
OPERASCC: An Instance of a Formal Framework
for MAS Modelling Based on Population P
Systems

Ioanna Stamatopoulou1, Petros Kefalas2, Marian Gheorghe3

1 South-East European Research Centre, Thessaloniki, Greece
istamatopoulou@seerc.org

2 Dept. of Computer Science, CITY College, Thessaloniki, Greece
kefalas@city.academic.gr

3 Dept. of Computer Science, University of Sheffield, UK
m.gheorghe@dcs.shef.ac.uk

Summary. Swarm-based systems are biology-inspired systems which can be directly
mapped to multi-agent systems (MAS), possessing characteristics such as local control
over the decisions taken by the agents and a highly dynamic structure which continu-
ously changes. This class of MAS is of a particular interest because it exhibits emergent
behaviour through self-organisation and finds itself applicable to a wide range of do-
mains. In this paper, we present OPERAS, an open formal framework that facilitates
modelling of MAS, we describe how a particular instance of this framework, namely
OPERASCC , could employ existing biological computation systems, such as Population
P Systems, and demonstrate how the resulting method can be used to formally model a
swarm-based system of autonomous spacecrafts.

1 Introduction

Lately, there has been an increasing interest toward biological and biology-inspired
systems. From the smallest living elements, the cells, and how they form tissues in
organisms to entire ecosystems and how they evolve, there is growing investigation
on ways of specifying such systems. The intention is to create software that mimics
the behaviour of their biological counterparts. Examples of biological systems of
interest also include insect colonies (of ants, termites, bees etc.), flocks of birds,
tumours growth—the list is endless. The understanding of how nature deals with
various situations has inspired a number of problem solving techniques [13] that are
applicable to a wide range of situations that had been puzzling computer scientists
for decades. Swarm Intelligence [15, 16], Ant Colony Optimisation techniques [10]
for example, has been successfully applied to robotics [11], network routing [8, 28]
and data mining [1] and has inspired agent-based modelling platforms [19].

552 I. Stamatopoulou, P. Kefalas, M. Gheorghe

The promising feature is that these systems can be directly mapped to multi-
agent systems (MAS) by considering each entity as an agent, with its own behav-
ioural rules, knowledge, decision making mechanisms and means of communication
with the other entities and with the environment. The overall system’s behaviour
is merely the result of the agents’ individual actions, the interactions among them
and between them and the environment. This also points to the issue of self-
organisation and how collective behavioural patterns emerge as a consequence of
individuals’ local interactions in the lack of knowledge of the entire environment
or global control.

An additional modelling key aspect of MAS has not received much attention
so far; it is the dynamic nature of MAS and how their structure is constantly
reconfigured. By structure we imply (i) the changing number of agents in a MAS,
and (ii) either their physical placement in the environment or, more generally,
the structure that is dictated by the communication channels among them. Most
modelling methodologies assume a fixed, static structure that is not realistic since
in a dynamic MAS, communication between two agents may need to be established
or ceased at any point and also new agents may appear in the system while existing
ones may be removed. One additional issue that the inherent dynamic nature of
these systems raises has to do with distinguishing between the modelling of the
individual agents (behaviour) and the rules that govern the communication and
evolution of the collective MAS (control). By ‘control’ we do not imply central
control, as this would cancel any notion of self-organisation. Rather, we refer to
the part of the agent that takes care of non-behavioural issues. A modelling method
that allows such a distinction, would greatly assist the modeller by breaking down
the work into two separate and independent activities, modelling the behaviour
and modelling the control.

Population P Systems with active membranes [4], a class of variants of P Sys-
tems [20] are membrane structures composed of membranes configured in an ar-
bitrary graph and naturally possess the trait of reconfiguring their own structure
through rules that restructure the graph and allow membranes to divide and die.
Inspired by this appealing characteristic, in this paper we present a formal frame-
work, called OPERAS, that facilitates the development of dynamic MAS of the
nature of many biology and biology-inspired systems. The next section introduces
OPERAS formal definition, while section 3 presents an instance of this frame-
work, namely OPERASCC which utilises Population P Systems in order to model
MAS. A brief description of a representative case study dealing with a swarm-based
system follows in Section 4 which also deals with the formal model for the case
problem in question. Finally, Section 5 discusses issues arising from our attempt
and concludes the paper.

2 OPERAS: Formal Modelling of MAS

In an attempt to formally model each individual agent as well as the dynamic be-
haviour of the overall system, we need a formal method that is capable of rigorously

OPERASCC : An Instance of a Formal Framework for MAS Modelling 553

describing all the essential aspects, i.e. knowledge, behaviour, communication and
dynamics. It is also important that the level of abstraction imposed by a formal
method is appropriate enough to lead toward the implementation of a system.
New computation approaches as well as programming paradigms inspired by bi-
ological processes in living cells, introduce concurrency as well as neatly tackle
the dynamic structure of multi-component systems (P Systems, Brane Calculus,
Gamma, Cham, MGS) [2, 5, 20]. In agent-oriented software engineering, there
have been several attempts to use formal methods, each one focusing on different
aspects of agent systems development [3, 6, 9, 12, 21]. Other formal methods, such
as π-calculus, mobile ambients and P Systems with mobile membranes [7, 17, 18],
successfully deal with the dynamic nature of systems and concurrency of processes
but lack intuitiveness when it comes to the modelling of an individual agent (lack
of primitives and more complex data structures). An interesting comparison of var-
ious formal methods for the verification of emergent behaviours in swarm-based
systems is reported in [22].

2.1 OPERAS Definition

We start this section by providing the definition of a model for a dynamic MAS
in its general form.

A Multi-Agent System can be defined by the tuple (O, P, E, R, A, S) containing:

• a set of reconfiguration rules, O, that define how the system structure evolves
by applying appropriate reconfiguration operators;

• a set of percepts, P , for the agents;
• the environment’s model / initial configuration, E;
• a relation, R, that defines the existing communication channels;
• a set of participating agents, A, and
• a set of definitions of types of agents, S, that may be present in the system.

More particularly:

• the rules in O are of the form condition ⇒ action where condition refers to
the computational state of agents and action involves the application of one or
more of the operators that create/remove a communication channel between
agents or introduce/remove an agent into/from the system;

• P is the distributed union of the sets of percepts of all participating agents;
• R : A × A with (Ai, Aj) ∈ R, Ai, Aj ∈ A meaning that agent Ai may send

messages to agent Aj ;
• A = {A1, . . . An} where Ai is a particular agent defined in terms of its individ-

ual behaviour and its local mechanism for controlling reconfiguration;
• Sk = (Behaviourk, Controlk) ∈ S, k ∈ Types where Types is the set of iden-

tifiers of the types of agents, Behaviourk is the part of the agent that deals
with its individual behaviour and Controlk is the local mechanism for control-
ling reconfiguration; each participating agent Ai of type k in A is a particular
instance of a type of agent: Ai = (Behk, Ctrlk)i.

554 I. Stamatopoulou, P. Kefalas, M. Gheorghe

2.2 OPERAS as an open framework

The general underlying idea is that an agent model consists of two parts, its be-
haviour and its control. The behaviour of an agent can be modelled by a formal
method with its computation being driven by percepts from the environment. The
control can be modelled by a set of reconfiguration rules which given the compu-
tation states of agents can change the structure of the system. The MAS structure
is determined through the relation that defines the communication between the
agents. The set of participating agents are instances of agent types that may par-
ticipate in the system. This deals with the fact that an agent may be present at
one instance of the system but disappear at another or that a new agent comes
into play during the evolution of the MAS. This assumes that all agent types that
may participate in the system should be known in advance.

There are still some open issues which, however, make the OPERAS approach
a framework rather than a formal method. These are: (i) Which are the formal
methods that can be used in order to model the behaviour? (ii) Which are the for-
mal methods that can to use in order to model the control? (iii) Could the methods
in (i) and (ii) be different? (iv) Should the agents’ behaviour models communicate
directly with other agents’ behaviour models? (v) Should the agents’ control mod-
els communicate with other agents’ control models? (vi) Could communication be
established implicitly through percepts of the environment? (vii) Which method
chosen from (i) or from (ii) drives the computation of the resulting system? There
is no unique answer to these questions but the modelling solution will depend
on the choice of formal methods which are considered suitable to model either
behaviour or control.

It is therefore implied that there are several options which could instantiate
OPERAS into concrete modelling methods. Regarding the modelling of each type
of agent Sk, there are more than one options to choose from in order to specify
its behavioural part and the same applies for its control mechanism. We have long
experimented with various formal methods, such as X-machines with its commu-
nicating counterpart and Population P Systems with active cells. In this paper we
present an instance of the framework that employs ideas from the latter, using a
PPS to model both the behaviour as well as the control part of the agent.

3 OPERASCC

3.1 Population P Systems with active cells

A Population P System (PPS) [4] is a collection of different types of cells evolving
according to specific rules and capable of exchanging biological / chemical sub-
stances with their neighbouring cells (Fig. 1). More formally, a PPS with active
cells [4] is defined as a construct P = (V, K, γ, α, wE , C1, C2, . . . , Cn, R) where:

• V is a finite alphabet of symbols called objects;

OPERASCC : An Instance of a Formal Framework for MAS Modelling 555

• K is a finite alphabet of symbols, which define different types of cells;
• γ = ({1, 2, . . . n}, A), with A ⊆ {{i, j} | 1 ≤ i 6= j ≤ n }, is a finite undirected

graph;
• α is a finite set of bond-making rules of the form (t, x1; x2, p), with x1, x2 ∈ V ∗,

and t, p ∈ K meaning that in the presence of objects x1 and x2 inside two cells
of type t and p respectively, a bond is created between the two cells;

• wE ∈ V ∗ is a finite multi-set of objects initially assigned to the environment;
• Ci = (wi, ti), for each 1 ≤ i ≤ n, with wi ∈ V ∗ a finite multi-set of objects,

and ti ∈ K the type of cell i;
• R is a finite set of rules dealing with communication, object transformation,

cell differentiation, cell division and cell death.

Fig. 1. An abstract example of a Population P System; Ci: cells, Ri: sets of rules related
to cells; wi: multi-sets of objects associated to the cells.

All rules present in the PPS are identified by a unique identifier, r. More
particularly:

Communication rules are of the form r : (a ; b, in)t, r : (a ; b, enter)t, r :
(b, exit)t, for a ∈ V ∪ {λ}, b ∈ V , t ∈ K, where λ is the empty string, and allow
the moving of objects between neighbouring cells or a cell and the environment
according to the cell type and the existing bonds among the cells. The first rule
means that in the presence of an object a inside a cell of type t an object b
can be obtained by a neighbouring cell non-deterministically chosen. The second
rule is similar to the first with the exception that object b is not obtained by a
neighbouring cell but by the environment. Lastly, the third rule denotes that if
object b is present it can be expelled out to the environment.

Transformation rules are of the form r : (a → b)t, for a ∈ V , b ∈ V +, t ∈ K,
where V + is the set of non-empty strings over V , meaning that an object a is
replaced by an object b within a cell of type t.

Cell differentiation rules are of the form r : (a)t → (b)p, with a, b ∈ V ,
t, p ∈ K meaning that consumption of an object a inside a cell of type t changes
the cell, making it become of type p. All existing objects remain the same besides
a which is replaced by b.

556 I. Stamatopoulou, P. Kefalas, M. Gheorghe

Cell division rules are of the form r : (a)t → (b)t (c)t, with a, b, c ∈ V , t ∈ K.
A cell of type t containing an object a is divided into two cells of the same type.
One of the new cell has a replaced by b while the other by c. All other objects of
the originating cell appear in both new cells.

Cell death rules are of the form r : (a)t → †, with a ∈ V , t ∈ K meaning that
an object a inside a cell of type t causes the removal of the cell from the system.

PPS provide a straightforward way for dealing with the change of a system’s
structure and this is the reason why we have chosen them to define an instance of
the OPERAS framework, namely OPERASCC .

3.2 Definition of OPERASCC

In OPERASCC , each agent (individual behaviour) is modelled as a PPS cell,
and has a membrane wrapped around it, that is responsible for taking care of
structure reconfiguration issues (control). In essence, this may be considered as a
usual Population P System in which each cell is virtually divided in two regions,
inner (for behaviour) and outer (for control), that deal with different sets of objects
and have different kinds of rules that may be applied to them. An abstract example
of an OPERASCC model consisting of two agents is depicted in Fig. 2.

Additionally, when using a PPS for modelling purposes, we consider all ob-
jects to be attribute-value pairs of the form att : v so that it is clear to which
characteristic of the agent an object corresponds to.

Fig. 2. An abstract example of a OPERASCC consisting of two agents.

A MAS in OPERASCC is defined as the tuple (O,P, E,R, (A1, . . . An), S) (in
correspondence to P = (R, V, wE , γ, (C1, . . . Cn), k) of a PPS) where:

OPERASCC : An Instance of a Formal Framework for MAS Modelling 557

• Ai = (wbeh, wctrl, t), wbeh being the objects of the agent behaviour cell, want

the objects of the control cell (these objects possibly hold information about
the wbeh objects (computation states) of neighbouring agent cells) and t ∈ k
the type of the cell;

• O = OA ∪OC .
– The rules in OA (to be applied only by the behaviour cells on the wbeh

objects) are the transformation rules of a PPS that rewrite the objects, as
well as the communications rules that move objects between cells that are
linked with a bond (both kinds of rules do not affect the structure of the
system).

– The rules in OC (to be applied only by the control cells on the wctrl objects)
are the birth, death, differentiation and bond-making rules of a PPS (the
kinds of rules that affect the structure of the system) as well as environment
communication rules (receiving/sending objects from/to the environment)
so that there is indirect communication between the control cells.

• P = PA∪PC , the set of percepts of all participating agents where PA is the set
of inputs perceived by the behaviour cells and PC is the set of inputs perceived
by the control cells.

• E is the set of objects assigned to the environment holding information about
the computation states of all the participating agents;

• R is the finite undirected graph that defines the communication links between
the behaviour cells;

• S is the set of possible types of cells.

It should be noted that although the agent descriptions’ set A appears fifth
in OPERAS definition tuple, from a practical perspective it is the first element
being defined; the other tuple elements and their form are naturally dependent on
the particular method(s) chosen to define the behavioural and control part of the
agents.
Computation
In every computation cycle:

• In all the cells modelling the behaviour of the agent, all applicable object rules
in OA (transformation and communication) are applied;

• All control cells expel in the environment the wbeh objects (computation states
of behaviour cells) along with the cell identity;

• All control cells import the computation states, wbeh, of neighbouring agents;
• All rules in OC (bond-making, birth, death, differentiation) are triggered in

the control cells, (if applicable) reconfiguring the structure of the system.

Since the model follows the computation rules of a PPS system, the overall sys-
tem’s computation is synchronous. Asynchronous computation may be achieved
with the use of other methods for modelling the agents’ behaviour and/or control.
In [27] we present another instance of the framework, namely OPERASXC , which
uses X-machines for the behavioural part of the agent and membranes wrapped
around the machines for the control part, and apply it on the same swarm-based

558 I. Stamatopoulou, P. Kefalas, M. Gheorghe

system that we present hereafter. Because in that version of the framework com-
putation is driven by the computation of the participating X-machines, overall
computation is asynchronous.

4 OPERASCC for a Swarm-based system

4.1 Autonomous Spacecrafts for Asteroid Exploration

A representative example of a system which clearly possesses all the afore-
mentioned characteristics of a dynamic MAS is the NASA Autonomous Nano-
Technology Swarm (ANTS) system [22]. The NASA ANTS project aims at the
development of a mission for the exploration of space asteroids with the use of
different kinds of unmanned spacecrafts. Though each spacecraft can be consid-
ered as an autonomous agent, the successful exploration of an asteroid depends
on the overall behaviour of the entire mission, as the latter emerges as a result of
self-organisation. We chose this case study because relevant work on the particu-
lar project included research on and comparison of a number of formal methods
[22, 23].

Fig. 3. An instance of the ANTS mission, L: Leader, W : Worker, M : Messenger.

The ANTS mission uses of three kinds of unmanned spacecrafts: Li, leaders (or
rulers or coordinators), Wi, workers and Mi, messengers (Fig. 3). The leaders are
the spacecrafts that are aware of the goals of the mission and have a non-complete
model of the environment. Their role is to coordinate the actions of the spacecrafts
that are under their command but by no means should they be considered to
be a central controlling mechanism as all spacecrafts’ behaviour is autonomous.
Depending on its goals, a leader creates a team consisting of a number of workers
and at least one messengers. Workers and messengers are assigned to a leader upon
request by (i) another leader, if they are not necessary for the fulfillment of its
goals, or (ii) earth (if existing spacecrafts are not sufficient in number to cover
current needs, new spacecrafts are allocated to the mission).

OPERASCC : An Instance of a Formal Framework for MAS Modelling 559

A worker is a spacecraft with a specialised instrument able, upon request from
its leader, to take measurements from an asteroid while flying by it. It also possesses
a mechanism for analysing the gathered data and sending the analysis results back
to its leader in order for them to be evaluated. This in turn might update the view
of the leader, i.e. its model of the environment, as well as its future goals.

The messengers, finally, are the spacecrafts that coordinate communication
among workers, leaders and the control centre on earth. While each messenger is
under the command of one leader, it may also assist in the communication of other
leaders if its positioning allows it and conditions demand it.

What applies to all types of spacecrafts is that in the case that there is a mal-
functioning problem, their superiors are being notified. If the damage is irreparable
they need to abort the mission while on the opposite case they may “heal” and
return back to normal operation.

4.2 The OPERASCC approach to the ANTS mission

The swarm-based system in the ANTS mission can be directly mapped into the
OPERAS framework (Fig. 4). A number of agents of three different types (work-
ers, W , leaders, L, and messengers, M) compose the MAS system. System con-
figuration is highly dynamic due to its nature and unforeseen situations that may
come up during the mission.

Fig. 4. (a) An instance of MAS structure corresponding to ANTS in Fig. 3 with an
OPERAS agent (W4) consisting of separate Behaviour and Control components. (b)
A change in the structure of MAS after possible events (e.g. destruction of worker W2,
leader L1 employs worker W6 etc.).

560 I. Stamatopoulou, P. Kefalas, M. Gheorghe

Leader: Formal Modelling of Behaviour in OPERASCC

For the modelling of the leader agent, one has to identify the internal states of the
agent, its knowledge as well as the inputs it is capable of perceiving, so that they
are represented as objects of the corresponding PPS.

The state of a leader can be either one of the three: Processing for an leader
that is fully operational, Malfunctioning for one that its facing problems and
Aborting for one that is either facing irreparable problems or has been commanded
by the control centre on earth to abort the mission.

Object Description

status The current operational state of the leader

existingWorkers The set of IDs and statuses of the workers under its com-
mand

existingMsgs The set of IDs and statuses of the messengers under its
command

results The set containing analysis results it has gathered

model The current model of the agent’s surroundings

goals The agent’s goals

Table 1. Objects representing the knowledge of the Leader agent.

The knowledge of the agent consists of the objects presented in Table 1 along
with their description.

Similarly, the leader type of cell will be able to also perceive other objects
representing input from the environment or from other agents. The most prominent
ones are summarised in Table 2.

Object Description

abrt A request from the control centre that the agent
should abort the mission

worker A new worker that joins the team under the leaders
command

messenger A new messenger that joins the team under the lead-
ers command

requestForWorker A request for a worker, made by another leader (so
that the worker is reallocated)

requestForMsg A request for a messenger, made by another leader
(so that the messenger is reallocated)

message An object representing a message sent by another
agent

Table 2. Objects representing the percepts of the Leader agent.

OPERASCC : An Instance of a Formal Framework for MAS Modelling 561

Indicatively, two of the operations that a leader may perform in the form of
transformation rules follow.

The rule representing the joining of a worker wi to the leader’s team of Workers
is specified as:
workerJoining :
(status : processing worker : wi existingWorkers : Workers

→ status : processing existingWorkers : {wi} ∪Workers)L

The newly allocated worker wi may be received by another leader with the use of
a communication rule of the form:
receiveWorker : (message : canSendY ouAWorker ; worker : wi, in)L

which assumes that a canSendY ouAWorker message has been previously sent by
the other leader informing that it is willing to reallocate one of its workers.

Similarly, the rule representing the reallocation of the messenger mi to another
leader is:
reAllocatingMessenger :
(status : processing percept : requestForMsg existingMsgs : Messengers

→ status : processing existingMsgs : Messengers\{mi})L,
if isMessengerNeeded(mi) == false

Worker: Formal Modelling of Behaviour in OPERASCC

Similarly for a worker agent, the internal states in which a it may be in are
Measuring, when taking measurements from an asteroid, Analysing, when analysing
the measurements in order to send results to its leader, Idle, Malfunctioning and
Aborting.

The knowledge of the agent consists of the objects presented in Table 3 along
with their description.

Object Description

status The current operational state of the worker

myLeader the identity of its commanding leader,

teamWorkers The set of other coworkers belonging to the same team

teamMsgs The set of messengers belonging to the same team

Target The target asteroid

Data The set of data collected from the asteroid

Results The set of the data analysis results

Table 3. Objects representing the knowledge of the Worker agent.

The worker type of cell will also be able to also perceive other objects that
represent either environmental stimuli or messages from other agents. Indicative
ones are being summarised in Table 4.

562 I. Stamatopoulou, P. Kefalas, M. Gheorghe

Indicatively, some of the operations that a worker may perform in the form of
transformation rules follow.

The rule representing the measurements’ analysis mechanism of the worker is:
analysingData :
(status : Analysing data : Data → status : Idle results : Results)W

The rule that informs a worker that it is being reallocated to another leader is
defined as:
reAllocating :

(status : Idle myLeader : Leader reassignedTo : NewLeader
→ status : Idle myLeader : NewLeader)W

Object Description

abrt A request from the control centre that the agent should abort the
mission

reassignedTo The identifier of the new leader the worker is being reassigned to

data The set of measurements taken from the asteroid

Table 4. Objects representing the percepts of the Worker agent.

4.3 Formal Modelling of Control in OPERASCC

According to OPERASCC , for the definition of the given system as a dynamic
MAS, we need to assume an initial configuration. To keep the size restricted for
demonstrative purposes, let us consider an initial configuration that includes one
leader L1, one messenger M1 and two workers W1,W2. According to OPERASCC

the above system would be defined as follows.
The set O contains all the aforementioned transformation rules that model

the agents’ behaviour as well as the reconfiguration rules (birth, death and bond-
making) regarding (i) the generation of a new worker when the control centre on
earth decides it should join the mission, (ii) the destruction (i.e. removal from
the system) of any kind of agent in the case it must abort the mission, (iii) the
establishment of a communication channel between a leader and all members of
its team. More particularly O additionally contains the following rules.

The following birth rules create a new worker wi or messenger mi under the
command of a leader Li when the leader has received the corresponding mes-
sages (objects earthSendsWorker and earthSendsMsg) from the control centre
on earth.
newWorkerFromEarth :
(status : Processing earthSendsWorker : wi existingWorkers : Workers)Li

→ (status : Processing existingWorkers : Workers ∪ {wi})Li

(status : Idle myLeader : Li)Wi

OPERASCC : An Instance of a Formal Framework for MAS Modelling 563

newMessengerFromEarth :
(status : Processing earthSendsMsg : mi existingMsgs : Messengers)Li

→ (status : Processing existingMsgs : Messenger ∪ {mi})Li

(status : Idle myLeader : Li)Mi

Inputs, such as earthSendsMsg : mi, from the environment are perceived with
the use of communication rules of the form:
receiveInput : (ε ; earthSendsMsg : mi, enter)L

The death rule below removes agent instances that have aborted the mission from
the model (t ∈ S stands for any type of agent).
abortion :

(status : aborting)t → †
Finally, the following bond-making rules ensure the creation of a communication
bond between a leader agent (ε stands for the empty multi-set, i.e. no object
is necessary) and any messenger or worker that belongs to this leader’s team.
workerBondMaking :

(Li ε ; myLeader : Li W)
messengerBondMaking :

(Li ε ; myLeader : Li M)

The set P contains all objects recognised by the Population P System.
Regarding the environment E, it should initially contain objects representing

the initial percepts for all agents.
Since in the assumed initial configuration we consider to have one group of

spacecrafts under the command of one leader, all agents should be in communica-
tion with all others and so:
R = {(L1,W1), (L1,W2), (W1,W2), (M1, L1), (M1,W1), (M1,W2)}
Finally, the set S that contains the agent types is: S = {L, W,M}.

5 Conclusions and Further Work

We presented OPERAS with which one can model multi-agent systems that ex-
hibit dynamic structure, emergent and self-organisation behaviour. The contribu-
tions of OPERAS can be summarised in the following:

• A formal framework for MAS modelling.
• The behaviour and the control of an agent are separate components which

imply distinct modelling mental activities.
• Flexibility on the choice of formal methods to utilise and option to combine

different formal methods.

It is because of this distinct separation between behaviour and control that
OPERAS provides this flexibility of choosing different methods for modelling

564 I. Stamatopoulou, P. Kefalas, M. Gheorghe

these two aspects; while some methods are better at capturing the internal states,
knowledge and actions of an agent, others focusing on the dynamic aspect of a
MAS are more suitable for capturing the control mechanisms.

In this paper, we employed Population P Systems with active cells to define
OPERASCC , an instance of the general framework. We presented the OPERASCC

model of a swarm-based system of a number of autonomous spacecrafts. It could
easily be spotted that an OPERASCC model does resemble (as a final outcome)
a model which could be developed if one used Population P Systems with ac-
tive cells from scratch [24]. However, in the current context we have the following
advantages:

• PPS can be viewed as a special case for OPERAS.
• The distinction of modelling behaviour and control as separate, offers the

ability to deal with transformation/communication rules separately from cell
birth/division/death and bond making, with implications both at theoretical
as well as practical level.

• Practically, during the modelling phase, one can find advantages and drawbacks
at any of the behaviour or control component and switch to another formal
method for this component if this is desirable.

As far as the last point is concerned, we verified our initial findings [24] in
which it was stated that modelling the behaviour of an agent with PPS rewrite and
communication rules may be rather cumbersome. Especially in this rather complex
case study, although the modelling of the control is absolutely straightforward,
we had difficulties to establish the necessary peer to peer communication between
agents by employing just the communication rules. That gave us the opportunity to
consider alternatives. For example, we have experimented with Communicating X-
machines which have a number of advantages in terms of modelling the behaviour
of an agent. The resulting model, OPERASXC [27], seems to ease the modelling
process in complex MAS. It is worth noticing that none of the two formal methods
(X-machines and Population P Systems) by itself could successfully (or at least
intuitively) model a MAS [14, 26]. This is true for other formal methods too, which
means the current framework gives the opportunity to combine those methods that
are best suited to either of the two modelling tasks.

We would like to continue the investigation of how OPERAS could employ
other formal methods that might be suitable for this purpose. In the near future,
we will focus on theoretical aspects of the framework. Towards this direction, we
are also currently working on various types of transformations that could prove
its power for formal modelling as well as address legacy issues concerned with
correctness.

Finally, efforts will also be directed towards enhancing existing animation tools
on Population P Systems in order to come up with a new version of the tool that
will be able animate OPERASCC specified models. More particularly, the PPS-
System [25] is a tool that generates Prolog executable code from Population P
Systems models written in a particular notation. Future work will involve extend-

OPERASCC : An Instance of a Formal Framework for MAS Modelling 565

ing the notation and the system in order to integrate the necessary OPERAS fea-
tures, allowing us to gain a deeper understanding of the modelling issues involved
with OPERASCC and helping us investigate the practicability of our approach.

References

[1] A. Abraham, C. Grosan, and V. Ramos (Eds.). Swarm Intelligence in Data Mining,
volume 34 of Studies in Computational Intelligence. Springer-Verlag, 2006.

[2] J.P. Banatre and D. Le Metayer. The gamma model and its discipline of program-
ming. Science of Computer Programming, 15:55–77, 1990.

[3] M. Benerecetti, F. Giunchiglia, and L. Serafini. A model-checking algorithm for
multi-agent systems. In J. P. Muller, M. P. Singh, and A. S. Rao, editors, Intelligent
Agents V, Lecture Notes in Artificial Intelligence, pages 163–176. Springer-Verlag,
1999.

[4] F. Bernandini and M. Gheorghe. Population P Systems. Journal of Universal
Computer Science, 10(5):509–539, 2004.

[5] G. Berry and G. Boudol. The chemical abstract machine. Journal of Theoretical
Computer Science, 96(1):217–248, 1992.

[6] F. Brazier, B. Dunin-Keplicz, N. Jennings, and J. Treur. Formal specification of
multiagent systems: a real-world case. In Proceedings of International Conference
on Multi-Agent Systems (ICMAS’95), pages 25–32. MIT Press, 1995.

[7] L. Cardelli and A. D. Gordon. Mobile ambients. Number 1378 in Lecture Notes In
Computer Science, page 140155. March 28 - April 04 1998.

[8] G. Di Caro and M. Dorigo. Mobile agents for adaptive routing. In Proceedings of
the 31st Hawaii International Conference on Systems, January 1998.

[9] M. d’Inverno, D. Kinny, M. Luck, and M. Wooldridge. A formal specification of
dMARS. In M. P. Singh, A. Rao, and M. J. Wooldridge, editors, Intelligent Agents
IV, volume 1365 of Lecture Notes in AI, pages 155–176. Springer-Verlag, 1998.

[10] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: Optimisation by a colony of
co-operating agents. IEEE Transactions on Systems, Man and Cybernetics, 26(1):1–
13, 1996.

[11] M. Dorigo, V. Trianni, E. Sahin, R. Gross, T. H. Labella, G. Baldassarre, S. Nolfi,
J. L. Deneubourg, and F. Mondada. Evolving self-organizing behavior. Autonomous
Robots, 17(2-3):223–245, 2004.

[12] M. Fisher and M. Wooldridge. On the formal specification and verification of multi-
agent systems. International Journal of Cooperating Information Systems, 6(1):37–
65, 1997.

[13] M. Gheorghe, editor. Molecular Computational Models: Unconventional Approaches.
Idea Publishing Inc., 2005.

[14] P. Kefalas, I. Stamatopoulou, and M. Gheorghe. A formal modelling framework for
developing multi-agent systems with dynamic structure and behaviour. In M. Pe-
choucek, P. Petta, and L. Z. Varga, editors, Proceedings of the 4th International
Central and Eastern European Conference on Multi-Agent Systems, Budapest, Hun-
gary, September 15-17, number 3690 in Lecture Notes in Artificial Intelligence, pages
122–131. Springer Verlag, 2005.

566 I. Stamatopoulou, P. Kefalas, M. Gheorghe

[15] J. Kennedy and R. C. Eberhart. Particle swarm optimization. In Proceedings of
IEEE International Conference on Neural Networks, pages 1942–1948, Piscataway,
NJ, 1995.

[16] J. Kennedy, R. C. Eberhart, and Y. Shi. Swarm intelligence. Morgan Kaufmann
Publishers, San Francisco, 2001.

[17] S. N. Krishna and Gh. Păun. P systems with mobile membranes. Natural Computing:
an international journal, 4(3):255–274, 2005.

[18] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, i. Information
and Computation, 100(1):1–40, 1992.

[19] N. Minar, R. Burkhart, C. Langton, and M. Askenazi. The swarm simulation system:
a toolkit for building multi-agent simulations. Working paper 96-06-042, Santa Fe
Institute, Santa Fe, 1996.

[20] G. Păun. Computing with membranes. Journal of Computer and System Sciences,
61(1):108–143, 2000. Also circulated as a TUCS report since 1998.

[21] S. R. Rosenschein and L. P. Kaebling. A situated view of representation and control.
Artificial Intelligence, 73:149–173, 1995.

[22] C. Rouf, A. Vanderbilt, W. Truszkowski, J. Rash, and M. Hinchey. Verification of
NASA emergent systems. In Proceedings of the 9th IEEE International Conference
on Engineering Complex Computer Systems (ICECCS’04), pages 231–238, 2004.

[23] C. Rouff, A. Vanderbilt, M. Hinchey, W. Truszkowski, and J. Rash. Properties of
a formal method for prediction of emergent behaviors in swarm-based systems. In
Proceedings of the Second International Conference on Software Engineering and
Formal Methods (SEFM04), pages 24–33, 2004.

[24] I. Stamatopoulou, M. Gheorghe, and P. Kefalas. Modelling dynamic configuration
of biology-inspired multi-agent systems with Communicating X-machines and Pop-
ulation P Systems. In G. Mauri, G. Păun, M. J. Pérez-Jiménez, G. Rozenberg, and
A. Salomaa, editors, Membrane Computing: 5th International Workshop, volume
3365 of Lecture Notes in Computer Science, pages 389–401. Springer-Verlag, Berlin,
2005.

[25] I. Stamatopoulou, P. Kefalas, G. Eleftherakis, and M. Gheorghe. A modelling lan-
guage and tool for Population P Systems. In Proceedings of the 10th Panhellenic
Conference in Informatics, Volos, Greece, November 11-13, 2005.

[26] I. Stamatopoulou, P. Kefalas, and M. Gheorghe. Modelling the dynamic structure
of biological state-based systems. BioSystems, 87(2-3):142–149, February 2007.

[27] I. Stamatopoulou, P. Kefalas, and M. Gheorghe. OPERAS: a formal framework for
multi-agent systems and its application to swarm-based systems. In The 5th IEEE
International Conference on Software Engineering and Formal Methods (SEFM’07),
2007. Submitted.

[28] T. White and B. Pagurek. Towards multi-swarm problem solving in networks. In
Proceedings of the 3rd International Conference on Multi Agent Systems, page 333,
July 03-07 1998.

