
Rewriting P Systems with Conditional
Communication: Improved Hierarchies

H. Ramesh, Raghavan Rama

Department of Mathematics
Indian Institute of Technology, Madras
Chennai - 600 036, India
{ramesh h, ramar}@iitm.ac.in

Summary. We consider here a variant of rewriting P systems [1], where communication
is controlled by the contents of the strings, not by the evolution rules used for obtaining
these strings. Some new characterizations of recursively enumerable languages are ob-
tained by means of P systems with a small number of membranes, which improves some
of the known results from [1] and [4].

1 Introduction

P systems are a class of distributed parallel computing models inspired from the
way the living cells process chemical compounds, energy, and information. Many
variants of P systems use string objects and context-free rules for processing them.
Rewriting P systems with string objects were introduced in [5]. Several variants of
P systems with string objects have also been investigated extensively. In this work,
we concentrate on rewriting P systems with conditional communication introduced
in [1].

In this variant of rewriting P systems, the communication is controlled by the
contents of the strings, not by the evolution rules themselves. This is achieved
by considering certain types of permitting and forbidding conditions, based on
the symbols or the substrings (arbitrary, or prefixes/suffixes) which appear in a
given string. Several characterizations of recursively enumerable languages were
obtained in [1]. In [4], some of these results were improved. Here we give some new
characterizations of recursively enumerable languages by means of P systems with
a small number of membranes. These results improve some of the results from both
[1] and [4]. In [1], there is a characterization of recursively enumerable language
by systems, where both prefixes and suffixes are checked, without a bound on the
number of membranes. It was also conjectured that the characterization holds also
for a reduced number of membranes. We settle this here in an affirmative way by
giving the characterization with 8 membranes.

528 R. Ramesh, R. Rama

2 Some Prerequisites

In this section we introduce some formal language theory notions which will be
used in this paper; for further details, we refer to [7].

For an alphabet V , we denote by V ∗ the set of all strings over V , including the
empty one, denoted by λ. By RE we denote the family of recursively enumerable
languages. The set of symbols appearing in a string x is denoted by alph(x) and
the substrings of x is denoted by Sub(x).

In our proofs in the following sections we need the notion of a matrix grammar
with appearance checking. Such a grammar is a construct G = (N,T, S, M,F),
where N,T are disjoint alphabets, S ∈ N , M is a finite set of sequences of the
form (A1 → x1, . . . , An → xn), n ≥ 1, of context-free rules over N ∪ T , and F is a
set of occurrences of rules in M (N is the nonterminal alphabet, T is the terminal
alphabet, S is the axiom, while the elements of M are called matrices).

For w, z ∈ (N∪T)∗ we write w ⇒ z if there is a matrix (A1 → x1, . . . , An → xn)
in M and the strings wi ∈ (N∪T)∗, 1 ≤ i ≤ n+1, are such that w = w1, z = wn+1,
and, for all 1 ≤ i ≤ n, either (1) wi = w

′
iAw

′′
i , wi+1 = w

′
ixiw

′′
i , for some w

′
i, w

′′
i ∈

(N∪T)∗, or (2) wi = wi+1, Ai does not appear in wi, and the rule Ai → xi appears
in F . (The rules of a matrix are applied in order, possibly skipping the rules in F
if they cannot be applied - one says that these rules are applied in the appearance
checking mode).

The languages generated by G is defined by L(G) = {w ∈ T ∗ | S ⇒∗ w}.
The family of languages of this form is denoted by MATac. It is known that
MATac = RE

A matrix grammar G = (N, T, S,M, F) is said to be in the binary normal form
if N = N1 ∪N2 ∪{S, #}, with these three sets mutually disjoint, and the matrices
in M are in the following forms:

1. (S → XA), with X ∈ N1, A ∈ N2,
2. (X → Y, A → x), with X,Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T)∗, |x| ≤ 2,
3. (X → Y, A → #),with X, Y ∈ N1, A ∈ N2,
4. (X → λ,A → x), with X ∈ N1, A ∈ N2, and x ∈ T ∗, |x| ≤ 2.

Moreover, there is only one matrix of type 1 and F consists exactly of all rules
A → # appearing in matrices of type 3; # is a trap symbol - once introduced, it is
never removed. A matrix of type 4 is used only once, in the last step of derivation.

According to [2], for each matrix grammar there is an equivalent matrix gram-
mar in the binary normal form.

For an arbitrary matrix grammar G = (N, T, S,M,F), let us denote by ac(G)
the cardinality of the set {A ∈ N | A → α ∈ F}. It was proved that each recursively
enumerable language can be generated by a matrix grammar G such that ac(G) ≤
2. Consequently, to the properties of a grammar G in the binary normal form we
can add the fact that ac(G) ≤ 2. We will say that this is the strong binary normal
form for matrix grammars.

There are several normal forms for type 0 grammars. We use the Penttonen
normal form in our proofs. A type 0 grammar G = (N, T, S, P) is said to be

Rewriting P Systems with Conditional Communication 529

in Penttonen normal form if the rules from P are of one of the following forms:
A → λ, A → a, A → BC, AB → AC, for A,B, C ∈ N and a ∈ T .

3 Rewriting P Systems with Conditional Communication

An extended rewriting P systems (of degree m ≥ 1) with conditional communica-
tion is a construct

Π = (V, T, µ, M1, . . . , Mm, R1, P1, F1, . . . , Rm, Pm, Fm),

where:

1. V is the alphabet;
2. T ⊆ V is the terminal alphabet;
3. µ is the membrane structure;
4. M1, . . . , Mm are finite languages over V , representing the strings initially

present in the m regions;
5. R1, . . . , Rm are finite sets of context-free rules over V present in the regions of

µ;
6. Pi and Fi are permitting and forbidding conditions associated with the regions.

The conditions can be of the following forms:

1. empty: no restriction is imposed on strings, they either exit the current mem-
brane or enter any of the directly inner membrane freely (but they cannot
remain in the current membrane); we denote an empty permitting condi-
tion by (true, X), X ∈ {in, out}, and an empty forbidding condition by
(false, notX), X ∈ {in, out}.

2. symbols checking: each Pi is a set of pairs (a,X), X ∈ {in, out}, for a ∈ V , and
each Fi is a set of pairs (b, notX), X ∈ {in, out}, for b ∈ V ; a string w can go
to a lower membrane only if there is a pair (a, in) ∈ Pi with a ∈ alph(w) and
for each (b, notin) ∈ Fi we have b /∈ alph(w); similarly for sending the string
w out of membrane i it is necessary to have a ∈ alph(w) for at lease one pair
(a, out) ∈ Pi and b /∈ alph(w) for all (b, notout) ∈ Fi.

3. substring checking: each Pi is a set of pairs (u,X), X ∈ {in, out}, for u ∈ V +,
and each Fi is a set of pairs (v, notX), X ∈ {in, out}, for v ∈ V +; a string w can
go to a lower membrane only if there is a pair (u, in) ∈ Pi with u ∈ Sub(w),
and for each (v, notin) ∈ Fi we have v /∈ Sub(w); similarly for sending the
string w out of membrane i it is necessary to have u ∈ Sub(w) for at lease one
pair (u, out) ∈ Pi and v /∈ Sub(w) for all (v, notout) ∈ Fi.

4. prefix/suffix checking: exactly as in the case of substrings checking, with the
checked string being a prefix or a suffix of the string to be communicated.

We say that we have conditions of the types empty, symb, subk, prefk, suffk,
respectively, where k is the length of the longest string in all Pi, Fi.

A systems is said to be non-extended if V = T .

530 R. Ramesh, R. Rama

The transitions of the system are defined in the following way. In each region,
each string which can be rewritten is rewritten by a rule from that region. The
rule to be applied and the nonterminal it rewrites are non-deterministically cho-
sen. The string obtained in this way is checked against the conditions Pi, Fi from
that region. If it fulfills the required conditions, then it will be immediately sent
out of the membrane or to an inner membrane, if any exists; if it fulfills both in
and out conditions, then it is sent to a membrane non-deterministically choos-
ing the direction - and non-deterministically choosing the inner membrane in the
case when several directly inner membranes exist. If a string does not fulfill any
condition, or it fulfills only in conditions and there is no inner membrane, then
the string remains in the same region. If a string cannot be rewritten, then it is
directly checked against the communication conditions. That is, the rewriting has
priority over communication.

A sequence of transitions form a computation and the result of a halting com-
putation is the set of strings over T sent out of the system. In the case of non-
extended systems, all strings sent out are accepted. A computation does not yield
a result if it does not halt. A string which remains inside the system or, in the
case of extended systems, which exits but contains nonterminal symbols does not
contribute to the generated language. The language generated by a system Π is
denoted by L(Π).

We denote by RPn(rw, α, β), n ≥ 1, α, β ∈ {empty, symb} ∪ {subk | k ≥
2} ∪ {prefsuffk | k ≥ 2}, the family of languages generated by P system of
degree at most n and with permitting and forbidding conditions of type α and β
respectively.

4 Improved Universality Results

In [1], it was proved that P systems of degree 4 with permitting conditions of type
sub2 and forbidding conditions of type symb are computationally universal. This
result has been improved from 4 to 3 membranes in [4]. We improve this result
and show that universality can be achieved with 2 membranes in this case.

Theorem 1. RE = RP2(rw, sub2, symb).

Proof. Let us consider a type 0 grammar G = (N,T, S, P), in Penttonen normal
form, with the non context-free rules from P labeled in a one-to-one manner and
construct the system

Π = (V, T, [1[2]2]1, {S}, ∅, (R1, P1, F1), (R2, P2, F2)),

with the following components :

V = N ∪ T ∪ {(B, r) | r : AB → AC ∈ P};
R1 = {A → x | A → x ∈ P}

Rewriting P Systems with Conditional Communication 531

∪ {B → (B, r) | r : AB → AC ∈ P};
P1 = {(A(B, r), in) | r : AB → AC ∈ P}

∪ {(true, out)};
F1 = {(false, notout)};
R2 = {(B, r) → C | r : AB → AC ∈ P};
P2 = {(true, out)};
F2 = {((B, r), notout) | r : AB → AC ∈ P}.

The system works as follows:
The initial configuration of the system is [1S[2]2]1. The context-free rules from

P are present in R1 as rewriting rules, hence we can simulate them without any
difficulty. Let us assume that we have a string w1ABw2 in membrane 1. In order
to simulate a rule r : AB → AC ∈ P , we apply the rule B → (B, r) on the string.
The string is sent to membrane 2 only if it has a substring of the form A(B, r) for
some r : AB → AC ∈ P . Otherwise, the string is sent out, but it is not a terminal
one. In membrane 2, we replace the symbol (B, r) with C and send the resulting
string to the skin membrane. In this way, we complete the simulation of the non
context-free rule.

The process can be iterated until no nonterminal is present in the sentential
form. Hence, each derivation in G can be simulated in Π and, conversely, all
halting computations in Π correspond to correct derivations in G. Therefore, the
computation in Π can stop only after reaching a terminal string with respect to
G. Thus, we have L(G) = L(Π). ut

In [1], it was proved that P systems of degree 4 with permitting conditions
of type sub2 and forbidding conditions of type empty can characterize recursively
enumerable languages. We improve this result by proving the universality with 3
membranes.

Theorem 2. RE = RP3(rw, sub2, empty).

Proof. We start again from a type 0 grammar G = (N, T, S, P) in Penttonen
normal form, with the non context-free rules in P labeled in a one-to-one manner,
and we construct the P system

Π = (V, T, [1[2]2[3]3]1, ∅, {S}, ∅, (R1, P1, F1), . . . , (R3, P3, F3)),

with the following components:

V = N ∪ T ∪ {(B, r) | r : AB → AC ∈ P}
∪ {A′, A′′ | A ∈ N} ∪ {f, Z};

R1 = {f → λ,C ′′ → Z}
∪ {C ′ → C ′′ | C ∈ N};

P1 = {(λ, out)} ∪ {(C ′′, in) | C ∈ N}

532 R. Ramesh, R. Rama

∪ {(A(B, r), in) | r : AB → AC ∈ P};
R2 = {B → (B, r) | r : AB → AC ∈ P}

∪ {A → x, A → xf | A → x ∈ P}
∪ {C ′′ → C | C ∈ N};

P2 = {(f, out)}
∪ {((B, r), out) | r : AB → AC ∈ P};

R3 = {(B, r) → C ′ | r : AB → AC ∈ P}
∪ {C ′′ → Z | C ∈ N};

P3 = {(C ′, out) | C ∈ N}.

All sets of forbidding conditions consist of the pairs (false, notin), (false, notout).
This system works as follows. We start in membrane 2 with the axiom of G.

The context-free rules of G can be simulated here. If a terminal rule A → xf is
used in membrane 2, then the string goes to membrane 1 and from here out of the
system. If it is not terminal,it is not accepted in the generated language. If the
string is terminal, then it is introduced in L(Π).

Suppose that a string w is rewritten in membrane 2 by a rule B → (B, r)
associated with a rule r : AB → AC ∈ P . It exits; if the symbols A and (B, r)
are not associated with the same rule from P , then the string is sent out, but it is
not a terminal one. Assume that the string is of the form w1A(B, r)w2, for some
r : AB → AC ∈ P . No rule can be applied in membrane 1, but the string can be
sent to a lower membrane. If it arrives back in membrane 2, then it will exit either
unchanged or after introducing one more symbol of the form (B, r). The process
is repeated; eventually; the string will arrive in membrane 3 (otherwise we either
continue between membrane 1 and 2 or we send the string out of the system and
it is not a terminal one). Here in membrane 3 we replace the symbol (B, r) with
C ′ and the string is sent back to the skin membrane. In the skin membrane, the
symbol C ′ is replaced with C ′′.

Now there are two cases. If we had at least two symbols of the form (B, r) and
(B1, r1) in the string, then before finishing the simulation of the rule r, we can
start the simulation of the rule r1. But then the trap symbol Z will be introduced.
So we have to finish the simulation of the rule r first. In the other case, the string
can be sent to one of membrane 2 and 3. If the string arrives back to 3, then the
trap symbol will be introduced. Thus, we have to send the string to membrane
2. We have two cases here. If in membrane 2 we use the rule C ′′ → C, then we
have again a string (N ∪ T)∗, and the process can be iterated. If before using the
rule C ′′ → C, we use a rule B → (B, r), then the string should go to membrane 1
where we introduce the trap symbol Z by the rule C ′′ → Z. Thus L(G) = L(Π).
ut

The universality result for P systems with both permitting and forbidding
conditions of type symb has been improved from 6 [1] to 5 membranes in [4]. Here

Rewriting P Systems with Conditional Communication 533

we give a universality result with only 3 membranes. We use the same idea as in
[3].

Theorem 3. RE = RP3(rw, symb, symb).

Proof. Consider a matrix grammar with appearance checking G = (N, T, S, M, F)
in the strong binary normal form with N = N1 ∪ N2 ∪ {S, #}. Assume that
ac(G) = 2, and let B(1) and B(2) be the two objects in N2 for which we have rules
B(j) → # in matrices of M . Let us assume that we have k matrices of the form
mi : (X → α, A → x), X ∈ N1, α ∈ N1 ∪ {λ}, A ∈ N2, and x ∈ (N2 ∪ T)∗. We
replace each matrix of the form (X → λ,A → x) by (X → f, A → x) where f
is a new symbol. We continue to lable the obtained matrices in the same way as
the original one. The matrices of the form (X → Y, B(j) → #), are labeled by mi

with i ∈ labj , for j = 1, 2 such that lab1, lab2 and lab0 = {1, 2, . . . , k} are mutually
disjoint sets.

We construct the P system (of degree 3)

Π = (V, T, µ,M1, . . . ,M3, R1, P1, F1, . . . , R3, P3, F3),

with the following components:

V = N1 ∪N2 ∪ T ∪ {Xi,j | X ∈ N1, 1 ≤ i ≤ k, 0 ≤ j ≤ k}
∪ {Ai, Ai,j | A ∈ N2, 1 ≤ i ≤ k, 0 ≤ j ≤ k}
∪ {X ′, X ′′, X(1), X(2) | X ∈ N1 ∪ {f}},

µ = [1[2[3]3]2]1,
M1 = {XA}, for (S → XA) being the initial matrix of G,

M2 = M3 = ∅,

and with the following triples (Ri, Pi, Fi), 1 ≤ i ≤ 3 :

R1 = {X → Y (1) | mi : (X → Y,B(1) → #}
∪ {X → Y (2) | mi : (X → Y,B(2) → #}
∪ {A → Ai,0 | mi : (X → α,A → x), 1 ≤ i ≤ k, α ∈ N1 ∪ {f}}
∪ {Ai,j → # | 1 ≤ j < i ≤ k}
∪ {Ai → x | mi : (X → α, A → x), 1 ≤ i ≤ k, α ∈ N1 ∪ {f}}
∪ {α′ → α | α ∈ N1} ∪ {f ′ → λ};

P1 = {(Ai,0, in) | i ≤ i ≤ k}
= {(X(1), in), (X(2), in) | X ∈ N1}
= {(a, out) | a ∈ T};

F1 = {(X, notout) | X ∈ N1 ∪N2}
∪ {(Ai, notin) | A ∈ N2, 1 ≤ i ≤ k}
∪ {(Ai,j , notout) | A ∈ N2, 1 ≤ i, j ≤ k}

534 R. Ramesh, R. Rama

∪ {(α′, notin) | α ∈ N1 ∪ {f}};
R2 = {X → Xi,0 | mi : (X → α, A → x), 1 ≤ i ≤ k, α ∈ N1 ∪ {f}}

∪ {B(1) → #, # → #}
∪ {Y (1) → Y, Y ′′ → Y | Y ∈ N1}
∪ {Xi,j → Xi,j+1 | X ∈ N1, 1 ≤ j < i ≤ k}
∪ {Xi,i → α′ | mi : (X → α, A → x), 1 ≤ i ≤ k, α ∈ N1 ∪ {f}};

P2 = {(Y, out), (Y (2), in) | Y ∈ N1}
∪ {(Xi,j , in) | 1 ≤ j < i ≤ k}
∪ {(α′, out) | α ∈ N1 ∪ {f}};

F2 = {(B(1), notout) | B ∈ N2}
∪ {(α′′, notin) | α ∈ N1 ∪ {f}};

R3 = {Y (2) → Y ′′} ∪ {B(2) → #, # → #}
∪ {Ai,j → Ai,j+1 | A ∈ N2, 1 ≤ j < i ≤ k}
∪ {Ai,i → Ai, Ai → # | 1 ≤ i ≤ k};

P3 = {(Y ′, out) | Y ∈ N1}
∪ {(Ai,j , out) | 1 ≤ j < i ≤ k}
∪ {(Ai, out) | 1 ≤ i ≤ k};

F3 = {(B(2), notout) | B ∈ N2}.

Only strings over T are accepted in the generated language; # is a trap symbol.
From the skin membrane in any moment we can send out a string if it contains at
least one terminal symbol, but the string is not accepted in the generated language
if it contains any symbol not in T .
Simulation of the matrix mi : (X → α, A → x), 1 ≤ i ≤ k:

We start the simulation by the rule A → Ai,0. The string can be sent to
membrane 2 where we apply the rule X → Xj,0. The obtained string is sent to
membrane 3. From now on, the string will go back and forth between membranes
2 and 3, and the second subscript of the symbols Xi,s and Yj,t is alternatively
increased. Now we have three cases here:
Case 1: i < j. This means that at some step in membrane 3 we have a string of
the form Xj,iw1Ai,i−1w2. We replace Ai,i−1 with Ai,i and no communication is
possible. So we use the rule Ai,i → Ai and the string is sent out. In membrane 2,
we replace Xj,i with Xj,i+1 and sent the string back to membrane 3, where the
trap symbol # is introduced (the rewriting has priority over communication).
Case 2: i > j. At some moment we have a string of the form Xj,jw1Ai,j−1w2 in
membrane 2 which is sent to membrane 3. Here we replace Ai,j−1 with Ai,j and
send the string out. In membrane 2 we replace Xj,j with α′, and the string is sent
out. In the skin membrane, we can apply Ai,j → #, hence the string will never
lead to a terminal one.
Case 3: i = j. At some moment we pass from membrane 2 to membrane 3 a string

Rewriting P Systems with Conditional Communication 535

Xi,iw1Ai,i−1w2. In membrane 3, we replace Ai,i−1 with Ai,i and, because we can-
not exit, we replace Ai,i with Ai and send out the string. Here in membrane 2 we
replace Xi,i with α′ and send the string to the skin membrane. In the skin mem-
brane we have to replace α′ with α and Ai with x before starting the simulation
of the next matrix.
Simulation of the matrices (X → Y, B(j) → #), j = 1, 2.

The simulation of a matrix of this form starts by a rule X → Y (1) or X →
Y (2) in the skin membrane. If we are simulating a rule (X → Y,B(1) → #),
then in membrane 2 we use the rule Y (1) → Y . Now the string can be sent to
the skin membrane only if B(1) is not present. Similarly, if we are simulating
(X → Y, B(2) → #), then in membrane 2 there is no rule we can apply. So we
send the string to membrane 3, where we replace Y (2) with Y ′′ and the resulting
string can be sent out if B(2) is not present. Back in membrane 2, we replace Y ′′

with Y and send the string to the skin membrane.
If at any moment we get a string of the form f ′w, for w ∈ T ∗, in the skin

membrane, then we remove f ′ and send the string out. Consequently, L(G) =
L(Π). ut

There is a characterization of recursively enumerable languages by P systems
with permitting conditions of type prefsuff2 and forbidding conditions of type
empty in [1] without a bound on the number of membranes. It was conjectured that
such a characterization holds also for a reduced number of membranes. We settle
this conjecture in the positive here and show that eight membranes are enough for
achieving the universality.

Theorem 4. RE = RP8(rw, prefsuff2, empty).

Proof. Let us consider a type 0 grammar G = (N, T, S, P) in Penttonen normal
form, with the non context-free rules in P labeled in an injective manner, and
assume that N ∪ T ∪ {$} = {E1, E2, . . . , En}. We construct the P system Π, of
degree 8, with the following components:

V = N ∪ T ∪ {A′ | A ∈ N}
∪ {X, Y, Y ′, Z, $}
∪ {Xi, Yi, Xi,j , Yi,j | 1 ≤ i ≤ n, 0 ≤ j ≤ n}
∪ {(B, r) | r : AB → AC ∈ P},

µ = [1[2[3[4[5[6]6]5]4]3[7[8]8]7]2]1,
Mi = ∅, 1 ≤ i ≤ 8, i 6= 2,

M2 = X$SY,

and with the following sets of rules and associated permitting conditions. All for-
bidding condition sets are of the form {(false, notin), (false, notout)}:

R1 = {X → λ, Y → λ, $ → λ};
P1 = {(a, out) | a ∈ T};

536 R. Ramesh, R. Rama

R2 = {Ei → E′
i, Y → Yi,0 | 1 ≤ i ≤ n}

∪ {B → (B, r) | r : AB → AC ∈ P}
∪ {A → x | A → x ∈ P}
∪ {(B, r) → Z | r : AB → AC ∈ P}
∪ {E′

i → Z, Yi,0 → Z | 1 ≤ i ≤ n};
P2 = {($Y, out)}

∪ {(E′
iYi,0, in) | r : AB → AC ∈ P, 1 ≤ i ≤ n}

∪ {((B, r)Y, in) | r : AB → AC ∈ P};
R3 = {E′

i → λ, Yi → Y | 1 ≤ i ≤ n}
∪ {(B, r) → Z | r : AB → AC ∈ P};

P3 = {(Yi,0, in) | 1 ≤ i ≤ n}
∪ {(Y, out)};

R4 = {X → Xi,0Ei, Xi → X | 1 ≤ i ≤ n}
∪ {Yi,j → Z | 1 ≤ j < i ≤ n};

P4 = {(Xi,0, in) | 1 ≤ i ≤ n}
∪ {(X, out)};

R5 = {Xi,j → Xi,j+1 | 0 ≤ j < i ≤ n}
∪ {Xi,i → Xi | 1 ≤ i ≤ n};

P5 = {(Xi,j , in) | 1 ≤ j < i ≤ n}
∪ {(Xi, out) | 1 ≤ i ≤ n};

R6 = {Yi,j → Yi,j+1 | 0 ≤ j < i ≤ n}
∪ {Yi,i → Yi, Yi → Z | 1 ≤ i ≤ n};

P6 = {(Yi,j , out) | 1 ≤ j < i ≤ n}
∪ {(Yi, out) | 1 ≤ i ≤ n};

R7 = {Y → λ, Y ′ → Y }
∪ {Yi,0 → Z | 1 ≤ i ≤ n};

P7 = {(A(B, r), in), (CY, out) | r : AB → AC ∈ P};
R8 = {(B, r) → CY ′ | r : AB → AC ∈ P};
P8 = {(CY ′, out)}.

We start from the string X$SY , initially present in membrane 2. We plan to
simulate the non context-free rules from P in the right end of the strings of Π
and to this aim we use the so-called rotate-and-simulate technique much used in
the DNA computing area. If Xw1$w2Y is a sentential form of Π, then w2w1 is a
sentential form of G. The symbol $ indicates the actual beginning of strings from
G. Z is a trap symbol, once introduced, it cannot be removed, hence the string
will never become a terminal one.

Rewriting P Systems with Conditional Communication 537

In membrane 2, we can simulate any context-free rule from P and the string
will remain in the same region. We start the procedure of circularly permuting the
string with one symbol by using the rules Ei → E′

i and Y → Yi,0. If the primed
symbol is the right most one, then the condition to send the string to a lower
membrane is fulfilled. If we did not use both the rules or the primed symbol is not
the rightmost one, then the trap symbol is introduced. Now we can either send the
string to membrane 7 or 3. If it enters membrane 7, then we introduce the trap
symbol.

In membrane 3, we remove E′
i and send the string to membrane 4. In membrane

4, we replace X with Xi,0Ei and send the string to membrane 5. From now on,
the string will go back and forth between membranes 5 and 6, and the second
subscript of the symbols Xi,s and Yj,t is alternatively increased. Now there are
three cases:
Case 1: i < j. This means that at some step in membrane 6 we have a string
Xj,iwYi,i−1. We replace Yi,i−1 with Yi,i and no communication is possible, hence
one more rewriting is necessary. We replace Yi,i with Yi and the string is sent
out. In membrane 5 we replace Xj,i with Xj,i+1 and the string is sent back to
membrane 6, where we introduce the trap symbol.
Case 2: i > j. At some moment we have a string of the form Xj,jwYi,j−1 in
membrane 5, which is sent to membrane 6. We replace Yi,j−1 with Yi,j in membrane
6 and the string exits. In membrane 5 we replace Xj,j with Xj and the string is
sent out. Back in membrane 4 we can apply Yi,j → Z, hence the string will never
lead to a terminal one.
Case 3: i = j. At some moment we pass from membrane 5 to membrane 6 a string
Xi,iwYi,i−1. In membrane 6 we replace Yi,i−1 with Yi,i and, because we cannot
exit, we replace Yi,i with Yi and sent the string out. In membrane 5 we replace
Xi,i with Xi and the string is sent out. We replace the symbols Xi and Yi with
X and Y respectively in membrane 4 and 5 and the string is sent to membrane 2.
The process of circularly permuting the symbol will end successful if we add the
symbol Ei in the left end of the string corresponding to the symbol E′

i which was
removed from the right end of the string

We simulate the non context-free rules r : AB → AC, in the following way. A
symbol B is replaced by (B, r) in membrane 2, if this is not done in the right most
position, then the symbol Z is introduced. If the string is of the form Xw(B, r)Y ,
then it has to go to membrane 7. In membrane 7 we replace the symbol Y and send
the string to membrane 8, if the string is of the form Xw1A(B, r) corresponding
to some rule r : AB → AC ∈ P . In membrane 8 we replace (B, r) with CY ′ and
send out the resulting string . In membrane 7 we replace Y ′ with Y and send the
string to membrane 2.

The process can be iterated. Consequently, L(G) = L(Π). ut

538 R. Ramesh, R. Rama

5 Conclusion

In this paper we gave some improved results about rewriting P systems with
conditional communication. We believe that the result of Theorem 3 cannot be
improved further. It is an open problem whether or not the result of Theorem 4
can be improved.

References

1. P. Bottoni, A. Labella, C. Martin Vide, Gh. Păun, Rewriting P systems with Condi-
tional Communication, LNCS 2300, Springer, 325-353 (2002).

2. J. Dassow, Gh. Păun, Regulated Rewriting in Formal Language Theory, Springer-
Verlag, 1989.

3. S.N. Krishna, R. Rama, H. Ramesh, Further Results on Contextual and Rewriting P
Systems, Fundamenta Informaticae 64(1-4), 241-253 (2005).

4. M. Madhu, Rewriting P systems:improved hierarchies, Theoretical Computer Science
334, 161-175 (2005).

5. Gh. Păun, Computing with Membranes, Journal of Computer and System Sciences
61(1), 108-143, 2000.

6. Gh. Păun, Membrane Computing: An Introduction, Springer-Verlag, Berlin, 2002.
7. G. Rozenberg, A. Salomaa, eds., Handbook of Formal languages (3 volumes), Springer,

1997.

