the child equivalence classes of ek at
depth one. Its size is bounded by poly(n) via Theorem 2.

The register copies stores the number, denoted |ek|, of membranes in the
equivalence class. We store this number in binary. In the worst case, the number
that is stored in copies doubles at each timestep (due to type (es) rules). Since we
store this number in binary we use space that is poly(n).

The register used stores the number of membranes in the equivalence class that
have been used by some rule in the current timestep and so this value is ≤ |ek|.

Rules registers

The rules registers store the rules of the membrane system; their number is
bounded by the polynomial |R| and is fixed for all time t. The rules registers can
not change or grow during a computation. The type register stores if the rule is
of type (a), (b), (c), (d) or (es). The lhsObject register stores the object on the
left hand side of the rule. The lhsLabel register stores the label on the left hand
side of the rule. The rhsObject register stores the object on the right hand side
of the rule. The rhsAObjects register stores the multiset of objects generated by
the rule.

3.2 There is a computation path using polynomially many equivalence
classes.

In Section 3.2 we prove Theorem 2. Before proceeding to this theorem we make an
important observation. Suppose we begin at an initial configuration of a recogniser
membrane system. Due to non-determinism in the choice of rules and objects, after
t timesteps we could be in any one of a large number of possible configurations.
However all computations are confluent. So if we are only interested in whether
the computation accepts or rejects, then it does not matter which computation
path we follow.

Theorem 2 asserts that after a polynomial number of timesteps, there is at least
one computation path where the number of equivalence classes of a PMCS

EAM0

−a

system is polynomially bounded. This is shown by proving that there is a computa-
tion path where the application of each rule type (a) to (es), in a single timestep,
leads to at most an additive polynomial increase in the number of equivalence
classes.
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Theorem 2. Given an initial configuration of a PMCS
EAM0

−a

system Π with |E0|

equivalence classes and |V | distinct object types, then there is a computation path
such that at time t ∈ poly(n) the number of equivalence classes is |Et| = O(|E0|+
t|E0||V |) which is poly(n).

Proof. Base case: From Definition 3, |E0| is bounded above by the (polynomial)
number of membranes at time 0. Thus |E0| ∈ poly(n). Each of lemmata 1 to 5
gives an upper bound on the increase in the number of equivalence classes after
one timestep for rule types (a) to (es), respectively. Lemma 2 has an additive
increase of |E0||V | and the other four lemmata have an increase of 0. Thus at
time 1 there is a computation path where the number of equivalence classes is
|E1| ≤ |E0| + |E0||V |. (From Definitions 1 and 2, |V | ∈ poly(n) and |V | is fixed
for all t.)

Inductive step: Assume that |Ei|, the number of equivalence classes at time i,
is polynomial in n. Then, while Lemmata 1 to 5, there exists a computation path
where |Ei+1| ≤ |Ei| + |E0||V |.

After t timesteps we have |Et| = O(|E0| + t|E0||V |), which is polynomial in n

if t is. ⊓⊔

The proofs of the following five lemmata assume some ordering on the set of
object types V and on the rules R. For the proof of Lemma 2, we give a specific
ordering, however for the other proofs any ordering is valid.

Lemma 1. Given a configuration Ci of a PMCS
EAM0

−a

system with |E| equiva-

lence classes. After a single timestep, where only rules of type (a) (object evolution)
are applied, there exists a configuration Ci+1 such that Ci ⊢ Ci+1 and Ci+1 has
≤ |E| equivalence classes.

Proof. If a type (a) rule is applicable to an object in a membrane in equivalence
class ek, then the rule is also applicable in exactly the same way to all membranes
in ek. Due to non-determinism in the choice of rules and objects, it could be
the case that the membranes in ek evolve differently. However let us assume an
ordering on the object types V and on the rules R. We apply the type (a) rules
to objects using this ordering. Then all membranes in an equivalence class evolve
identically in a timestep, and no new equivalence classes are created. Thus there
is a computation path Ci ⊢ Ci+1 where there is no increase in the number of
equivalence classes. ⊓⊔

Observe that type (b) rules have the potential to increase the number of equiv-
alence classes in one timestep by sending different object types into different mem-
branes from the same class. For example, if objects of type v1 are sent into some of
the membranes in an equivalence class, and v2 objects are sent into the remainder,
then we get an increase of 1 in the number of equivalence classes. The following
lemma gives an additive polynomial upper bound on this increase.
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Lemma 2. Given a configuration Ci of a PMCS
EAM0

−a

system Π with |E| equiv-

alence classes. Let |E0| be the number of equivalence classes in the initial config-
uration of Π. Let |V | be the number of distinct object types in Π. After a single
timestep, where only rules of type (b) (incoming objects) are applied, there exists a
configuration Ci+1 such that Ci ⊢ Ci+1 and Ci+1 has ≤ |E| + |E0||V | equivalence
classes.

Proof. Let ej be a parent equivalence class, thus ej represents one membrane (by
Definition 3). If the child membranes of ej are all parent membranes themselves,
then the type (b) communication rule occurs without any increase to the number
of equivalence classes. The remainder of the proof is concerned with the other
case, where ej contains a non-zero number of equivalence classes of elementary
membranes; by the lemma statement this number is ≤ |E|.

For the remainder of this proof let V ′ ⊆ V be the set of distinct object types
in the membrane defined by ej , let V be the total number of objects in the mem-
brane defined by ej , let E′ ⊆ E be the set of equivalence classes that describe
the children of the membrane defined by ej , and let M be the total number of
membranes that are children of the membrane defined by ej (therefore M is the
number of membranes in E′). Furthermore we assume that E′ is ordered by num-
ber of membranes, i.e. we let E′ = (e1, e2, . . . , e|E′|) where |ek| is the number of
membranes in equivalence class ek and ∀k, |ek| ≤ |ek+1|. Similarly we assume that
V ′ is ordered by the number of each object type, i.e. we let V ′ = (v1, v2, . . . , v|V ′|)
where |vk| is the multiplicity of objects of type vk and ∀k, |vk| ≤ |vk+1|. We divide
the proof into two cases.

Case 1: V < M. Table 1 gives the proof for this case. The “Range” column
gives a series of ranges for V with respect to the numbers of membranes in the
elements of E′. The “Total EC” gives the total number of equivalence classes if
we place symbols into membranes according to the orderings given on E′ and V ′.
The “Increase EC” column gives the increase in the equivalence classes after one
timestep (i.e. |E′| subtracted from the “Total EC” value). Although we omit the
tedious details, it is not difficult to show that by using the above ordering and going
through the various sub-cases, the worst case for the total number of equivalence
classes after one timestep is |E′| + |V ′|.

Case 2: V ≥ M. Case 2 is proved using Table 2. Again we omit the details,
however it is not difficult to show that by using the above ordering and going
through the various sub cases, the worst case for the total number of equivalence
classes after one timestep is |E′| + |V ′|.

This procedure is iterated over all parent membranes ej where type (b) rules are
applicable, by Definition 3 the number of such parent membranes ≤ |E0|. For each
parent it is the case that |V ′| ≤ |V |. Thus there is a computation path Ci ⊢ Ci+1

where the increase in the number of equivalence classes is ≤ |E0||V
′| ≤ |E0||V |.

⊓⊔

Lemma 3. Given a configuration Ci of a PMCS
EAM0

−a

system with |E| equiva-

lence classes. After a single timestep, where only rules of type (c) (outgoing objects)
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are applied, there exists a configuration Ci+1 such that Ci ⊢ Ci+1 and Ci+1 has
≤ |E| equivalence classes.

Proof. If a type (c) rule is applicable to an object in a membrane in equivalence
class ek, then the rule is also applicable in exactly the same way to all membranes
in ek. Due to non-determinism in the choice of rules and objects it could be the case
that membranes in ek eject different symbols. However lets assume an ordering on
the object types V and on the rules R. We apply the type (c) rules to objects using
this ordering. Then all membranes in an equivalence class evolve identically in one
(each membrane ejects the same symbol), and so no new equivalence classes are
created from ek. The single parent of all the membranes in ek is in an equivalence
class ej which, by Definition 3, contains exactly one membrane and so no new
equivalence classes are created from ej .

Thus there is a computation path Ci ⊢ Ci+1 where there is no increase in the
number of equivalence classes. ⊓⊔

Interestingly, dissolution is the easiest rule to handle using our approach. The
following lemma actually proves something stronger than the other lemmata: dis-
solution never leads to an increase in the number of equivalence classes.

Lemma 4. Given a configuration Ci of a PMCS
EAM0

−a

system with |E| equiv-

alence classes. After a single timestep, where only rules of type (d) (membrane
dissolution) are applied then for all Ci+1, such that Ci ⊢ Ci+1, Ci+1 has ≤ |E|
equivalence classes.

Proof. If there is at least one type (d) rule that is applicable to an object and
a membrane in equivalence class ek, then there is at least one rule that is also
applicable to all membranes in ek. Unlike previous proofs, we do not require an
ordering on the objects and rules: all membranes in ek dissolve and equivalence
class ek no longer exists. The single parent of all the membranes in ek is in an
equivalence class ej which, by Definition 3, contains exactly one membrane and so
no new equivalence classes are created from ej .

Thus for all Ci+1, where Ci ⊢ Ci+1, there is no increase in the number of
equivalence classes. ⊓⊔

Lemma 5. Given a configuration Ci of a PMCS
EAM0

−a

system with |E| equiv-

alence classes. After a single timestep, where only rules of type (es) (symmet-
ric membrane division) are applied, there exists a configuration Ci+1 such that
Ci ⊢ Ci+1 and Ci+1 has ≤ |E| equivalence classes.

Proof. If a type (es) rule is applicable to an object and membrane in equivalence
class ek, then the rule is also applicable in exactly the same way to all membranes
in ek. Due to non-determinism in the choice of rules and objects it could be the case
that membranes in ek divide using and/or creating different symbols. However lets
assume an ordering on the object types V and on the rules R. We apply the type
(es) rules to objects (and membranes) using this ordering. Then all membranes in
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an equivalence class evolve identically in a timestep (each membrane in ek divides
using the same rule). The number of membranes in ek doubles, but since each new
membrane is identical, no new equivalence classes are created from ek.

Thus there is a computation path Ci ⊢ Ci+1 where there is no increase in the
number of equivalence classes. ⊓⊔

Range Total EC Increase EC

1 ≤ V < |e1| |E′|+ |V ′| |V ′|

|e1| ≤ V < |e1|+ |e2|
|E′|+ |V ′| − 1 |V ′| − 1
|E′|+ |V ′| |V ′|

|e1|+ |e2| ≤ V < |e1|+ |e2|+ |e3|
|E′|+ |V ′| − 2 |V ′| − 2
|E′|+ |V ′| − 1 |V ′| − 1
|E′|+ |V ′| |V ′|

...
...

...
|E′|−1X

ℓ=1

|eℓ| ≤ V <

|E′|X
ℓ=1

|eℓ| |E′|+ |V ′| − (|E′| − 1) + 1 |V ′| − (|E′| − 1) + 1

|E′|+ |V ′| |V ′|

Table 1. Increase in the number of equivalence classes (EC) when V < M. This table is
used in the proof of Lemma 2.

Range Sub-case Total EC Increase
EC

0 < M ≤ |v1| - |E′| 0

|v1| < M ≤ |v1|+ |v2|
∃ m s.t. 1 ≤ m < |E′|, |E′| 0

mX
ℓ1

|eℓ| = |v1|,

|v2| ≥ M− |v1|
∄ m s.t. 1 ≤ m < |E′|, |E′|+ 1 1

mX
ℓ1

|eℓ| = |v1|,

|v2| ≥ M− |v1|

|v1|+ |v2| < M ≤ |v1|+ |v2|+ |v3|
...

...
...

...
...

...
...

|V ′|−1X
ℓ=1

|vℓ| < M ≤

|V ′|X
ℓ=1

|vℓ|
... |E′|+ |V ′| − 1 |V ′| − 1

Table 2. Increase in the number of equivalence classes (EC) when V ≥ M. This table is
used in the proof of Lemma 2.
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3.3 RAM Algorithm

Here we outline a RAM algorithm that simulates the computation of any mem-
brane system of the class PMCS

EAM0

−a

in polynomial time (in input length n).

The algorithm operates on any initial configuration and successively applies the
evolution rules of the membrane system. It orders all lists of objects, rules and
equivalence classes which results in a deterministic computation path that never
uses more than polynomial space. The algorithm makes explicit use of the polyno-
mial size bounded registers described in Section 3.1. It also relies on the confluent
nature of recogniser membrane systems and simulates only one of the set of valid
computation paths. In particular, using the results from Section 3.2, the algorithm
chooses a computation path that uses at most a polynomial number of equivalence
classes.

Our sort function runs in polynomial time (in input length n) and sorts lists
of

• object multisets by object multiplicity, then lexicographically.
• equivalence classes by membrane multiplicity, then by label, and then by ob-

jects.
• rules by rules type, matching label, matching object, and then by output ob-

ject(s).

Since instances of PMCS
EAM0

−a

are constructed by polynomial time deter-

ministic Turing machines they are of polynomial size. Also, since all instances of
PMCS

EAM0

−a

run in polynomial time, if our algorithm simulates it with a polyno-

mial time overhead we obtain a polynomial time upper bound.
Our algorithm begins with a configuration of PMCS

EAM0

−a

(see Algorithm 1).

The input configuration is encoded into the registers of the RAM in polynomial
time. The rules of the system are sorted and the algorithm then enters a loop. At
each iteration all available rules are applied which simulates a single timestep of
the membrane systems computation. The loop terminates when the system ejects
a yes or no object indicating that the computation has halted. Since all instances
of PMCS

EAM0

−a

run in polynomial time, this loop iterates a polynomial number

of times.
At each iteration the algorithm iterates through all equivalence classes and

applies all applicable rules to it. The worst case time complexity for each func-
tion is given. The total time complexity for running the simulation for time t is
O(t|R||E|2|V |).
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Algorithm 1: The is the main body of the membrane simulation algorithm.
The systems rules are sorted and then applied to the membrane system at
each timestep until the system accepts or rejects its input.

Input: a configuration of PMCS

EAM0

−a

Output: The deciding configuration of the system
Initialise registers with input system;
sortedRules ← sort(rules);

O(t) repeat

/* evolve the membrane system one step */

O(|E|) forall equivalence class in membraneSystem do
O(|R||E||V |) ApplyRules(equivalence class);

end

until yes or no object is in skin membrane ;

Function ApplyRules(equivalence class) Applies all applicable rules for an
equivalence class for one timestep

Input: equivalence class

Output: equivalence class after one timestep of computation
b rules ← ∅;
b ecs ← ∅;
b objs ← ∅;

O(|R|) forall rule in sortedRules do

if rule.label matches equivalence class.label and rule is not type (b) then

O(|V |) forall object in sortedObjects do

if not all copies of object have been used then

if rule is type (a) then
O(|V |) Apply a rule(equivalence class, object, rule);

else if rule is type (c) then
O(1) Apply c rule(equivalence class, object, rule);

else if rule is type (d) then
O(|V |) Apply d rule(equivalence class, object, rule);

else if rule is type (es) then
O(1) Apply e rule(equivalence class, object, rule);

end

end

end

end

if rule is type (b) then

O(|E|) forall child ec in equivalence class do

if child ec.label = rule.lhsLabel and object.used ≥ 1 then
append child ec to b ecs ;
append object to b objs ;

O(|V ||E|) Apply b rule(b ecs, b objs, rule)

end

end

end

end

O(|V | × |E|) reset all used counters to 0;
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Function Apply a rule(equivalence class, object, rule) applies a single type
(a) rule to instances of an object in an equivalence class. Total time complex-
ity O(|V |).

Input: equivalence class, object, rule

Output: equivalence class after a type (a) rule on an object has been applied
O(|V |) forall resultingObject in rule.outAobjects do

multiplicity of resultingObject in equivalence class + = the multiplicity of
matching object − the number of object.used × the resultingObject.multiplicity ;
used number of resultingObject in the equivalence class + = the multiplicity of
resultingObject × object.multiplicity − object.used ;

end

decrement object.multiplicity ;
set object.used = object.multiplicity ;

Function Apply c rule(equivalence class, object, rule) applies a single rule
of type (c) to a membrane. Total time complexity O(1).

Input: equivalence class

Output: equivalence class after a (c) rule have been applied
decrement object.multiplicity ;
increment object.multiplicity in equivalence class.parent of the generated object;
increment object.used in equivalence class.parent of the generated object;
increment equivalence class.used ;

Function Apply d rule(equivalence class, object, rule). This function ap-
plies dissolution rules to an equivalence class. It calculates the total number
of each object in the equivalence class and adds it to the parent. It also
copies the child membranes from the dissolving membrane and adds them to
the parents child list. The total time complexity is O(|V |).

Input: equivalence class
Output: equivalence class after (d) rule has been applied
decrement object.multiplicity ;
increment object.multiplicity in equivalence class.parent from the rule;
increment object.used in equivalence class.parent from the rule;
/* move contents of the dissolved membrane to its parent */

O(|V |) forall move object in equivalence class objects do
add move object.multiplicity × equivalence class.multiplicity to
move object.multiplicity in equivalence class.parent ;
add move object.used × equivalence class.multiplicity to move object.used in
equivalence class.parent ;
move object.multiplicity ← 0;
move object.used ← 0;

end

equivalence class.parent.children ← equivalence class.parent.children ∪
equivalence class.children ;
equivalence class.multiplicity ← 0;
equivalence class ← ∅;
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Function Apply es rule(equivalence class, object, rule). Applies a single
rule of type (es) to a membrane. Total time complexity O(1).

Input: equivalence class
Output: equivalence class after (es) rule has been applied
decrement object.multiplicity ;
increment object.multiplicity from the rule;
increment object.used from the rule;
increment equivalence class.used ;
equivalence class.multiplicity ← equivalence class.multiplicity × 2;

Function Apply b rules(b equivalence classes, b objects, b rules). Total
time complexity O(|V ||E|).

Input: membrane
Output: membrane after (b) rules have been applied
b objects sorted ← sort(b objects);
b equivalence classes sorted ← sort(b equivalence classes);

O(|V |) forall object in b objects sorted do

O(|E|) forall equivalence class in b equivalence classes sorted do

if object.multiplicity < equivalence class.multiplicity then
copy equivalence class to new equiv class ;
subtract object.multiplicity from new equiv class.multiplicity ;
equivalence class.multiplicity ← object.multiplicity ;
equivalence class.used ← equivalence class.multiplicity ;
increment equivalence class.object.multiplicity ;
increment equivalence class.object.used ;

end

else if object.multiplicity ≥ equivalence class.multiplicity then
increment equivalence class.object.multiplicity ;
increment equivalence class.object.used ;
equivalence class.used ← equivalence class.multiplicity ;
subtract equivalence class.multiplicity from object.multiplicity ;

end

end

end

4 Conclusion

We have given a P upper bound on the computational power of one of a number
of membrane systems that fall under the so-called P-conjecture. In particular we
consider a variant of membrane systems that allows only symmetric division. This
variant can easily generate an exponential number of membranes and objects in
polynomial time. Our technique relies on being able to find computation paths
that use only polynomial space in polynomial time. It seems that this technique
is not näıvely applicable to the case of asymmetric division: it is possible to find



470 N. Murphy, D. Woods

examples where all computation paths are forced to use an exponential number of
equivalence classes.

Furthermore the result seems interesting since before before now, all models
without dissolution rules were upper bounded by P and all those with dissolution
rules characterised PSPACE. This result shows that despite having dissolution
rules, by using only symmetric elementary division we restrict the system so that
it does not create exponential space on all computation paths in polynomial time.
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