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Summary. We consider once more the membrane systems with proteins on membranes.
This model is bridging the membrane systems and brane calculi areas together, thus it
is interesting to study it in more depth. We have improved previous results in the area
and also defined a new variant of these systems based on time as the output of the
computation. The new model allows (due to its flexibility) even stronger improvements
with respect to the number of proteins needed to perform the computation.

1 Introduction

We continue the work on a membrane systems model combining membrane systems
and brane calculi as introduced in [14]. In brane calculi introduced in [5], one works
only with objects – called proteins – placed on membranes, while the evolution is
based on membrane handling operations, such as exocytosis, phagocytosis, etc. In
the membrane computing area we have rules associated with each region defined by
a membrane, and in the recent years the rules in membrane computing have been
considered mainly to work on symbol objects rather than other structures such
as strings. The extension considered in [14] and in [15] was to have both types of
rules (both at the level of the region delimited by membranes and also at the level
of membrane controlled by a protein). The reason for considering both extensions
was that in biology, many reactions taking place in the compartments of living
cells are controlled/catalysed by the proteins embedded in the membranes bilayer.
For instance, it is estimated that in the animal cells, the proteins constitute about
50% of the mass of the membranes, the rest being lipids and small amounts of
carbohydrates. There are several types of such proteins embedded in the membrane
of the cell; one simple classification places these proteins into two classes, that of
integral proteins (these molecules can “work” in both inside the membrane as
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well as also in the region outside the membrane), and that of peripheral proteins
(macromolecules that can only work in one region of the cell) – see [1].

In the present paper we continue the discussion in the direction of membrane
systems with proteins, but we extend the model to have also a “more natural”
output of the computation with ideas from [8].

Briefly, the systems that we consider in this paper extend the original defini-
tion by using the paradigm of time as the output of a computation as previously
introduced in [6] and [8]. The idea originates in [17] as Problem W; the novelty
is that instead of the “standard” way to output, like the multiplicities of objects
found at the end of the computation in a distinguished membrane as it was de-
fined in the model from [14] and in [15], it seems more “natural” to consider certain
events (i.e., configurations) that may occur during a computation and to relate the
output of such a computation with the time interval between such distinguished
configurations. Our system will compute a set of numbers similarly with the case
of “normal” symport/antiport systems as defined in [14], but the benefit of the
current setting is that the computation and the observance of the output are now
close to the biology and to the tools used for cell biology (fluorescence microscopy,
FACS).

2 The Types of Rules in the System

In what follows we assume that the reader is familiar with membrane computing
basic elements, e.g., from [16] and from [19], as well as with basic elements of
computability, so that we only mention here a few notations we use. The rules
based on proteins on membranes were described in detail in [14], and we refer the
interested reader to that publication and to [15] for further details.

As usual, we represent multisets of objects from a given alphabet V by strings
from V ∗, and the membrane structures by expressions of correctly matching la-
beled parentheses. The family of recursively enumerable sets of natural numbers
is denoted by NRE.

In the P systems which we consider below, we use two types of objects, proteins
and usual objects; the former are placed on the membranes, the latter are placed
in the regions delimited by membranes. The fact that a protein p is on a membrane
(with label) i is written in the form [ ip|. Both the regions of a membrane structure
and the membranes can contain multisets of objects and of proteins, respectively.

We consider the following types of rules for handling the objects and the pro-
teins; in all of them, a, b, c, d are objects, p is a protein, and i is a label (“cp” stands
for “change protein”), where p, p′ are two proteins (possibly equal; if p = p′, then
the rules of the type cp become rules of the type res; i.e. restricted):
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Type Rule Effect (besides changing also the protein)
1cp [

i
p|a → [

i
p′|b

a[
i
p| → b[

i
p′| modify an object, but not move

2cp [
i
p|a → a[

i
p′|

a[
i
p| → [

i
p′|a move one object unmodified

3cp [
i
p|a → b[

i
p′|

a[ ip| → [ ip
′|b modify and move one object

4cp a[ ip|b → b[ ip
′|a interchange two objects

5cp a[ ip|b → c[ ip
′|d interchange and modify two objects

An intermediate case between res and cp can be that of changing proteins in
a restricted manner, by allowing at most two states for each protein, p, p̄, and the
rules working either in a res manner (without changing the protein), or changing
it from p to p̄ and back (like in the case of bistable catalysts). Rules with such
flip-flop proteins are denoted by nff, n = 1, 2, 3, 4, 5 (note that in this case we
allow both rules which do not change the protein and rules which switch from p
to p̄ and back).

Both in the case of rules of type ff and of type cp we can ask that the proteins
are always moved in another state (from p into p̄ and vice versa for ff). Such rules
are said to be of pure ff or cp type, and we indicate the use of pure ff or cp rules
by writing ffp and cpp, respectively.

We can use these rules in devices defined in the same way as the sym-
port/antiport P systems (hence with the environment containing objects, in arbi-
trarily many copies each – we need such a supply of objects, because we cannot
create objects in the system), where also the proteins present on each membrane
are mentioned.

That is, a P system with proteins on membranes is a device of the form

Π = (O, P, µ, w1/z1, . . . , wm/zm, E, R1, . . . , Rm, io),

where:

1. m is the degree of the system (the number of membranes);
2. O is the set of objects;
3. P is the set of proteins (with O ∩ P = ∅);
4. µ is the membrane structure;
5. w1, . . . , wm are the (strings representing the) multisets of objects present in

the m regions of the membrane structure µ;
6. z1, . . . , zm are the multisets of proteins present on the m membranes of µ;
7. E ⊆ O is the set of objects present in the environment (in an arbitrarily large

number of copies each);
8. R1, . . . , Rm are finite sets of rules associated with the m membranes of µ;
9. io is the output membrane, an elementary membrane from µ.

The rules can be of the forms specified above, and they are used in a non-
deterministic maximally parallel way: in each step, a maximal multiset of rules is
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used, that is, no rule can be applied to the objects and the proteins which remain
unused by the chosen multiset. As usual, each object and each protein can be
involved in the application of only one rule, but the membranes are not considered
as involved in the rule applications, hence the same membrane can appear in any
number of rules at the same time.

If, at one step, two or more rules can be applied to the same objects and pro-
teins, then only one rule will be non-deterministically chosen. At each step, a P
system is characterized by a configuration consisting of all multisets of objects
and proteins present in the corresponding membranes (we ignore the structure
µ, which will not be changed, and the objects from the environment). For exam-
ple, C = w1/z1, . . . , wm/zm is the initial configuration, given by the definition
of the P system. By applying the rules in a non-deterministic maximally parallel
manner, we obtain transitions between the configurations of the system. A finite
sequence of configurations is called computation. A computation halts if it reaches
a configuration where no rule can be applied to the existing objects and proteins.

Only halting computations are considered successful, thus a non-halting com-
putation will yield no result. With a halting computation we associate a result, in
the form of the multiplicity of objects present in region io in the halting configu-
ration. We denote by N(Π) the set of numbers computed in this way by a given
system Π. (A generalization would be to distinguish the objects and to consider
vectors of natural numbers as the result of a computation, but we do not examine
this case here.)

We denote, in the usual way, by NOPm(pror;list-of-types-of-rules) the family
of sets of numbers N(Π) generated by systems Π with at most m membranes,
using rules as specified in the list-of-types-of-rules, and with at most r proteins
present on a membrane. When parameters m or r are not bounded, we use ∗ as a
subscript.

The new definition introduced by the current paper is the addition of time to
the above model, in brief, P system with proteins on membranes and time is a
device of the form

Π = (O,P, µ,w1/z1, . . . , wm/zm, E, R1, . . . , Rm, Cstart, Cstop),

where:

1. m, O, P, µ, w1, . . . , wm, z1, . . . , zm, E, R1, . . . , Rm are as defined above;
2. Cstart, Cstop are regular subsets of (O∗)m, describing configurations of Π. We

will use a regular language over O ∪ {$} to describe them, the special symbol
$ 6∈ O being used as a marker between the configurations3 in the different
regions of the system. More details are given in [8] and [12].

3 We express by these configurations restrictions that need to be satisfied by each of the
current multisets in their respective regions so that the overall configuration can be
satisfied.
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As an example for the Cstart and Cstop configurations, let us give the following
restriction4 C = b3d7(O − {a, b, d})∗ for a single membrane (the proofs obtained
below need only one membrane, thus we can simplify the notation by not using
the symbol $). This means that in the region delimited by the only membrane
in the system, the configuration C is satisfied if and only if we do not have any
symbol of type a, we must have exactly 3 symbols of type b and exactly 7 symbols
of type d. Any other symbol not mentioned is not restricted, e.g. we can have any
number of symbols of type c.

We emphasize the fact that in the definition of Π we assume that Cstart and
Cstop are regular. Other, more restrictive, cases can be of interest but we do not
discuss them here.

We can now denote the systems as above based on time with NTOPm(pror;list-
of-types-of-rules) the family of sets of numbers N(Π) generated by systems Π with
at most m membranes, using rules as specified in the list-of-types-of-rules, and with
at most r proteins present on a membrane. When parameters are not bounded we
replace them by ∗.

3 Register Machines

In the proofs from the next sections we will use register machines as devices char-
acterizing NRE, hence the Turing computability.

Informally speaking, a register machine consists of a specified number of regis-
ters (counters) which can hold any natural number, and which are handled accord-
ing to a program consisting of labeled instructions; the registers can be increased
or decreased by 1 – the decreasing being possible only if a register holds a number
greater than or equal to 1 (we say that it is non-empty) –, and checked whether
they are non-empty.

Formally, a (non-deterministic) register machine is a device M = (m,B, l0, lh, R),
where m ≥ 1 is the number of counters, B is the (finite) set of instruction labels, l0
is the initial label, lh is the halting label, and R is the finite set of instructions la-
beled (hence uniquely identified) by elements from B (R is also called the program
of the machine). The labeled instructions are of the following forms:

– l1 : (ADD(r), l2, l3), 1 ≤ r ≤ m (add 1 to register r and go non-deterministically
to one of the instructions with labels l2, l3),

– l1 : (SUB(r), l2, l3), 1 ≤ r ≤ m (if register r is not empty, then subtract 1 from
it and go to the instruction with label l2, otherwise go to the instruction with
label l3),

– lh : HALT (the halt instruction, which can only have the label lh).

We say that a register machine has no ADD instructions looping to the
same label (or without direct loops) if there are no instructions of the form

4 C can be written also in the following form C = (a0b3d7)
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l1 : (ADD(r), l1, l2) or l1 : (ADD(r), l2, l1) in R. For instance, an instruction of the
form l1 : (ADD(r), l1, l2) can be replaced by the following instructions, where l′1 is
a new label: l1 : (ADD(r), l′1, l2), l′1 : (ADD(r), l1, l2). The generated set of numbers
is not changed.

A register machine generates a natural number in the following manner: we
start computing with all m registers being empty, with the instruction labeled by
l0; if the computation reaches the instruction lh : HALT (we say that it halts), then
the values of register 1 is the number generated by the computation. The set of
numbers computed by M in this way is denoted by N(M). It is known (see [11])
that non-deterministic register machines with three registers generate exactly the
family NRE, of Turing computable sets of numbers. Moreover, without loss of
generality, we may assume that in the halting configuration all registers except
the first one, where the result of the computation is stored are empty.

4 Previous Results

In [14] the following results were proved:

Theorem 1.

NOP1(pro2; 2cpp) = NRE. (Theorem 5.1 in [14])
NOP1(pro∗; 3ffp) = NRE. (Theorem 5.2 in [14])

NOP1(pro2; 2res, 4cpp) = NRE. (Theorem 6.1 in [14])
NOP1(pro2; 2res, 1cpp) = NRE. (Theorem 6.2 in [14])
NOP1(pro∗; 1res, 2ffp) = NRE. (Theorem 6.3 in [14])

As an extension of the work reported in [14], a significant amount of energy
was devoted to the flip-flopping variant of these membrane systems which resulted
in the paper [9]. S.N Krishna was able to prove several results in [9] improving
Theorem 5.2, and Theorem 6.3 from [14]:

Theorem 2.

NOP1(pro7; 3ffp) = NRE. (Theorem 1 in [9])
NOP1(pro7; 2ffp, 4ffp) = NRE. (Theorem 2 in [9])
NOP1(pro7; 2ffp, 5ffp) = NRE. (Corollary 3 in [9])
NOP1(pro10; 1res, 2ffp) = NRE. (Theorem 4 in [9])
NOP1(pro7; 1ffp, 2ffp) = NRE. (Theorem 6 in [9])
NOP1(pro9; 1ffp, 2res) = NRE. (Theorem 7 in [9])
NOP1(pro9; 2ffp, 3res) = NRE. (Theorem 9 in [9])
NOP1(pro8; 1ffp, 3res) = NRE. (Theorem 10 in [9])
NOP1(pro9; 3res, 4ffp) = NRE. (Theorem 11 in [9])



On Flip-Flop Membrane Systems with Proteins 519

NOP1(pro8; 2ffp, 5res) = NRE. (Theorem 13 in [9])

A close reading of the theorems mentioned above will yield some improvements
that are given in the following section.

5 New Results

We start this section by first discussing the results from [9] which we mentioned in
Theorem 2. The main idea in all the proofs reported in [9] was to simulate register
machines (it is known that such devices with 3 registers are universal). The novelty
of the proof technique in [9] was to consider for all ADD instructions associated
with a particular register a single protein, similarly we use one protein for all the
SUB instructions associated with a specific register. Thus in the proofs of the
results mentioned in Theorem 2 we will have 6 proteins used for the simulation
of the instructions in the register machine, (both ADD and SUB instructions for
the 3 registers in the machine) the other(s) protein(s) being needed mainly for the
test with zero processing in the simulation of SUB instructions.

The main observation that we want to make at this point is the fact that
register machines with three registers out of which one (the output register) is
non-decreasing are still universal, thus all the results from [9] are better by one
protein without any major changes in their proofs. This is due to the fact that
we only need two proteins to simulate the SUB instructions, and also the proof
technique allows for such a modification. Subsequently, the following results were
shown in [9]:

Theorem 3.

NOP1(pro6; 3ffp) = NRE. (Theorem 1 in [9])
NOP1(pro6; 2ffp, 4ffp) = NRE. (Theorem 2 in [9])
NOP1(pro6; 2ffp, 5ffp) = NRE. (Corollary 3 in [9])
NOP1(pro9; 1res, 2ffp) = NRE. (Theorem 4 in [9])
NOP1(pro6; 1ffp, 2ffp) = NRE. (Theorem 6 in [9])
NOP1(pro8; 1ffp, 2res) = NRE. (Theorem 7 in [9])
NOP1(pro8; 2ffp, 3res) = NRE. (Theorem 9 in [9])
NOP1(pro7; 1ffp, 3res) = NRE. (Theorem 10 in [9])
NOP1(pro8; 3res, 4ffp) = NRE. (Theorem 11 in [9])
NOP1(pro7; 2ffp, 5res) = NRE. (Theorem 13 in [9])

We will proceed now to consider the same framework, but with the extra feature
of the output based on time. We show that we can improve the result from Theorem
11 from [9]:
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Theorem 4. NRE = NTOP1(pro7, 3res, 4ffp).

Proof. We consider a register machine M = (m,B, l0, lh, R) and we construct the
system

Π = (O,P, [
1

]
1
, {l0, b}/P, E,R1, Cstart, Cstop)

with the following components:

O = {ar, a
′
r | 1 ≤ r ≤ 3} ∪ {i, i′, li, l′i, l′′i , l′′′i , livi , Li, L

′
i | 0 ≤ i ≤ h}

∪{o, o1, o2, b, h, †}.
E = {ar, a

′
r | 1 ≤ r ≤ 3} ∪ {i | 0 ≤ i ≤ h} ∪ {o}.

P = {p1, p2, p3, s2, s3, p, t}.
Cstart = l′′h(O − {l′′h, †})∗, in other words, l′′h

appears exactly once and there are no copies of † in the membrane,
and the rest of the symbols can
appear in any multiplicity as they are ignored.

Cstop = (O − {a1})∗, in this case a1 does not appear in the membrane.

The proteins p and t are of the type 3res while all the others are of the type
4ffp. Proteins p and pi are used in the simulation of ADD instructions of register
i, proteins p, t and si are used in the simulation of SUB instructions of register
i, and protein p, t, s2 and s3 are used in the simulation of the instructions for
counting or termination.

The system has the following rules in R1:
For an ADD instruction l1 : (ADD(r), l2, l3) ∈ R, we consider the rules as

shown in Table 1.

Step Rules Type Environment Membrane

1 a′r[1pr | l1 → l1[1p
′
r | a′r 4ffp El1 ba′r

2 or ar[1p
′
r | a′r → a′r[1pr | ar and l1[1p |→ [

1
p | l2 4ffp, 3res E bl2ar

2 ar[1p
′
r | a′r → a′r[1pr | ar and l1[1p |→ [

1
p | l3 4ffp, 3res E bl3ar

Table 1. Steps for ADD instruction for Theorem 4.

We simulate the work of the ADD instruction in two steps. First we send out
the current instruction label l1 and bring in a copy of the (padding) symbol a′r
using the protein pr. Next we simultaneously apply the rules to replace a′r with ar

using the protein p′r and we bring in the next instruction label l2 or l3 according
to the currently simulated rule l1. Of course, l1 uniquely identifies which rule was
simulated, thus there is no ambiguity about which symbols li are able to enter the
membrane at this time. Let us now consider the case of the SUB instructions:

For a SUB instruction l1 : (SUB(r), l2, l3) ∈ R we consider the rules as shown
in Table 2.
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Step Rules Type Environment Membrane

1 [
1
p | l1 → l′1[1p | 3res El′1 bar

2 l′1[1p |→ [
1
p | l′′1 3res E bl′′1ar

3 o[
1
sr | l′′1 → l′′1 [

1
s′r | o 4ffp El′′1 boar

4 l′′1 [
1
p |→ [

1
p | l′′′1 and [

1
t | o → o1[1t| 3res, 3res Eo1 bl′′′1 ar

5 [
1
p | l′′′1 → liv1 [

1
p | and o1[1t |→ [

1
t | o2 3res, 3res Eliv1 bo2ar

Register r is non-empty

6 liv1 [
1
s′r | ar → ar[1sr | liv1 and [

1
t | o2 → o[

1
t | 4ffp, 3res Eoar bliv1

7 [
1
p | liv1 → 2′[

1
p | 3res E2′ b

8 2′[
1
p |→ [

1
p | l2 3res E bl2

Wrong Computation

6 liv1 [
1
t |→ [

1
t | L′3 and [

1
p | o2 → †[

1
p | 3res, 3res E† bL′3ar

7 †[
1
t |→ [

1
t | † 3res E b † ar

Register r is empty

6 [
1
t | o2 → o[

1
t | 3res Eo b

7 liv1 [
1
t |→ [

1
t | L′3 3res E bL′3

8 3[
1
s′r | L′3 → L′3[1sr | 3 4ffp EL′3 b3

9 [
1
p | 3 → 3′[

1
p | 3res E3′ b

10 3′[
1
p |]ra[

1
p | l3 3res E bl3

Table 2. Steps for SUB instruction for Theorem 4.

We simulate the work of the SUB instruction in several steps (eight if the
register is not empty and ten if it is empty). We first send out the current label
as l′1 using the protein p. At the next step the symbol l′1 is brought in as l′′1 . Next
we exchange l′′1 and o using the protein sr (the protein sr is moved in its primed
version of the flip-flop). We can now apply two rules in parallel and bring in l′′1 as
l′′′1 while sending out o as o1. Next, l′′′1 is sent out as liv1 while we bring in o1 as o2

in parallel.
In this moment our system will perform the checking of the contents of the

register r. If the register is not empty, then liv1 will enter the membrane, decreasing
the register and at the same time another marker o2 is sent outside as o to help
identify the correct case later. At the next stage liv1 will be sent out as 2′ using
protein p. Finally 2′ will return as the next instruction label to be brought in
(in this case l2 as the register is not empty). If liv1 comes back in the membrane
through the protein t instead of s′r, we will have a wrong computation. In this
case we can send out o2 as symbol † in parallel using the protein p (as this is the
only channel available at this time to o2, t being used by liv1 ). Next we can bring
in a copy of the symbol † into the membrane. The application of this rule will
never satisfy the starting configuration; hence, we will not be able to use the time
counter.

If the register is empty, after step 5 we have liv1 in the environment and o2 in
the membrane, and the protein associated with the subtract rule for the register r
(sr) is primed. At this moment liv1 cannot enter the membrane through the protein
s′r as there are no ar objects in the membranes with which it must be exchanged.
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There are two choices: either liv1 enters the membrane through t (and we get the
wrong computation case as above) or t is used by o2, and then liv1 sits one step
in the environment. At the next step we have the “branching point”: rather than
exchanging with ar (which will be present in the membrane in the case when the
register is not empty), liv1 comes into the membrane as L′3 through t. Next we use
the protein s′r to exchange L′3 and 3, and then send out 3 as 3′ using protein p.
Now we bring in 3′ as the next instruction to be simulated l3.

Terminating/counting work: It is clear that at the end of the simulation, if
the register machine has reached the final state, we will have the halting instruction
symbol in the membrane along with one copy of the symbol b and multiple copies
of the three different objects associated with their respective registers. At that
time we will have the computed value encoded as the multiplicity of the object
a1 that is associated with the output register. We will also have in the system
the label of the halting instruction, lh; thus, the rule ([1p | lh → l′h[1p |) can be
applied only when the simulation is performed correctly. At the next step, using
the protein s2 we exchange l′h and b.

The terminating/counting work is done by the rules as shown in Table 3.

Step Rules Type Env Membrane

1 [
1
p | lh → l′h[

1
p | 3res El′h ban1

1 an2
2 an3

3

2 l′h[
1
s2 | b → b[

1
s′2 | l′h 4ffp Eb l′han1

1 an2
2 an3

3

3 b[
1
p |→ [

1
p | l′′h and [

1
t | l′h → l′′h[

1
t | 3res, 3res El′′h l′′han1

1 an2
2 an3

3

4 h[
1
s2 | l′′h → l′′h[

1
s′2 | h or h[

1
s′2 | l′′h → l′′h[

1
s2 | h 4ffp El′′ha1 l′′han1

1 an2
2 an3

3 h
and l′′h[

1
s3 | a1 → a1[1s

′
3 | l′′h 4ffp

or l′′h[
1
s′3 | a1 → a1[1s3 | l′′h

Table 3. Steps for terminating/counting instructions for Theorem 4.

Next we apply two rules in parallel and bring in b as l′′h while sending out l′h as
l′′h, satisfying the Cstart configuration. One can note that if there are no copies of
a1 in the membrane, then also the configuration Cstop is satisfied at the same time,
thus our system would compute the value zero in that case. Next we exchange h
from the environment with l′′h and l′′h from the environment with a1 until we reach
the stopping configuration. For any other value encoded in the multiplicity of a1 it
will take exactly the same number of steps to push the number of copies of object
a1 from the membrane. ut

An interesting observation is the fact that the object b is used for the counting
at the end of the computation. If one considers the same construct for membrane
systems with proteins as defined in [14] (the “classical” systems with the output
the multiplicity of objects in the membrane), then our construction is still valid
even in the case of systems without time, thus we have the following theorem also
proven:

Theorem 5. NRE = NOP1(pro7, 3res, 4ffp).
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The theorem above is valid as one can restrict the register machine to be
simulated (without loss of generality) to the case when the machine halts with the
non-output registers empty.

Thus it can be seen that we are able to improve the result shown in Theorem
10 in [9] both for systems based on multiplicity output and also for systems based
on time. The next result improves significantly Theorem 11 from [9], in this case
for systems based on time, and later one we will discuss also about the non-timed
systems.

Theorem 6. NRE = NTOP1(pro3, 2ffp, 5res).

Proof. We consider a register machine M = (m,B, l0, lh, R) and we construct the
system

Π = (O, P, [
1

]
1
, {l0, b, e}/P,E,R1, Cstart, Cstop)

with the following components:

O = {li, l′i | 0 ≤ i ≤ h} ∪ {a1, a2, a3, b, o, y}.
E = {a1, a2, a3, o}.
P = {p, q, s}.

Cstart = (O − {b})∗, in other words, there are no copies of b in the membrane,
and the rest of the symbols

can appear in any multiplicity as they are ignored.
Cstop = (O − {a1})∗, in this case a1 does not appear in the membrane.

Protein q is of type 5res while all the others are of the type 2ffp. Proteins p
and q are used in the simulation of the ADD instruction, proteins q and s are used
in the simulation of the SUB instruction, and protein q is used in the simulation
of the instructions for counting or termination.

The system has the following rules in R1:
For an ADD instruction l1 : (ADD(r), l2, l3) ∈ R, we consider the rules as

shown in Table 4.

Step Rules Type Environment Membrane

1 ar[1q | l1 → l′1[1q | ar 5res El′1 bear

2 l′1[1q | e → e[
1
q | l2 5res Ee bl2ar

2 l′1[1q | e → e[
1
q | l3 5res Ee bl3ar

3 e[
1
p |→ [

1
p′ | e or e[

1
p′ |→ [

1
p | e 2ffp, 2ffp E bear

Table 4. Steps for ADD instruction for Theorem 6.

We simulate the work of the ADD instruction in two steps. First we send out
the current instruction label l1 as l′1 and bring in a copy of the symbol ar using the
protein q. Next we apply the rule to send out e using the protein q and we bring
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l′1 in as the new instruction label. To simulate the non-deterministic behavior of
these machines we have two rules that do the same job, the only difference being
the next instruction label being brought back in the system. It is clear that the
simulation of the ADD instruction is performed correctly. The work is finished in
this case by the rule (e[

1
p |→ [

1
p′ | e) or (e[

1
p′ |→ [

1
p | e).

For a SUB instruction l1 : (SUB(r), l2, l3) ∈ R we consider the rules as shown
in Table 5.

Step Rules Type Environment Membrane

1 [
1
s | l1 → l1[1s

′ | 2ffp El1 bear

Register r is non-empty

2 o[
1
s′ |→ [

1
s | o and l1[1q | ar → ar[1q | l′1 2ffp, 5res Ear beol′1

3 o[
1
q | l′1 → l′1[1q | l2 5res El′1 beol2

4 l′1[1q | o → o[
1
q | y 5res Eo bey

Register r is empty

2 o[
1
s′ |→ [

1
s | o 2ffp El1 beo

3 l1[1q | o → o[
1
q | l3 5res Eo bel3

Table 5. Steps for SUB instruction for Theorem 6.

We simulate the work of the SUB instruction in several steps (four if the register
is not empty and three if it is empty). At step 1 we first send out the current label
l1 using the protein s. If the register is not empty, at step 2, l1 will enter the
membrane, decreasing the register and at the same time the symbol o is brought
in. At the next stage (step 3) l′1 will be sent out using protein q, and o will return
as the next instruction label to be brought in (in this case l2 as the register is
not empty). Finally l′1 will return as the symbol y while sending out o, so that no
extra copies of o are left in the membrane so that future SUB simulations will be
performed correctly. The symbols y will accumulate in the membrane.

In the case when the register to be decremented is empty, we perform the same
initial step, sending out the current label using the protein s. This time l1 cannot
enter the membrane at the step 2 as there is no ar in the membrane to help bring
it in. So l1 will wait for one step in the environment. o is entering the membrane
at step 2, so at the step 3 l1 can now come into the membrane through q and is
changed into the label of the next instruction to be simulated l3.

The terminating/counting work stage is done by the rules as shown in
Table 6.

Step Rules Type Environment Membrane

1 o[
1
q | lh → lh[

1
q | y 5res Elh bean1

1 an2
2 an3

3

2 lh[
1
q | b → l′h[

1
q | y 5res Ebl′h ean1

1 an2
2 an3

3

3 l′h[
1
q | a1 → l′h[

1
q | y 5res El′ha1 ean1

1 an2
2 an3

3

Table 6. Steps for terminating/counting instructions for Theorem 6.
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It is clear that at the end of the simulation, if the register machine has reached
the final state, we will have the halting instruction symbol in the system membrane,
along with one copy of the symbol b and multiple copies of the three different
objects associated with the respective registers and the symbol y. At that time we
will have the computed value encoded as the multiplicity of the object a1 that is
associated with the output register. We will also have in the system the label of
the halting instruction, lh, thus the rule (o[

1
q | lh → lh[

1
q | y) can be applied only

when the simulation is performed correctly. At the next step, using the protein q
we bring in lh as y while sending out b as l′h, satisfying the Cstart configuration.
One can note that if there are no copies of a1 in the membrane, then also the
configuration Cstop is satisfied at the same time, thus our system would compute
the value zero in that case. Next we bring in l′h as y while sending out a1 as
l′h until we reach the stopping configuration. For any other value encoded in the
multiplicity of a1 it will take exactly the same number of steps to push the a1-s
out of the membrane. ut

Thus it can be seen that by using time as the output, we are able to improve
the result shown in Theorem 13 from [9], where seven proteins were required for
universality, as opposed to the three used in the above proof.

If one wants to still restrict the discussion to only the case of the non-timed
systems, with the price of one protein we can remove the objects y and e from
the membrane (by first modifying them into some other symbols such as y′ and
o′ and then expelling them to the environment). In this way it is easy to see that
our proof for Theorem 6 leads to the following theorem:

Theorem 7. NRE = NOP1(pro4, 2ffp, 5res).
Membrane systems with proteins on membranes are universal for one membrane
and rules of the type 2ffp and 5res using only four proteins.

6 Final Remarks

We have shown that previous results about membrane systems with proteins on
membranes can be improved in what concerns the number of proteins, we have also
extended the model to have the output encoded as the time between two configu-
rations and this has lead to a significant improvement as opposed to the previous
results reported in [9]. Additional similar improvements are under investigation.
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