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Summary. Membrane computing investigates models of computation inspired by cer-
tain features of biological cells. To exploit the performance advantage of the large-scale
parallelism of membrane computing models, it is necessary to execute them on a parallel
computing platform. However, it is an open question whether it is feasible to develop
a parallel computing platform for membrane computing applications that significantly
outperforms equivalent sequential computing platforms while still achieving acceptable
flexibility and scalability. To move closer to an answer to this question, we have inves-
tigated a novel approach to the development of a parallel computing platform for mem-
brane computing applications that has the potential to deliver a good balance between
performance, flexibility and scalability. This approach involves the use of reconfigurable
hardware and an intelligent software component that is able to configure the hardware to
suit the specific properties of the membrane computing model to be executed. We have
developed a prototype computing platform called Reconfig-P based on the approach.
Reconfig-P is the first computing platform of its type to implement parallelism at both
the system and region levels. In this paper, we describe Reconfig-P and evaluate its per-
formance, flexibility and scalability. Theoretical and empirical results suggest that the
implementation approach on which Reconfig-P is based is a viable means of attaining
a good balance between performance, flexibility and scalability in a parallel computing
platform for membrane computing applications.

1 Introduction

Membrane computing investigates models of computation inspired by the struc-
tural and functional properties of biological cells. Such models have been applied
in a variety of domains. To exploit the performance advantage of the large-scale
parallelism of membrane computing models, it is necessary to execute them on a
parallel computing platform. However, the use of a parallel computing platform
instead of a sequential computing platform often comes at the cost of reduced
flexibility and scalability.
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The first parallel computing platforms for membrane computing applications
to be published [15, 27, 30] do not exhibit sufficient flexibility or scalability. Even
so, because research in this area is in its early stages, it is still an open question
whether it is feasible to develop a parallel computing platform for membrane com-
puting applications that significantly outperforms equivalent sequential computing
platforms while still achieving acceptable flexibility and scalability. To move closer
to an answer to this question, it is important to investigate the viability of imple-
mentation approaches that have the potential to deliver a good balance between
performance, flexibility and scalability.

The research presented in this paper involves an investigation of a novel ap-
proach to the development of a parallel computing platform for membrane com-
puting applications. This approach involves the use of reconfigurable hardware
and an intelligent software component that is able to configure the hardware to
suit the specific properties of the membrane computing model to be executed.
We have developed a prototype computing platform called Reconfig-P based on
the approach. In this paper, we describe Reconfig-P and evaluate its performance,
flexibility and scalability.

The paper is organised as follows. In Section 2, we introduce key concepts
and previous research associated with parallel computing platforms for membrane
computing applications. In Section 3, we describe Reconfig-P. In Section 4, we
evaluate the performance, flexibility and scalability of Reconfig-P. And in Section
5 we draw a conclusion regarding the viability of the implementation approach on
which Reconfig-P is based.

2 Background

In this section, we introduce key concepts and previous research associated with
parallel computing platforms for membrane computing applications. First, we in-
troduce membrane computing and its applications. Second, we define the attributes
of performance, flexibility and scalability in the context of a computing platform for
membrane computing applications, explain the significance of these attributes, and
indicate the connections that exist between them. Third, we describe the general
characteristics of sequential computing platforms, software-based parallel comput-
ing platforms and hardware-based parallel computing platforms, and discuss the
implications of these characteristics for performance, flexibility and scalability. Fi-
nally, we briefly describe existing computing platforms for membrane computing
applications and evaluate their performance, flexibility and scalability.

2.1 Membrane computing and its applications

Membrane computing [24, 25] investigates models of computation inspired by cer-
tain structural and functional features of biological cells, especially features that
arise because of the presence and activity of biological membranes.
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Biological membranes define compartments inside a cell or separate a cell from
its environment. The compartments of a cell contain chemical substances. The
substances within a compartment may react with each other or be selectively
transported through the membrane surrounding the compartment (e.g., through
protein channels) to another compartment as part of the cell’s operations.

In a membrane computing model, called a P system, multisets of objects (chem-
ical substances) are placed in the regions defined by a hierarchical membrane struc-
ture, and the objects evolve by means of reaction rules (chemical reactions) also
associated with the regions. The reaction rules are applied in a maximally paral-
lel, nondeterministic manner. The objects can interact with other objects inside
the same region or pass through the membrane surrounding the region to neigh-
bouring regions or the cell’s environment. These characteristics are used to define
transitions between configurations of the system, and sequences of transitions are
used to define computations. A computation halts when for every region it is not
possible to apply any reaction rule. The input of the computation is defined by
the multisets of objects in the initial configuration of the system. The output of
the computation may be defined in various ways. For example, the output might
be defined as the number of objects located in a particular region in the halting
configuration of the system, or as the number of objects emitted to the system’s
environment during the course of the computation.

Following is a definition of an example P system model. All P systems Π that
instantiate the model have the features specified in the definition. The model,
which we call the core P system model, defines all the essential components of a P
system plus two simple and commonly used additional features (namely, catalysts
and reaction rule priorities).

Π = (V, T,C, µ,w1, ..., wm, (R1, ρ1), ..., (Rm, ρm)), where

• V is an alphabet that contains labels for all the types of objects in the system;
• T ⊆ V is the output alphabet, which contains labels for all the types of objects

that are relevant to the determination of the system output;
• C ⊆ V − T is the alphabet that contains labels for all the types of catalysts,

which are the types of objects whose multiplicities cannot change through the
application of a reaction rule;

• µ is a hierarchical membrane structure consisting of m membranes, with
the membranes (and hence the regions defined by the membranes) injec-
tively labelled by the elements of a given set H of m labels (in this paper,
H = {1, 2, . . . ,m});

• each wi, 1 ≤ i ≤ m, is a string over V that represents the multiset of objects
contained in region i of µ in the initial configuration of the system;

• each Ri, 1 ≤ i ≤ m, is a finite set of reaction rules over V associated with the
region i of µ;

• a reaction rule is a pair (r, p), written in the form r → p, where r is a
string over V representing a multiset of reactant objects and p is a string
over {ahere, aout, ain | a ∈ V } representing a multiset of product objects, each
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of which either (a) stays in the region to which the rule is associated (the
subscript ‘here’ is usually omitted), (b) travels ‘out’ into the region that im-
mediately contains the region to which the rule is associated, or (c) travels ‘in’
to one of the regions that is immediately contained by the region to which the
rule is associated; and

• each ρi is a partial-order relation over Ri which defines the relative priorities
of the reaction rules in Ri.

Several P system models have been developed that extend in various ways the
core P system model. Examples of additional features found in these extended mod-
els include: structured (i.e., non-atomic) objects, membrane creation and dissolu-
tion, special inter-region communication rules (e.g., symport and antiport rules),
membrane permeability, and electronic charge for objects and membranes. See [24]
for a discussion of these features.

P system models have been applied in a variety of domains, including algorithm
solving and analysis [1, 19, 20, 23], linguistics [6] and biology [2, 8, 10, 11, 12, 22,
29]. Most existing applications of membrane computing are targeted at the mod-
elling and simulation of biological systems. For example, researchers have modelled
the following biological systems as P systems: respiration [10], photosynthesis [22],
cell-mediated immunity [12], mechanosensitive channels [2] and protein signalling
pathways [29]. In general, biologists are interested in using P systems to perform
simulations, rather than to produce computational outputs as in classical com-
puting. That is, they are interested in viewing the configuration-by-configuration
evolution of a P system and not only in the final output produced by the P sys-
tem. Once a biological system has been modelled as a P system, it is possible to
simulate the biological system by executing the P system. In many cases, the P
system will be executed many times so that the effect of different initial conditions
on the evolution of the biological system can be studied.

2.2 Quality attributes of computing platforms for membrane
computing applications

The overall quality of a computing platform depends on the extent to which it
possesses certain positive attributes, including usability, performance, flexibility,
maintainability and scalability. Performance, flexibility and scalability are three
of the most important quality attributes for a computing platform for membrane
computing applications. Ensuring that a computing platform for membrane com-
puting applications has all three of these attributes to an acceptable degree is
a challenge, because a factor that promotes one of the attributes can sometimes
demote another one of the attributes. In this section, we define the attributes of
performance, flexibility and scalability in the context of a computing platform for
membrane computing applications, explain the significance of these attributes, and
indicate the connections that exist between them.
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Performance

By the performance of a computing platform for membrane computing applications
we mean the speed at which it executes P systems; that is, the amount of useful
processing it performs per unit time. A suitable measure of the amount of useful
processing performed is the number of reaction rule applications performed. Thus
the performance of a computing platform for membrane computing applications
can be measured in reaction rule applications per unit time.

Flexibility

By the flexibility of a computing platform for membrane computing applications
we mean the extent to which it can support the execution of a wide range of P
systems. Thus a flexible computing platform for membrane computing applications
must be able to adapt to the specific properties of the P system to be executed.
The greater the flexibility of the computing platform, the greater the diversity
among the P systems in the class of P systems that the computing platform is
able to execute.

Scalability

By the scalability of a computing platform for membrane computing applications
we mean the extent to which increases in the size of the P system to be executed
do not lead to a reduction in the ability of the computing platform to perform its
functions or a reduction in the performance of the computing platform. We take
the size of a P system as being largely determined by the number of regions and
the number of reaction rules it contains.

Connections between performance, flexibility and scalability

The performance of a computing platform for membrane computing applications
can be increased by tailoring its implementation to the specific properties of the
P systems it is intended to execute. However, the greater the diversity of these P
systems, the more difficult it is to efficiently tailor the implementation to their spe-
cific properties. Therefore, increasing the performance of the computing platform
is likely to come at the cost of reduced flexibility, while increasing the flexibility
of the computing platform is likely to come at the cost of reduced performance.

Increasing the flexibility of a computing platform for membrane computing
applications involves supporting additional P system features. Naturally, this usu-
ally requires the implementation of additional data structures and algorithms.
In software-based computing platforms, the implementation of additional data
structures is likely to come at the cost of increased memory consumption. In
hardware-based computing platforms, the implementation of additional data struc-
tures comes at the cost of increased hardware resource consumption, as does the
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implementation of additional algorithms. Therefore, given that memory resources
and hardware resources are limited, implementing additional P system features re-
duces the maximum size of the P systems that a computing platform for membrane
computing applications can execute. Thus increasing the flexibility of a comput-
ing platform for membrane computing applications is likely to come at the cost of
reduced scalability, while increasing the scalability of such a computing platform
is likely to come at the cost of reduced flexibility.

2.3 Types of computing platforms

We identify three major types of computing platforms: sequential computing plat-
forms, software-based parallel computing platforms and hardware-based parallel
computing platforms.

Sequential computing platforms are typically based on a software-programmed
microprocessor. When such a microprocessor is used, the execution hardware is
abstracted by the instruction set architecture, which provides a set of specific
instructions that the microprocessor can process to perform computations. This is
a very flexible computing solution since it is possible to change the functionality
of the computing platform simply by modifying its software — there is no need to
modify the hardware configuration. As a result of this flexibility, the same fixed
hardware can be used for many applications. However, the flexibility comes at the
cost of lower performance. As each instruction needs to be sequentially fetched from
memory and decoded before being executed, there is a high execution overhead
associated with each individual operation. Furthermore, only one instruction can
be executed at a time.

Software-based parallel computing platforms are typically based on a cluster
of software-programmed microprocessors. Because the microprocessors execute in
parallel, software-based parallel computing platforms can significantly outperform
sequential computing platforms for many applications. The microprocessors syn-
chronise their activities by using shared memory or by sending messages to each
other (often over a network). Such synchronisation can be very time consuming,
and therefore can hinder performance significantly. Increasing the performance
of a software-based parallel computing platform involves increasing the amount
of parallelism and therefore requires the inclusion of additional microprocessors.
However, as the number of microprocessors increases, the overheads associated
with synchronisation increase substantially (unless the overall algorithm executed
by the computing platform can be neatly partitioned into separate procedures that
are largely independent of each other). This fact limits the scalability of software-
based parallel computing platforms.

Hardware-based parallel computing platforms execute algorithms that have been
directly implemented in hardware. In one approach, an application-specific inte-
grated circuit (ASIC) is used. The design of an ASIC is tailored to a specific
algorithm. As a consequence, ASICs usually achieve a higher performance than
software-programmed microprocessors when executing the algorithm for which
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they were designed. However, with this higher performance comes reduced flexi-
bility: as the implemented algorithm is fabricated on a silicon chip, it cannot be
altered without creating another chip. In another approach, reconfigurable hard-
ware is used. Unlike ASICs, reconfigurable hardware can be modified. Therefore,
by using reconfigurable hardware, it is possible to improve on the performance
of software-based computing platforms while retaining some of their flexibility. A
field-programmable gate array (FPGA) is a type of reconfigurable hardware de-
vice. As shown in Figure 1, an FPGA consists of a matrix of logic blocks which
are connected by means of a network of wires. The logic blocks at the periphery of
the matrix can perform I/O operations. The functionality of the logic blocks and
the connections between them can be modified by loading configuration data from
a host computer. In this way, any custom digital circuit can be mapped onto the
FPGA, thereby enabling it to execute a variety of applications. The digital circuits
used in hardware-based parallel computing platforms are specified in hardware
description languages. A very popular hardware description language is VHDL.
VHDL allows circuits to be specified either in terms of a structural description of
the circuit or in terms of low-level algorithmic behaviours of the circuit. Another
popular hardware description language is Handel-C. Unlike VHDL, Handel-C does
not support the specification of the structural features of a hardware circuit. How-
ever, sharing a syntax similar to that of the C programming language, Handel-C
allows algorithms to be specified at a very abstract level, and therefore eases the
process of designing a circuit for an application.

 

Fig. 1. The basic architecture of an FPGA.
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2.4 Existing computing platforms for membrane computing
applications

In this section, we provide a brief survey of existing computing platforms for
membrane computing applications.

Sequential computing platforms

As P systems are inherently parallel devices, it is not possible to truly implement
them on sequential computing platforms. Nevertheless, sequential computing plat-
forms exist that enable one to simulate in a sequential manner the execution of P
systems [4, 7, 9, 13, 16, 21, 26, 28]. For example, Nepomuceno-Chamarro’s soft-
ware tool SimCM [21] is able to simulate the execution of P systems that have the
features specified in the definition of the core P system model as well as the feature
of membrane dissolution. SimCM is written in Java. It provides a graphical user
interface that enables the user to specify and view the evolution of a P system in
a visual manner.

Software-based parallel computing platforms

Two research groups have created prototypes of software-based parallel computing
platforms for membrane computing applications. Ciobanu and Guo [15] have im-
plemented a simulation of P systems on a Linux cluster using C++ and a library
of functions for message-passing parallel computation called the Message Passing
Interface (MPI), while Syropoulos and colleagues [30] have implemented a distrib-
uted simulation of P systems using Java Remote Method Invocation (RMI). We
discuss Ciobanu and Guo’s computing platform below.

Ciobanu and Guo’s computing platform

Ciobanu and Guo’s computing platform is a software program written in C++
that is designed to run on a cluster of computers. The communication mechanism
for the computing platform is implemented using MPI. In its prototype form,
the computing platform consists of a Linux cluster, in which each node has two
1.4GHz Intel Pentium III CPUs and 1GB of memory, and the nodes are connected
by gigabit Ethernet.

Ciobanu and Guo’s computing platform supports the execution of a class of P
systems that is very similar to the class of P systems that instantiate the core P
system model. That is, the computing platform implements most of the basic fea-
tures of P systems, but does not implement additional features such as membrane
creation and dissolution. In the computing platform, each region of a P system
is modelled as a separate computational process. Such a process implements the
application of the reaction rules in its corresponding region. The processes for the
regions in the P system execute in parallel. Communication and synchronisation
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between regions is implemented using MPI. The application of reaction rules is
performed in rounds. At the end of each round, each region exchanges messages
with its parent region and child regions. The reaction rules associated with a re-
gion are implemented as threads. If multiple reaction rules require objects of the
same type in a round, then only one of them is allowed to consume objects of that
type in that round. If two reaction rules do not have relative priorities, which of
the two reaction rules is allowed to consume objects first is determined at random.

The process associated with the outermost region of the P system executes a
halting detection algorithm. If it detects that the P system has halted, it broadcasts
this information to the processes associated with the other regions in the P system.

As the threads for the reaction rules in a region execute on the same node
in the cluster, and there are only two processors per node, it would seem that
it is impossible for the computing platform to achieve region-level parallelism for
anything other than small P systems. To achieve region-level parallelism for larger
P systems, it would be necessary to increase the number of processors in a node
from two to a number at least equal to the number of reaction rules in the region
corresponding to that node. Thus without the inclusion of additional nodes, the
computing platform cannot be said to implement region-level parallelism, although
it does implement system-level parallelism. Nevertheless, Ciobanu and Guo’s use
of multithreading as a means of representing the concurrent application of reaction
rules within a region is promising, and could be used to implement region-level
parallelism if sufficient hardware resources were available.

Ciobanu and Guo do not provide a detailed evaluation of the performance of
their computing platform. However, they do report that the performance of the
computing platform is somewhat unpredictable. While the execution times exhib-
ited by the computing platform are often acceptable, some execution times are
unacceptably long owing to unexpected network congestion. Ciobanu and Guo in-
dicate that the major problem with their computing platform from the point of
view of performance is the overhead associated with communication and coopera-
tion between regions. Such communication and cooperation consumes most of the
total execution time.

Ciobanu and Guo do not evaluate the scalability of their computing platform.
However, it is clear that the scalability of the computing platform is limited to
a large extent by the nature of a cluster-based implementation approach. For
example, to execute P systems with a large number of regions, the computing
platform would have to include a large number of nodes, since there is a one-to-
one correspondence between regions and nodes. As a consequence, there would
be very significant overheads associated with communication and synchronisation
between regions, and this would have an adverse impact on the performance of
the computing platform.

As it implements only a basic P system model, Ciobanu and Guo’s computing
platform is not capable of executing P systems that have additional features such
as symport and antiport rules. This detracts from its flexibility. Nevertheless, since
the existing implementation is expressed at a level of abstraction at which the high-
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level features of a P system are apparent, it seems very feasible that the computing
platform could be extended to support additional P system features.

Hardware-based parallel computing platforms

A few researchers have designed digital circuits for particular aspects of P sys-
tems (e.g., see [17, 18]). However, to the best of our knowledge, only Petreska
and Teuscher [27] have implemented a hardware-based computing platform for
membrane computing applications. We discuss Petreska and Teuscher’s comput-
ing platform below.

Petreska and Teuscher’s computing platform

Petreska and Teuscher [27] have developed a full implementation of a particu-
lar P system model on reconfigurable hardware. This P system model is similar
to the core P system model, except that it also includes the feature of membrane
creation and dissolution. The hardware architecture for the specific P system to
be executed, which is specified in structural VHDL, is elegant in that it contains
only one type of high-level hardware component (a universal component) and in-
terconnections between components of this type.

Petreska and Teuscher have demonstrated the feasibility of implementing some
of the important features of membrane computing on reconfigurable hardware.
Nevertheless, their computing platform has four main limitations.

First, the computing platform does not exploit the performance advantages of
the membrane computing paradigm. This is primarily because it does not imple-
ment parallelism at the region level (i.e., the reaction rules in a region are applied
sequentially). Achieving region-level parallelism requires the implementation of a
scheme for the resolution of conflicts that arise when different reaction rules com-
pete for or produce the same types of objects in the same region at the same time.
It is difficult to implement such a scheme efficiently in hardware, especially when
a low-level hardware description language is used, and this is perhaps a major
reason why Petreska and Teuscher did not attempt to do so. Conflicts do not arise
when reaction rules do not compete for or produce the same types of objects in the
same region. Nevertheless, in Petreska and Teuscher’s computing platform, even
such non-conflicting reaction rules must be applied sequentially. Furthermore, if
reaction rules from different regions need to update the same multiset, their re-
spective update operations must occur sequentially.

Second, the computing platform is inflexible. As the computing platform uses
only one type of high-level hardware component and connects components of this
type to build hardware architectures in a fixed manner, the extent to which the
hardware architecture for a P system can be tailored to the specific characteristics
of the P system is limited.

Third, the computing platform is not extensible. As it is specified at the hard-
ware level in a low-level hardware description language, adding support for addi-
tional P system features would require redesigning the hardware for the computing



A Parallel Computing Platform for Membrane Computing Applications 481

platform directly. This is likely in most cases to be a difficult and time-consuming
task, given the dependence of the computing platform on the design of a single
universal hardware component. Thus there is limited opportunity to improve the
flexibility of the computing platform.

Fourth, the computing platform has limited scalabilty. As there is only a lim-
ited ability to tailor the hardware architecture to the specific characteristics of the
P system to be executed, the hardware architecture often includes many redun-
dant hardware components. These redundant components unnecessarily consume
hardware resources.

As it implements membrane creation and dissolution in addition to the basic
P system features included in the core P system model, Petreska and Teuscher’s
computing platform can execute a wider range of P systems than Ciobanu and
Guo’s computing platform. So, in this respect, it is more flexible than Ciobanu
and Guo’s computing platform. However, being specified in a low-level hardware
description language, the implementation of Petreska and Teuscher’s computing
platform is more brittle, and therefore less extensible, than the implementation of
Ciobanu and Guo’s computing platform. Therefore, unlike in the case of Ciobanu
and Guo’s computing platform, it seems that it would be very difficult to increase
the flexibility of Petreska and Teuscher’s computing platform without significantly
changing its existing implementation.

3 Description of Reconfig-P

In this section, we describe Reconfig-P, our prototype hardware-based parallel com-
puting platform for membrane computing applications. Being the first computing
platform based on reconfigurable hardware to implement parallelism at both the
system and region levels, Reconfig-P advances the state-of-the-art in hardware im-
plementations of membrane computing. First, we specify the key features of the
novel implementation approach on which Reconfig-P is based, and explain why
this implementation approach has the potential to deliver a good balance between
performance, flexibility and scalability. Second, we specify the functional require-
ments of Reconfig-P. Third, we provide an overview of the major components
of Reconfig-P and the role of these components in the execution of membrane
computing applications. Fourth, we provide an overview of the functionality of
P Builder, a software component of Reconfig-P that is responsible for generat-
ing customised hardware representations for P systems. Finally, we describe how
P Builder represents the fundamental structural and behavioural features of P
systems in hardware.

3.1 Implementation approach

Key features of the implementation approach

The implementation approach on which Reconfig-P is based involves
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• use of a reconfigurable hardware platform,
• generation of a customised digital circuit for each P system to be executed,

and
• use of a hardware description language that allows digital circuits to be spec-

ified at a level of abstraction similar to the level of abstraction at which a
general-purpose procedural software programming language (such as C) allows
algorithms to be specified.

In the approach, a software component of the computing platform is respon-
sible for analysing the structural and behavioural features of the P system to be
executed and producing a hardware description for the P system that is tailored
to these features. When determining the hardware description for the P system,
the software component aims to maximise performance and minimise hardware
resource consumption.

Potential of the implementation approach

The use of reconfigurable hardware opens up the possibility of generating custom
digital circuits for P systems. The ability to generate a custom circuit for the P sys-
tem to be executed makes it possible to design this circuit according to the specific
structural and behavioural features of the P system, and therefore facilitates the
design of circuits that exhibit good performance and economical hardware usage.
Therefore the implementation approach facilitates the development of a comput-
ing platform that exhibits good performance and economical hardware usage. For
example, because the number of reaction rules in the P system to be executed is
known before it is executed, the circuit for the P system can be designed in such
a way that it includes exactly that number of processing units to implement the
reaction rules. Without the possibility of generating a custom circuit, the circuit
for the P system would have to include a fixed number of processing units for re-
action rules, and therefore would often include redundant hardware components.
Also, because it is possible by inspection of the definitions of the reaction rules in
a P system to determine for any two regions in the P system whether it is possible
for objects to traverse between these regions, the circuit for a P system can be
designed in such a way that the logic that implements object traversal is included
only for those inter-region connections over which object traversal is possible.

The fact that digital circuits are specified at a level of abstraction similar to
that at which a general-purpose procedural software programming language spec-
ifies algorithms, rather than at a level of abstraction that reveals the structure or
low-level algorithmic behaviour of the circuits, makes it more feasible to develop a
software component that is able to flexibly adapt to the specific features of the P
system to be executed when generating a circuit for that P system. The greater the
ability of the software component to flexibly adapt to the specific features of the P
system to be executed, the greater the range of P systems for which it is capable of
generating circuits that exhibit good performance and economical hardware usage.
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Therefore the implementation approach facilitates the development of a comput-
ing platform that exhibits good flexibility. For example, as mentioned in Section
2.4, implementing parallelism at the region level of a P system requires resolving
conflicts that may occur when different reaction rules update the same multiplicity
values. If a low-level hardware description language were used, it would be very
difficult to resolve such conflicts in an efficient manner. The use of a high-level
hardware description language makes it more feasible that a solution to the con-
flict resolution problem can be found.

Because it involves the use of a hardware description language that is incapable
of expressing the low-level structure and behaviour of digital circuits, the imple-
mentation approach limits the extent to which low-level optimisations of circuits
can be carried out. However, it is unlikely that the benefits of customisation and
flexibility mentioned above could be achieved if a low-level hardware description
language were used.

The above considerations suggest that the implementation approach has the
potential to deliver a good balance between performance, flexibility and scalability
in a parallel computing platform for membrane computing applications.

3.2 Functional requirements

Reconfig-P is required to execute P systems that instantiate the core P system
model on reconfigurable hardware. In addition, to facilitate testing of P system
designs, Reconfig-P is required to enable the user to execute a P system in soft-
ware, and view the configuration-by-configuration evolution of the P system, before
generating a hardware circuit for the P system.

It is not a strict requirement that Reconfig-P implement the nondeterminism of
P systems. In particular, Reconfig-P is not required to implement the assignment
of objects to reaction rules in a nondeterministic manner. Although nondetermin-
ism is very important from a theoretical perspective and can be useful in some
applications, many applications of membrane computing do not depend on the
nondeterministic aspects of P systems. Therefore we do not regard it as crucial
that a computing platform for membrane computing applications implement the
nondeterminism of P systems. Even so, it is certainly desirable that a computing
platform for membrane computing applications implement the nondeterminism of
P systems. We intend to investigate the feasibility of implementing the nondeter-
minism of P systems in a future version of Reconfig-P.

3.3 System overview

Figure 2 shows the major components of Reconfig-P and the roles of these com-
ponents in the execution of a P system.

(1) The user begins using Reconfig-P by writing a P system specification. This
specification defines a P system that is described in terms of the core P system
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Fig. 2. An overview of Reconfig-P. The shaded region covers the components of Reconfig-
P that are transparent to the user.

model. (2) The hardware source code generator called P Builder (which is hid-
den from the user) processes the input information. (3) P Builder analyses the P
system specification, determines a customised hardware representation for the P
system, and then generates Handel-C source code that implements the hardware
representation. (4) The user can choose to (a) execute the source code in hardware,
or (b) simulate the execution of the source code in software. (5) The ability to gen-
erate simulation source code enables users to examine their P system design before
building a corresponding hardware circuit. (6) The simulation instance (specified
by a DLL file) is executed on a host computer. The host computer invokes the
simulation feature provided by the Celoxica DK Design Suite to allow users to (a)
view the evolution of their P system one configuration at a time, or (b) return the
output of the simulation in an output file. (7) The generation of hardware execution
source code allows the user, once they have finalised the design of their P system,
to build a hardware circuit for the P system. (8) The hardware execution source
code is then synthesised into a hardware circuit. A hardware execution instance
(specified by a bitstream) can then be executed on a reconfigurable hardware plat-
form (an FPGA). The FPGA communicates with the host computer via a PCI
bus. The output of the execution instance is stored in an output file, which can
then be analysed by the user.
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Much of the process of executing a P system is transparent to the user. The
shaded region in Figure 2 covers the components of Reconfig-P that are transparent
to the user.

3.4 P Builder

P Builder is responsible for implementing the hardware reconfiguration capability
of Reconfig-P. It generates customised Handel-C source code for a P system based
on the specific characteristics of the P system.

P Builder interprets a simple declarative language which is used by the user
to specify P systems. More specifically, P Builder supports the execution of a P
system by

1. converting a text representation of the P system (the P system specification)
into software objects (written in Java);

2. converting the object representation into an abstract hardware representation
and then into Handel-C source code that implements the abstract hardware
representation; and then

3. converting the Handel-C source code that implements the abstract hardware
representation into a hardware circuit (by invoking Xilinx tools) or initiating
a simulation of the abstract hardware representation in software (by invoking
the DK Design Suite).

Since P Builder is hidden from the user, the mechanics of the conversion process
it performs are transparent to the user. The conversion process is illustrated in
Figure 3. The innovation of P Builder lies in the way it converts a P system
specification into an abstract hardware representation. In the next section, we
describe how P Builder represents the core structural and behavioural features of
P systems in hardware.

3.5 Hardware implementation of core P system features

P systems can differ significantly with respect to size, structure and information
content. Reconfig-P takes advantage of this fact by configuring the hardware ac-
cording to the specific requirements of the P system to be executed.

Although P systems can differ significantly, there are certain core features
common to all P systems. These include (a) regions and their containment rela-
tionships, (b) the mutiset of objects in every region, (c) application of reaction
rules, and (d) synchronisation of the application of reaction rules. This section
describes how these core features are implemented in hardware.

Regions and their containment relationships

As the evolution of a P system is essentially a matter of the modification of the
contents of regions according to certain rules, regions do not need to be explicitly
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Fig. 3. P Builder converts the text specification of a P system into an executable hard-
ware circuit or a software simulation of such a hardware circuit. In the intermediate stages
of the conversion process, the P system is represented as software objects and then as
abstract hardware components.

represented in hardware. Instead, a region is represented in hardware implicitly via
its contents. The only inter-region containment relationships that it is important
to represent are those between regions between which it is possible for objects to
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traverse through the application of a reaction rule. These containment relationships
are represented implicitly by ensuring that each reaction rule with an ‘in’ or ‘out’
target directive has, for each region to/from which it sends/receives objects, access
to the multiset of objects in that region.

Multisets of objects in regions

Because the multiplicity values of objects in a region can be accessed by multi-
ple reaction rules simultaneously, the hardware elements that store them should
support concurrent accesses. Therefore a multiset is implemented as an array of
registers (see Figure 4). Because it is infeasible to predict which types of objects
may become available in which regions during the evolution of a P system, the
array of registers that represents the multiset of objects in a region contains one
register for every type of object in the alphabet of the P system. A common
bitwidth is used for all object types (the default width is 8 bits).

Using registers can be expensive if a large amount of data needs to be stored.
However, because in the hardware design each register corresponds to the multi-
plicity of a type of object in a region (rather than an individual object), for most
P systems only a relatively small amount of data needs to be stored.

 a
a

a  b b 

a3b2 00000011 00000010 00000000

objects in region 

a b c{  ,    ,    } 
alphabet 

array of registers

Fig. 4. A multiset of objects in a region is implemented as an array of registers.

Reaction rules

A reaction rule is implemented as a processing unit. This processing unit is rep-
resented in Handel-C as a potentially infinite while loop that contains code that
specifies the processing associated with the application of the reaction rule. If a
reaction rule operates on the multiplicity value for a particular object type in a
particular region, then the section of the code for its corresponding processing
unit that accomplishes this operation contains a reference to the array element
representing that multiplicity value.

In a transition of a P system, all the reaction rules in the system complete one
instance of execution, which consists of two phases. In the first phase, called the
preparation phase, objects are assigned to the reaction rules that require them as
reactants or catalysts. That is, for each reaction rule in each region, the number
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of instances of the reaction rule that can be applied is determined. In the second
phase, called the updating phase, each applicable reaction rule updates one or more
multisets of objects according to its definition and the number of instances of the
reaction rule that can be applied.

The rest of this section describes the processing performed by the processing
units for reaction rules during the preparation and updating phases.
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high-level hardware components. (The multiset replication coordinator and extra array
elements for object type b in region 3 are included only if the space-oriented conflict
resolution strategy is used.)

Preparation phase

In the preparation phase, each reaction rule attempts to obtain as many of each of
its required types of object as possible so as to maximise the number of instances
of the reaction rule that can be applied in the updating phase. Therefore imple-
menting the preparation phase involves calculating for each reaction rule r the
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value max-instancesr, which is the maximum number of instances of r that can be
applied in the current transition of the P system given (a) the current state of the
multiset of objects in its region and (b) the relative priorities and requirements
of the other reaction rules in its region. The processing unit corresponding to r
performs the calculation.

To calculate max-instancesr, the processing unit for a reaction rule r first
calculates for each of its required object types (using integer division) the ratio of
the number of available objects of that type in the region of r to the number of
objects of that type needed to apply one instance of r. This is done in one clock
cycle. It then calculates max-instancesr, which is equal to the minimum ratio
calculated in the previous step. The operation of determining the minimum ratio
can be represented as a binary tree in which each node corresponds to the execution
of a binary MIN operation and executing the MIN operation at the root node gives
the value of the minimum ratio. This tree has log2 n levels, where n is the sum of
the number of reactants and the number of catalysts in the definition of r. The
processing unit for r evaluates max-instancesr by first executing in parallel all the
MIN operations at the bottom (leaf) level of the tree, then executing in parallel
all the MIN operations at the next level up, and so on, until finally it executes the
MIN operation at the root node to obtain the value of max-instancesr. Therefore
calculating max-instancesr takes log2 n clock cycles.

If two reaction rules attempt to obtain objects of the same type, then their
corresponding processing units execute the relevant operation one after the other
according to their relative priorities. (It is assumed that reaction rules that attempt
to obtain objects of the same type have been assigned relative priorities.) Other-
wise, the processing units for different reaction rules execute in parallel. Therefore
the number of clock cycles taken to complete the preparation phase for the entire
P system is the maximum number of clock cycles taken by an individual reaction
rule, out of all the reaction rules in the P system, to complete its preparation
phase.

Updating phase

At the start of the updating phase, the processing unit for a reaction rule r inspects
the value of max-instancesr to determine whether r is applicable in the current
transition. If max-instancesr = 0, r is inapplicable; otherwise r is applicable. As
it takes zero clock cycles to evaluate a conditional expression in Handel-C, deter-
mining the applicability of r takes zero clock cycles. The applicability status of
r is recorded in the isApplicableFlag of r (see Figure 6). Once the applicability
status of each reaction rule has been determined and recorded, the processing unit
that coordinates the execution of reaction rules is able to determine whether the
P system should halt or continue the updating phase. Assume that the P system
should continue the updating phase. If r is inapplicable, the processing unit for r
simply waits for the next transition. If r is applicable, it moves on to the next step
of the updating phase.
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In the next step of the updating phase, every instance of every applicable re-
action rule is applied. This is implemented by having the processing unit for each
applicable reaction rule r bring about the combined effect of the execution of
the instances of r. That is, the processing unit decreases/increases certain mul-
tiplicity values in certain multiset data structures according to the type, amount
and source/destination of the objects consumed/produced by the instances of the
reaction rule. For example, in Figure 5, in the next transition of the P system
represented at the top of the figure, the processing unit R2 would decrease by
2 the value stored in the register corresponding to object type a in the multi-
set data structure for region 2, and increase by 2 the value stored in the register
corresponding to object type b in the multiset data structure for region 1.

If a reaction rule includes ‘in’ target directives, the definition of a P system calls
for nondeterministic targeting of objects if there are multiple child regions. Such
nondeterministic targeting can be approximated through the use of pseudorandom
numbers. Therefore, the hardware design associates a random number generator to
each processing unit for a reaction rule that might produce objects in multiple child
regions of its own region. When such a processing unit needs to select a destination
child region, it invokes its random number generator to obtain a number which
identifies the child region to be selected. For example, the processing unit R1 in
Figure 5 invokes its random number generator to determine whether to produce b
objects in region 2 or in region 3.

Processing units for reaction rules that do not manipulate any multiplicity
values in common execute in parallel during the updating phase. This is not nec-
essarily the case for processing units for reaction rules that do manipulate at least
one multiplicity value in common, since without further measures being taken, the
parallel execution of such processing units would lead to situations where multiple
processing units write to the same register at the same time. Section 3.6 describes
two alternative techniques Reconfig-P makes available for the prevention of such
situations, and shows the extent to which each technique allows conflicting process-
ing units to execute in parallel during the updating phase. The number of clock
cycles taken to complete the updating phase depends on the conflict resolution
strategy that is adopted.

Synchronisation of reaction rules

Figure 6 illustrates the synchronisation of reaction rules involved in the execution
of a transition of a P system.

The synchronisation of reaction rules is controlled by three sentinels — prepara-
tionSentinel, applicableSentinel and updatingSentinel — and corresponding flags
associated with each reaction rule — preparationCompleteFlag, updatingCom-
pleteFlag and isApplicableFlag. The sentinels are implemented as 1-bit registers.
Each type of flag is implemented as an array of 1-bit registers, each element of
which being associated with one reaction rule in the P system. The flags prepa-
rationCompleteFlag, isApplicableFlag and updatingCompleteFlag for a reaction
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rule are used to indicate whether the reaction rule has completed its preparation
phase, is applicable, and has completed its updating phase, respectively. The value
of each sentinel is the result of performing the AND or OR function to the values of
all its corresponding flags. The value of preparationSentinel indicates whether all
reaction rules in the P system have completed their preparation phase. The value
of applicableSentinel indicates whether at least one reaction rule is applicable (i.e.,
whether the P system should continue execution). And the value of updatingSen-
tinel indicates whether all applicable reaction rules in the P system have completed
their updating phase (and hence whether the P system is ready to proceed to the
next transition).

The management of synchronisation is the responsibility of the rule application
coordinator, a processing unit that executes in parallel with the processing units
for the reaction rules (see Figure 5). The rule application coordinator monitors
the conditions relevant to synchronisation at each clock cycle.

Let n be the number of reaction rules in the P system. The most natural
way to implement the updating of a sentinel value in Handel-C is to write an
assignment statement of the form s = f1#f2#...#fn, where s is the variable
that stores the sentinel value, each fi(1 ≤ i ≤ n) is a flag for a reaction rule,
and # is either the AND operator or the OR operator. Clearly, the greater the
number of reaction rules in the P system, the greater the number of AND or
OR operations that need to be performed, and therefore the greater the depth
of the logic that implements the assignment statement. Since in Handel-C an
assignment statement always takes one clock cycle to execute, increasing the depth
of the logic that implements an assignment statement can result in a reduction
in the clock rate of the FPGA. Therefore, in some situations, decomposing an
assignment statement into multiple assignment statements of reduced logical depth
can prevent or mitigate a reduction in the clock rate of the FPGA. Whether or
not performing such a decomposition is advantageous depends on whether the
beneficial effect of reducing the clock cycle length outweighs the detrimental effect
of introducing extra clock cycles. For P systems with a large number of reaction
rules it might be advantageous to decompose each assignment statement that
implements the updating of a sentinel value into multiple assignment statements
of reduced logical depth. Therefore Reconfig-P incorporates a logic depth reduction
feature. It decomposes an assignment statement with n operands into multiple
assignment statements, each of with has at most x ≤ n operands. If as many
of these assignment statements as possible contain x operands, then the original
assignment statement is replaced by dlogx ne assignment statements. The user sets
the value of x in order to obtain the best results. By default, Reconfig-P does not
perform logic depth reduction (i.e., x = n by default).

3.6 Conflict resolution in the updating phase

As discussed in Section 3.5, a conflict occurs in the updating phase when multiple
processing units for reaction rules write to the same register at the same time.
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Fig. 6. An illustration of the synchronisation performed to accomplish a transition of a
P system.

This occurs if the reaction rules consume or produce the same type of object in
the same region in the same transition. As mentioned in Section 2.4, Petreska
and Teuscher’s hardware implementation avoids the conflict problem by totally
sacrificing the parallelism that gives rise to the problem. This is an undesirable
strategy, because it hinders performance significantly.
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Reconfig-P implements two alternative conflict resolution strategies: the time-
oriented strategy and the space-oriented strategy. The time-oriented strategy con-
sumes time, whereas the space-oriented strategy consumes space. Therefore, the
best strategy to use depends on whether it is more important to optimise space
or time usage. The user selects the strategy to be used.

Both strategies involve determining in software before run-time all of the po-
tential conflicts that might occur between reaction rules, and then generating the
hardware circuit for the P system in such a way that all processing units can exe-
cute independently without any possibility of writing to the same register at the
same time. The task of determining the resource conflicts has a time complexity
of Θ(nrno), where nr is the number of reaction rules in the P system, and no is
the number of object types in the alphabet of the P system. Therefore it has a
negligible impact on performance. Note that, since the circuit for the P system
need be generated only once, the task is performed only once.

In both strategies, potential conflicts are determined through the construction
of a conflict matrix. Each row of a conflict matrix for a P system is a quadruple
(p, q, r, s), where p is an object type in the alphabet of the P system, q is a region
in the P system, r is the set of reaction rules whose application results in the
consumption and/or production of objects of type p in q, and s — called the
conflict degree of (p, q) — is the size of r. There is a row for every pair (p, q).

We now describe how the updating phase occurs when (a) the time-oriented
strategy is used, and (b) the space-oriented strategy is used.

Time-oriented conflict resolution

In the time-oriented conflict resolution strategy, if two reaction rules need to up-
date the multiplicity value for the same type of object in the same region, then
they do so one after the other (the order in which they do so is not important and
so is chosen arbitrarily).

Table 1 illustrates the time-oriented strategy. In the table, ‘u(p, q)’ denotes the
operation of updating the multiplicity value of object type p in region q.

The correct interleaving of the various conflicting operations of the processing
units is determined by means of analysis of the conflict matrix for the P system
before run-time. That is, the Handel-C source code that is generated for the P
system specifies the interleaving directly. This is achieved by inserting the appro-
priate number of single-clock-cycle delay statements in the appropriate places in
the source code for the processing units. For example, the code in the processing
unit for r3

1 that updates the multiplicity value of object type a in region 2 is pre-
ceded by two delay statements, whereas the corresponding code for object type
b in region 3 is not preceded by any delay statements. For the general case, take
a quadruple (p, q, r, s) from the conflict matrix for a P system. Assume that the
reaction rules r1, r2, . . . , rn ∈ r are ordered (for the purpose of conflict resolution)
according to the natural ordering of their subscripts. Then the number of delay
statements to be inserted immediately before the code in the processing unit for
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the reaction rule ri ∈ r that updates the multiplicity value of object type p in
region q is equal to i− 1. As Table 1 illustrates, the number of clock cycles taken
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Fig. 7. An example P system configuration. An arrow labelled by reaction rule r from
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r (taken from q1) and p2 is a product of r (produced in q2).

to update the multiplicity value for object type p in region q of a P system is
equivalent to the conflict degree of (p, q), which is recorded in the conflict matrix
for the P system.

Let k be the highest conflict degree in the conflict matrix for a P system. Then
the updating phase for the P system takes k clock cycles to complete when the
time-oriented conflict resolution strategy is used.

Table 1. How the processing units for the reaction rules in the P system in Figure 7
execute during the updating phase of the current transition if the time-oriented conflict
resolution strategy is used.
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Space-oriented conflict resolution

In the space-oriented conflict resolution strategy, if n reaction rules need to update
the multiplicity value for the same type of object in the same region, then n
copies are made of the register that stores that multiplicity value. The processing
units for the conflicting reaction rules are assigned one copy register each, and
in the updating phase write to their respective copy registers (see Figure 5 for
an example). Once all of the processing units for reaction rules have completed
writing to their registers, processing units called multiset replication coordinators
(each of which is associated with one object type in one region and runs in parallel
with the other processing units in Reconfig-P) read the values that have been
stored in the copy registers, and set the original registers in the relevant multiset
data structures accordingly (again see Figure 5). This step takes one clock cycle
to complete. However, for P systems with a large number of object copies, it may
be beneficial to perform logic depth reduction (see Section 3.5).

Table 2 illustrates the space-oriented strategy.

Table 2. How the processing units for the reaction rules in the P system in Figure 7
execute during the updating phase of the current transition if the space-oriented conflict
resolution strategy is used.
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4 Evaluation of Reconfig-P

In this section, we evaluate the performance, flexibility and scalability of Reconfig-
P. First, we present a theoretical analysis of the performance of Reconfig-P. Then
we present and discuss empirical results that give insight into the performance and
hardware resource usage of Reconfig-P. Finally we comment on the flexibility of
Reconfig-P.

4.1 Theoretical evaluation of the performance of Reconfig-P

Figure 8 presents the time complexity of the parallel algorithm executed by
Reconfig-P (in both the time-oriented and space-oriented modes) as well as the
time complexity of the sequential algorithm used in sequential implementations of
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membrane computing. Table 3 illustrates the relative theoretical performances of
(a) the sequential algorithm, (b) an algorithm that implements parallelism only at
the system level (as in Petreska and Teuscher’s computing platform), (c) the time-
oriented parallel algorithm executed by Reconfig-P, and (d) the space-oriented
parallel algorithm executed by Reconfig-P. It does so by evaluating their time
complexities for example P systems.

In Table 3, larger and larger P systems are derived from one initial basic P sys-
tem using either horizontal cascading or vertical cascading. In horizontal cascading,
more and more regions are added, but the number of reaction rules per region is
held constant. In vertical cascading, the number of reaction rules per region in-
creases, but the number of regions is held constant. The following assumptions,
deemed to represent the average case, are made: (a) there are 20 object types; (b)
each reaction rule has four reactant object types, four catalyst object types and
four product object types; (c) there are conflicts on 20% of the object types in the
preparation phase; and (d) there are conflicts on 60% of the object types in the
updating phase. Assumption (d) gives rise to a k value for each P system, which is
the highest conflict degree in the conflict matrix for the P system. P systems are
also assigned an arbitrary a value, which is the percentage of reaction rules that
are applicable in a transition on average.

Table 3 clearly demonstrates the superior speed of the algorithm executed
by Reconfig-P over both the sequential algorithm and the algorithm with one
level of parallelism. When horizontal cascading is applied, the time-oriented and
space-oriented algorithms both show exceptional scalability. When the k value is
small and reaction rules are evenly distributed across regions, the time-oriented
algorithm is more effective than the space-oriented algorithm because it uses less
space while achieving similar speeds. When vertical cascading is applied, the time-
oriented and space-oriented algorithms are significantly faster than the algorithm
with one level of parallelism. The space-oriented algorithm is faster than the time-
oriented algorithm. The main reason is that, whereas increasing the k value reduces
the degree of parallelism in the updating phase when the time-oriented algorithm
is used, this is not the case when the space-oriented algorithm is used.

4.2 Empirical evaluation of the performance and scalability of
Reconfig-P

We have conducted a series of experiments to investigate the performance and
hardware resource usage of Reconfig-P. In this section, we present and discuss
the results of these experiments, and evaluate the performance and scalability of
Reconfig-P in light of these results.

Details of the experiments

Table 4 shows the P systems that were executed in the experiments. Each P
system was constructed by first taking n copies of the basic P subsystem shown
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Table 3. An illustration of the time complexity results presented in Figure 8.
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at the top-right of Figure 9, then cascading these copies in a horizontal, vertical
or horizontal and vertical manner (as shown in Figure 9), and finally placing the
copies into the region shown at the top-left of Figure 9. The value of n is a mea-
sure of the size of the constructed P system; the larger the value of n, the larger
the P system. Thus in the experiments a series of P systems of different sizes and
different structures were executed.

Table 4 lists a C value for each P system. The C value for a P system is
a measure of the amount of conflict that exists between reaction rules in the P
system. More specifically, C is the sum of the conflict degrees of all pairs (p, q) for
the P system, where p is an object type, q is a region and the conflict degree of
the pair is greater than 1.

The target circuit for the experiment was the Xilinx Virtex-II XC2V6000FF11
52-4, and the Handel-C code for the P systems was synthesised, placed and routed
using Xilinx tools.

Table 4. Details of the P systems used in the experiments.

 
Horizontal cascading

 
Vertical cascading Horizontal and 

vertical cascading P 
system n Regions 

Rules C k Rules  C k Rules C k 

1 1 4 11 27 7 11 27 7 11 27 7 
2 2 7 21 53 7 22 54 7 22 54 7 
3 4 13 41 97 7 44 108 7 42 106 7 
4 8 25 81 193 9 88 216 7 83 211 7 
5 16 49 161 377 17 176 432 7 165 415 7 
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Evaluation of the hardware resource usage of Reconfig-P

Table 5 shows experimental data related to the hardware resource usage of
Reconfig-P, both when it executes in time-oriented mode and when it executes
in space-oriented mode. We use the number of LUTs (lookup tables) on the cir-
cuit generated for a P system as the measure of the hardware resource usage of
Reconfig-P for that P system. We also record the percentage of the LUTs avail-
able on the FPGA that is used by the circuit, because this percentage provides an
indication of the extent to which current FPGA technology meets the hardware
resource requirements of Reconfig-P.

Table 5. Experimental results related to the hardware resource usage of Reconfig-P in
both the time-oriented and space-oriented modes.

Time-oriented mode Space-oriented mode 
P system n Number of 

LUTs % of LUTs Number of 
LUTs % of LUTs 

Horizontal cascading 
1 1 1046 1.55% 1102 1.63% 
2 2 1667 2.47% 1801 2.66% 
3 4 3058 4.52% 3248 4.81% 
4 8 5752 8.51% 6060 8.97% 
5 16 11106 16.43% 11719 17.34% 

Vertical cascading 
1 1 1046 1.55% 1102 1.63% 
2 2 1959 2.9% 2075 3.07% 
3 4 3570 5.32% 3790 5.65% 
4 8 6771 10.09% 7344 10.87% 
5 16 13207 19.79% 14486 21.43% 

Horizontal and vertical cascading 
1 1 1046 1.55% 1102 1.63% 
2 2 1934 2.94% 1934 2.94% 
3 4 3479 5.16% 3689 5.46% 
4 8 6597 9.76% 7293 10.79% 
5 16 12780 19.41% 13360 20.1% 

Figures 10 and 11 illustrate the experimental data in graphical form.
Figures 10 and 11 illustrate the experimental data in graphical form. We make

the following observations:

• The hardware resource usage of Reconfig-P scales linearly with respect to the
size of the P system executed (i.e., with respect to n). This is as good as can
reasonably be expected, and indicates that Reconfig-P is scalable with respect
to hardware resource usage.
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• The type of cascading employed in the construction of the P system that is
executed has little effect on hardware resource usage.

• For all P systems, Reconfig-P uses less than 22% of the LUTs available on the
FPGA. Given that the largest P system has 49 regions and 176 reaction rules,
this is an impressive result. Not only does it strongly suggest that current
FPGA technology meets the hardware resource requirements of Reconfig-P,
it also indicates that it would be feasible to extend Reconfig-P to support P
system features not covered by the core P system model.

• Reconfig-P uses only slightly more hardware resources in space-oriented mode
than in time-oriented mode. This suggests that, at least for the P systems exe-
cuted in the experiments, multiset replication has only a relatively small effect
on hardware usage. Indeed, even for P systems with C > 400 and therefore
with more than 400 copies of multiplicity values, the hardware resources con-
sumed by Reconfig-P to store, access and coordinate these copies is relatively
small.

In summary, the experimental results indicate that Reconfig-P makes efficient
use of hardware resources, and therefore is scalable with respect to hardware re-
source usage. The fact that less than 22% of the available hardware resources is
used for even relatively large P systems augurs well for the flexibility of Reconfig-P
(see Section 4.3 for more on this point).

Evaluation of the performance of Reconfig-P

Table 6 shows the number of clock cycles that Reconfig-P executes per transi-
tion for each of the P systems used in the experiments, both when it executes
in time-oriented mode and when it executes in space-oriented mode. The values
shown in the table were determined empirically.

We make the following observations:

• Nearly all of the P systems used in the experiments have k = 7. When it
executes in time-oriented mode, Reconfig-P takes 14 clock cycles to execute a
transition if k = 7. When k = 9, it takes 16 clock cycles, and when k = 17,
it takes 24 clock cycles. This is exactly as expected, given that the number
of clock cycles taken to execute the updating phase across all regions in a P
system is equal to k when the time-oriented conflict resolution strategy is used
(see Section 3.6).

• When it executes in space-oriented mode, Reconfig-P takes 7 clock cycles to
execute a transition for all the P systems used in the experiments. This suggests
that when the space-oriented conflict resolution strategy is used, Reconfig-P
shows exceptional scalability with respect to the number of clock cycles it takes
per transition.

• Overall, Reconfig-P shows excellent scalability with respect to the number of
clock cycles it takes per transition. However, when it executes in time-oriented
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Table 6. Experimental data related to the number of clock cycles Reconfig-P takes to
execute one P system transition.

Number of clock cycles per 
transition P system n k 

Time-oriented 
mode 

Space-oriented 
mode 

Horizontal cascading 
1 1 7 14 7 
2 2 7 14 7 
3 4 7 14 7 
4 8 9 16 7 
5 16 17  24 7 

Vertical cascading 
1 1 7 14 7 
2 2 7 14 7 
3 4 7 14 7 
4 8 7 14 7 
5 16 7 14 7 

Horizontal and vertical cascading 
1 1 7 14 7 
2 2 7 14 7 
3 4 7 14 7 
4 8 7 14 7 
5 16 7 14 7 

 

mode and horizontal cascading is applied, increases in the size of the P system
to be executed can lead to increases in the value of k, and hence increases in
the number of clock cycles per transition.

• Reconfig-P takes considerably less clock cycles per transition when it executes
in space-oriented mode than when it executes in time-oriented mode. This is
as expected, given that the updating phase executes in a maximally parallel
manner when the space-oriented conflict resolution strategy is used, but only in
a partially parallel manner when the time-oriented conflict resolution strategy
is used.

Table 7 shows the performance of Reconfig-P for each of the P systems used
in the experiments, both when it executes in time-oriented mode and when it
executes in space-oriented mode. It also shows, for the sake of comparison, the
corresponding results for a software-based sequential computing platform (i.e., a
Java simulator for the core P system model).

Figures 12, 13 and 14 illustrate the experimental data in graphical form. We
make the following observations:
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Table 7. Experimental data related to the performance of Reconfig-P (in both the space-
oriented and time-oriented modes) and a software-based sequential computing platform.

Reaction rule applications per second 

P system n Software-based 
sequential 

computing platform

Reconfig-P (space-
oriented mode) 

Reconfig-P (time-
oriented mode) 

Horizontal cascading 
1 1 3.7 × 105 57 × 105 53 × 105 
2 2 4.5 × 105 120 × 105 110 × 105 
3 4 5.3 × 105 230 × 105 210 × 105 
4 8 4.7 × 105 460 × 105 410 × 105 
5 16 3.5 × 105 910 × 105 710 × 105 

Vertical cascading 
1 1 3.7 × 105 57 × 105 53 × 105 
2 2 5.2 × 105 126 × 105 116 × 105 
3 4 4.3 × 105 250 × 105 230 × 105 
4 8 3.2 × 105 500 × 105 460 × 105 
5 16 2 × 105 1000 × 105 890 × 105 

Horizontal and vertical cascading 
1 1 3.7 × 105 57 × 105 53 × 105 
2 2 4.1 × 105 126 × 105 115 × 105 
3 4 4.5 × 105 240 × 105 220 × 105 
4 8 3.7 × 105 470 × 105 430 × 105 
5 16 2.7 × 105 930 × 105 820 × 105 

• Reconfig-P executes P systems significantly faster than the software-based se-
quential computing platform (from 14 to 500 times faster). The larger the P
system that is executed, the greater the extent to which Reconfig-P outper-
forms the sequential computing platform. This is as expected, because larger
P systems have more regions and more reaction rules and therefore more op-
portunity for parallelism at both the system and region levels.

• In general, the performance of Reconfig-P in both the space-oriented and time-
oriented modes increases linearly with respect to the size of the P system that
is executed. This is a good result, because it indicates that as the size of the
P system to be executed increases, Reconfig-P is able to take advantage of
the increased opportunities for parallelism. That is, there does not appear to
be any significant problems of scale in the hardware design (e.g., nonlinearly
growing logic depths in certain parts of the hardware circuit that would reduce
the clock rate of the FPGA).

• Reconfig-P performs better in space-oriented mode than in time-oriented mode,
although only by approximately 10%. This relatively small difference is a con-
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sequence of the fact that the various P systems used in the experiments have
small k values. If the k values were larger, we would expect to observe a more
pronounced difference in performance between the space-oriented and time-
oriented modes.

In summary, the experimental results indicate that Reconfig-P achieves very
good performance.

4.3 Evaluation of the flexibility of Reconfig-P

In its current prototype form, Reconfig-P supports the basic P system features
covered by the core P system model. Therefore it is not able to execute P systems
that include additional features such as structured objects and membrane perme-
ability. This counts against its flexibility. However, there is good reason to believe
that Reconfig-P can be extended to support additional P system features. As we
have observed, Reconfig-P exhibits exceptionally economic hardware resource us-
age: for the P systems used in the experiments, approximately 75% of the available
hardware resources are left unused. Thus there is ample space on the FPGA for the
inclusion of additional data structures and logic required for the implementation
of additional features. Furthermore, the fact that Reconfig-P is implemented in a
high-level hardware description language should ease the process of incorporating
additional features into the existing implementation.

5 Conclusion

By developing Reconfig-P, we have demonstrated that it is possible to efficiently
implement both the system-level and region-level parallelism of P systems on re-
configurable hardware and thereby achieve significant performance gains.

Theoretical results demonstrate that the algorithm executed by Reconfig-P is
significantly faster than the sequential algorithm used in sequential implemen-
tations of membrane computing. Empirical results show that for a variety of P
systems Reconfig-P achieves very good performance while making economical use
of hardware resources. And there is good reason to believe that Reconfig-P can be
extended in the future to support additional P system features. Therefore, there is
strong evidence that the implementation approach on which Reconfig-P is based
is a viable means of attaining a good balance between performance, flexibility and
scalability in a parallel computing platform for membrane computing applications.
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26. Pérez-Jiménez, M. J. and Romero-Campero, F. 2004. A CLIPS Simulator for

Recognizer P Systems with Active Membranes. In Pǎun, G., Riscos-Núñez, A.,
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Definitions
M = {m1, m2, ..., mn} is the set of membranes in the P system. V = {o1, o2, ..., ov} is
the alphabet of the P system. Rmx =

{
r1,mx , r2,mx , ..., rkmx ,mx

}
is the set of reaction

rules in the region defined by membrane mx. ry,mx is the yth reaction rule in the region
defined by membrane mx. ra

y,mx
denotes that ry,mx is applicable. nR(ry,mx), nC(ry,mx)

and nP(ry,mx) denote the number of reactant, catalyst and product object types in
reaction rule ry,mx , respectively. MUPDATE

mx
: V −→ Rmx maps each object type in

the region defined by membrane mx to the set of reaction rules that might update
its multiplicity. Maxn

i=1xi is the function that returns the maximum value in the set
{x1, x2, ..., xn}. In the following performance analysis, e denotes the time taken to ex-
ecute one transition of a P system. This time is composed of the separate times taken
to execute the preparation phase (p), the updating phase (u) and (in the parallel algo-
rithm) synchronisation operations (s). Synchronisation operations include updates of
the sentinels preparationSentinel and updatingSentinel, as well as operations related
to multiset replication coordination. Times are measured in clock cycles.

Sequential algorithm

eSEQ =

n∑
i=1

kmi∑
j=1

=

{
pSEQ(rj,mi) , if rj,mi is not applicable
pSEQ(rj,mi) + uSEQ(rj,mi) , if rj,mi is applicable

where
pSEQ(ry,mx) = nR(ry,mx) + nC(ry,mx)− 1

and
uSEQ(ra

y,mx
) = nR(ra

y,mx
) + nP(ra

y,mx
).

Parallel algorithm

ePAR = Maxn
i=1Max

kmi
j=1 pPAR(rj,mi) + Maxn

i=1Max
kmi
j=1 uPAR(ra

j,mi
) + sPAR,

where

pPAR(ry,mx) =


∑y

s=1
log2(n

R(rs,mx) + nC(rs,mx)),
if rs,mx has an assigned priority

log2(n
R(ry,mx) + nC(ry,mx)),

if ry,mx does not have an assigned priority

and

Maxn
i=1Max

kmi
j=1 uPAR(ra

j,mi
) =


Maxn

i=1Maxv
j=1

∣∣MUPDATE
mi

(oj)
∣∣ ,

if the time-oriented strategy is used
1,

if the space-oriented strategy is used

and

sPAR =

{
2(logx

⌈∑n

i=1
|Rmi |

⌉
− 1) , if the time-oriented strategy is used.

2(logx

⌈∑n

i=1
|Rmi |

⌉
− 1) + 1 , if the space-oriented strategy is used.

Fig. 8. The time complexities of the parallel algorithm executed by Reconfig-P and the
sequential algorithm executed by sequential implementations of membrane computing.
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Fig. 9. Each P system used in the experiments was constructed by first cascading n
copies of a basic P subsystem in a horizontal, vertical or horizontal and vertical manner,
and then placing these copies into an outermost region.
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Fig. 10. An illustration of the experimental results related to the hardware resource
usage of Reconfig-P in space-oriented mode.
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Hardware resource usage of Reconfig-P 
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Fig. 11. An illustration of the experimental results related to the hardware resource
usage of Reconfig-P in time-oriented mode.
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Fig. 12. An illustration of the experimental data related to the performance of Reconfig-
P (in both the space-oriented and time-oriented modes) and a software-based sequential
computing platform when horizontal cascading is applied.
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Performance of Reconfig-P and a software-based 
sequential computing platform when vertical 

cascading is applied
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Fig. 13. An illustration of the experimental data related to the performance of Reconfig-
P (in both the space-oriented and time-oriented modes) and a software-based sequential
computing platform when vertical cascading is applied.
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Fig. 14. An illustration of the experimental data related to the performance of Reconfig-
P (in both the space-oriented and time-oriented modes) and a software-based sequential
computing platform when horizontal and vertical cascading is applied.


