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Summary. Transition P systems are a parallel computational model based on the notion
of the cellular membrane system. The distributed architectures for P system implemen-
tation in digital device must deal jointly with the time for active rules application over
multisets and the time for communication among membranes. Analysis of these architec-
tures shows that it is very important to improve the time used in the rules application
step since this allows for reducing the evolution step time and the number of processors
needed in the system. This work introduces the concepts of competitiveness relationship
among active rules and competitiveness graph. For this, it takes into account the fact
that some active rules in a membrane can consume disjointed object sets. Based on these
concepts this paper presents a new evolution rules application algorithm that improves
throughput of active rules elimination algorithms (sequential and parallel).

1 Introduction

Computation with membranes was introduced by Gheorghe Păun in 1998 [10]
through a definition of transition P systems. This new computational paradigm
is based on the observation of biochemical processes. The region defined by a
membrane contains chemical elements (multisets) which are subject to chemical
reactions (evolution rules) to produce other elements. Transition P systems are
hierarchical, as the region defined by a membrane may contain other membranes.
Multisets generated by evolution rules can be moved towards adjacent membranes
(parent and children). This multiset transfer feeds back into the system so that
new products are consumed by further chemical reactions in the membranes.

These systems perform computations through transition between two consecu-
tive configurations. Each transition or evolution step goes through two sequential
steps: rules application and objects communication. First, the evolution rules are
applied simultaneously to the multiset in each membrane. This process is per-
formed by all membranes at the same time. Then, also simultaneously, all mem-
branes communicate with their destinations.
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The objective of this paper is to present an improvement of the algorithm of
active rules elimination [12] used in the rules application step. To achieve this, the
paper is structured as follows: first, related works are presented; then, the basic
ideas of the active rules elimination algorithm are summarized, which is followed
by a definition of the concept of competition between rules; next, the optimization
of the algorithm is specified and, finally, conclusions are drawn.

2 Related works

No line of research for the implementation of P system in digital devices has man-
aged to achieve the massively parallel nature of these systems. However, significant
advances have been made. First, specifications have been made of faster algorithms
for application of evolutions rules for both sequential devices [12] [3] and parallel
ones [4] [5]. Moreover, the problem of network congestion in the multiset commu-
nications step described by Ciobanu [2] has been solved in the works of Tejedor
[11] and Bravo [1]. In short, today a number of implementations can be made that
achieve a certain degree of parallelism that depends on communications and the
application of evolution rules.

Viable communications architectures for the P systems implementation pro-
posed in [11] and [1] use a number of processors on the order of the square root of
the number of membranes and place several membranes in each processor. More-
over, these solutions achieve an evolution pass time, at worst, on the order of
the square root of the number of membranes and eliminate network congestion
by means of access control to the common medium. However, these architectures
need to know the time needed to perform rules application. This information is
needed to be able to optimally distribute membranes among processors. In these
P system implementation architectures, it is important to improve the time used
in the rules application step since this allows for reducing the evolution step time
and the number of processors needed in the system. Specifically, if rule applica-
tion time is divided by the factor N, then the evolution time and the number of
processors in the system is divided by the square root of N.

Analysis of the rules application algorithms published to date shows that only
the algorithm of active rules elimination [12] together with its parallel version [5]
meet the viable architectures of Tejedor [11] and Bravo [1]. These 2 algorithms
enable prior determination of the maximum execution time, since this value de-
pends on the number of rules rather than on the multiset cardinal to which they
are applied, as in other algorithms reported. [2] [3]. In addition, these algorithms
are the quickest in their category (sequential and parallel). This paper improves
throughput of active rules elimination algorithms and takes into account the fact
that some active rules in a membrane can consume disjointed object sets. This
improvement is applicable to the algorithm in both its sequential and parallel
versions.
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3 Algorithm of active rules elimination [12]

The general idea of this algorithm is to eliminate, one by one, the rules from the
set of active rules. Each step of rule elimination performs two consecutive actions:

1. Iteratively, any rule other than that which is to be eliminated is applied for
a randomly selected number of times in an interval from 0 to the maximum
applicability benchmark. This action ensures the non-determinism inherent to
P systems.

2. The rule to be eliminated is applied a number of times which is equal to
its maximum applicability benchmark, thus making applicable no longer and
resulting in its disappearance from the set of active rules.

We assume that:

1. The object multiset to which active rules are applied is ω.
2. The active rules set is transformed in an indexed sequence R in which the

order of rules is not relevant.
3. The object multiset resulting from application of active rules is ω′.
4. The multiset of applied rules that constitute the algorithm output is ωR.
5. Operation |R| determines the number of rules in the indexed sequence R.
6. Operation ∆R[Ind] dω′e calculates the maximum applicability benckmark of

the rule R [Ind] over ω′.
7. The operation input (R [Ind])·K performs the scalar product of the antecedent

of rules by a natural number.

and thus the algorithm is:

(1) ω′ ← ω
(2) ωR ← ∅MR(O,T )

(3) FOR Last = |R| DOWNTO 1
(4) BEGIN
(5) FOR Ind = 1 TO Last− 1 DO
(6) BEGIN
(7) Max← ∆R[Ind] dω′e
(8) K ← random(0,Max)
(9) ωR ← ωR +

{
R [Ind]K

}
(10) ω′ ← ω′ − input (R [Ind]) ·K
(11) END
(12) Max← ∆R[Last] dω′e
(13) ωR ← ωR +

{
R [Last]Max

}
(14) ω′ ← ω′ − input (R [Last]) ·Max
(15) END
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Remember that if rule R [i] is no longer applicable in the elimination step for R [j],
it is no longer necessary to perform the elimination step for R [i], the algorithm is
greatly improved, as shown in [12].

In each iteration of the algorithm of actives rules elimination, the maximum
applicability benchmark of a rule is calculated and then the rule is applied. The
number of iterations executed at worst is:

#iterations =
q∑

i=1

i =
q · (q + 1)

2

Let q be the cardinal of the indexed sequence of active rules. Thus, this algo-
rithm allows one to know how long it takes to be executed in the worst case, with
knowledge of the rules set of a membrane.

It is important to note that, in general, it is essential to perform the first
action in each elimination step of a rule. This action is necessary to ensure that
any possible result of the rules application to the multiset is produced by the
algorithm. In case the action is not performed, the eliminated rule (applied as
many times as the value of its maximum applicability benchmark) may consume
the objects necessary so that any other rule can be applied. However, the latter
does not always occur and the first action in each elimination step can be simplified.
For the sake of illustration, let us assume that the antecedents of a set of active
rules are shown in figure 1.

Fig. 1. Antecedents of a set of active rules

In this case, in the elimination step of the rule r1 only the first action with the
rule r2 has to be taken, as r1 and r2 are the only rules with the object a in their
antecedents. The same is the case with rules r3 and r4, as these two compete for
the object d. Thus, taking into account the competition between rule antecedents,
one can adjust the rule elimination algorithm to perform only 6 iterations in the
worst case, rather than 10 (2 to eliminate r1, 1 to eliminate r2, 2 to eliminate r3,
1 to eliminate r4) as shown in figure 2.



Algorithm of Rules Application Based on Competitiveness 571

Fig. 2. Execution trace of Rules Elimination and Rules Elimination with competitiveness
algorithms

4 Definition of competitiveness between rules

Definition 1: Competitiveness graph.
Let R be a set of active rules

R = {r1, r2, ..., rq} with q > 0

Let C be a binary relationship defined over the set R

∀x, y ∈ R, x 6= y x C y ⇔ input(x) ∩ input(y) 6= ∅

This binary relationship can be represented by a non-directed graph CG =
(R,C) called a competitiveness graph, where the rules are related to each other
if, and only if its antecedents have an object in common. For example, given the
rules inputs shown in figure 3, the competitiveness graph generated by these rules
taking into account the relationship C will be as shown in figure 4.

Definition 2: Subgraph resulting from elimination of a rule. Let competi-
tiveness graph be CG = (R,C) and rule x ∈ R. The subgraph resulting from
elimination of rule x is defined as:

CSG = (R− {x} , C ∩R− {x} ×R− {x})

Definition 3: Induced subgraph. Let a competitiveness graph be CG = (R,C)
and R′ ⊆ R. The competitiveness subgraph induced by the subset R′ is the graph:
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Fig. 3. Antecedents of a set of active rules

Fig. 4. Competitiveness graph

CSG = (R′, C ∩R′ ×R′)

Definition 4: Competitiveness chain. For a competitiveness graph CG =
(R,C), a competitiveness chain is defined as an ordered sequence of rules pertain-
ing to R

s1, s2, ... , sn si ∈ R,

satisfying:

si C si+1 ∀i ∈ {1, ..., n− 1}
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By definition, there is always a competitiveness chain composed of a single rule.
Definition 5: Accessible rule relationship. For a competitiveness graph CG =

(R,C), the accessible rule relationship (A) is defined as:

x, y ∈ R x A y ⇔ ∃ a competitiveness chain s1, ..., sn|s1 = x ∧ sn = y

This is an equivalence relation which divides the rule set R into equivalence
classes.

Definition 6: Connected component of competitiveness graph. Let competi-
tiveness graph be CG = (R,C), let the accessible rule relationship be A and let E
be an equivalence class produced by A. The connected component of CG is defined
as the graph induced by the vertices pertaining to the equivalence class E.

Definition 7: Connected competitiveness graph. Let a competitiveness graph
be CG = (R,C) and consider the its rule accessibility relation. We call connected
CG if and only if it has a connected component.

Definition 8: Articulation. For a competitiveness graph CG = (R,C) and a
rule x ∈ R, it is said that x is an articulation of CG if and only if the subgraph
resulting from the elimination of rule x has more connected components than CG.

5 Algorithm based on rules competitiveness

Based on the rules competitiveness relationship of a membrane’s rules one can
improve the algorithm of elimination of active rules. To do this, an analysis must
be made of the evolution rules of each membrane prior to P system evolution. The
analysis will determine the order of active rules elimination and what rules set
are used in the first action of each elimination step of a given rule. The following
optimizations can be made of the algorithm of rule elimination:

5.1 1st optimization

The idea of this optimization is based on the fact that in the elimination step of
a rule, the first action of the algorithm must be applied to the rules in the same
connected component of the competitiveness graph. This can be done because the
antecedents of rules in different connected components do not compete for common
objects of the multiset.

The analysis prior to the execution of each P system calculates the competitive-
ness graph of each membrane. Then the connected components of the graph are
calculated. The algorithm of active rule elimination will be applied independently
to the rules of each of the connected components, with no need for any change in
its codification.

In the worse case of the example of figure 4, the sequential version of this
algorithm will need to perform 3 iterations in the connected component consisting
of the rules {r1, r2} and 36 iterations in the connected component consisting of
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the rules {r3, r4, r5, r6, r7, r8, r9, r10}. Therefore, this example has gone from
55 iterations in the worst case of the algorithm of active rules elimination to 39
iterations (figure 5), that is, it has been reduced by 71% compared to the active
rules elimination algorithm.

Fig. 5. Execution trace of sequential 1st optimization

Making a parallel version of the algorithm is quite simple. One need only apply
the algorithm of active rules elimination in parallel to the rules of each connected
component on the competitiveness graph. The parallel version would require only
36 iterations (maximum(36, 3)) in the worst case, as shown in figure 6), that is,
it has been reduced by 65% compared to the active rules elimination algorithm.

5.2 2nd optimization

This optimization is applied in each connected component of the competitiveness
graph. If the competitiveness graph of a membrane has articulations the algorithm
can be used to eliminate these rules first and cause the appearance of new con-
nected components. Thus, if rule r6 is eliminated in our example (figure 4) the
connected component splits in two: the one composed of {r3, r4, r5} and the one
composed of {r7, r8, r9, r10}.
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Fig. 6. Execution trace of parallel 1st optimization

When a connected component has no articulations, elimination of more than
one rule can break it into more than one connected component. Continuing with
the example we have proposed, if we first remove from connected component
{r7, r8, r9, r10} rules r7 and r10 in two elimination steps, it then splits into two
connected components consisting of the rules r8 and r9, respectively.

To perform this optimization, a slight change must be made in the sequential
algorithm of active rules elimination. Now, each step of elimination of a rule must
eliminate a specific rule and is carried out in a sequence of determinate rules.
Moreover, there is a certain partial order in the elimination steps of a rule. Whereas
order is irrelevant in previous versions of the active rules elimination algorithm,
it is decisive in this version. The set of rules used and the rule being eliminated
in each elimination step is calculated for each membrane in the analysis prior to
the evolution of the P system; as a result, the calculation does not penalize the
execution time of the algorithm.

Figure 7 shows the order in which evolution rules are eliminated and the set
of rules used in each elimination step for the example in figure 4. The number of
iterations of this algorithm in the worst case is 25, that is, it has been reduced by
45% compared to the active rules elimination algorithm.

The parallel version of the algorithm involves applying the sequential version to
each of the connected components that are either in the original competitiveness
graph or that are generated as a result of the elimination of a rule.

The execution trace of the parallel algorithm used with the set of rules of the ex-
ample in figure 4 is shown in figure 8. It may be noted that the number of iterations
in the worst case is 16 (maximum(8, 2)+maximum(3, 4, 1)+maximum(1, 1, 3)+
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Fig. 7. Execution trace of sequential 2nd optimization

maximum(1, 1)) using 5 processes. Hence, the number of iterations is reduced by
29% compared to the active rules elimination algorithm.

Fig. 8. Execution trace of parallel 2nd optimization
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Table 1 shows the number of iterations performed by the algorithms in the
worst case:

• Actives rules elimination (ARE)[12]
• Sequential competitive rules with 2nd optimization(SCR)
• Delimited massively parallel (DMP)[5]
• Parallel competitive rules with 2nd optimization (PCR)

Applied to P systems defined in:

• Reference#1:Computing with Membranes [8]
• Reference#2:A Guide to Membrane Computing [9]
• Reference#3:P Systems Running on a Cluster of Computers [2]

Sequential Parallel

ARE SCR SCR/ARE DMP PCR PCR/DMP

Ref#1 pag 10 6 4 66% 5 3 60%

Ref#1 pag 13 6 4 66% 5 3 60%

Ref#1 pag 15 3 3 100% 3 3 100%

Ref#2 pag 9 6 4 66% 5 3 60%

Ref#2 pag 14 10 6 60% 8 3 37%

Ref#3 pag 137 10 5 50% 8 3 37%

Ref#3 pag 138 6 4 66% 5 3 60%

Table 1. Number of iterations performed by the algorithms in the worst case

5.3 3rd optimization

This last optimization is based on an analysis of the execution trace of the 2nd

optimization. It can occasionally be observed that the elimination step of one rule
rj also eliminates one or more additional rules ri. This can occur either because
ri is applied a number of times that coincides with the maximum applicability
benchmark, or the rules applied prior to ri consume the objects it needed to
continue being active. This can be used mainly in three ways to improve the
execution time of the algorithm:

1. There is no need to execute the elimination step of the rule ri eliminated in a
previous step. Bearing in mind the execution trace in figure 7, if the elimination
step of rule r6 also eliminates rule r4, then it would no longer be necessary to
execute the elimination step of r4, thus allowing execution of the algorithm to
save 3 iterations.

2. Rule ri is not to be applied in the elimination steps of subsequent rules. Bearing
in mind the execution trace in figure 7, if the elimination step of rule r6 also
eliminates rule r8, it is therefore unnecessary in elimination steps of rules r7



578 J. A. Tejedor et al.

and r10 to try to apply r8, thus allowing execution of the algorithm to save 2
iterations.

3. Elimination of rule ri causes a change in the composition and order of the
subsequent elimination steps. Keeping in mind the execution trace in figure 7,
if the elimination step of rule r6 also eliminates rule r8, then it is beneficial
to execution of the algorithm for r9 to be the next rule eliminated. This is
the case because once r6, r8 and r9 have been eliminated, r7 and r10 can be
eliminated in a single iteration in their elimination step since they do not share
objects. Here, 3 iterations would be saved.

To implement this optimization, a determination is necessary of what rules con-
tinue to be active whenever an elimination step is performed, and this information
is used to calculate the next optimal elimination step to be taken. Logically, calcu-
lation of the next optimal elimination step would severely penalize the execution
time of the algorithm. Hence, a different solution must be sought. This solution
involves making an analysis prior to the execution of each P system, in which we
can calculate all the possible active rule sets and assign them the next optimal
step of rule elimination. All this information would be reflected in a director graph
of the algorithm, the definition of which is as follows:

Definition 9: Director graph of algorithm of rule application. Let R be a set
of active rules. The director graph of the algorithm of rule application is composed
of a triad DG = (Q,A, T ) where:

1. Q is the node set of the graph, composed of a subset of parts of R, that is:
∀q ∈ Q, , q ∈ P (R)

2. A is a correspondence whose initial set is Q and whose final set is a set of
sequences of rules composed of rules of the origin element of Q. Thus, each
set of active rules has one or more sequences of rules. Each sequence of rules
indicates the order in which elimination step rules are applied. So a state can
have several elimination steps associated in the analysis prior the evolution of
each P system.
A : Q→ E where E is the set of possible sequences with elements in Q

1. T is a set of transitions. Each transition is composed of a triad 〈qi, A (qi) , qf 〉
where qi, qf ∈ Q are the initial and final state, respectively, of the transition
and A (qi) are the elimination step (s) of rules associated to state qi, which,
after being executed, means that active rules are those of state qf .

Execution of the sequential algorithm of application of competitive rules will
involve making a loop that ends when it reaches a state with no active rules. In
each iteration, there are 3 steps:

1. The elimination steps associated to the state are executed.
2. Active rules are calculated.
3. The state represented by active rules is transited.
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Execution of the parallel algorithm of application of competitive rules will be
similar to the sequential one. The difference is that execution of several elimination
steps associated to a state is performed in parallel way.

In the worse case, 3rd optimization performs the same iterations as the 2nd

optimization. However, the experimental data obtained with the execution of the
algorithm with 3rd optimization are better than the 2nd one, as show figure 9.
In this figure, the X-axis values represent the relationship between the cardinal
of the multiset and the cardinal of the sum of inputs of active rules. The Y-axis
values are percentage relationship between the number of iterations with active
rules elimination algorithm and sequential competitive rules with 3rd optimization
algorithm.

Fig. 9. Comparation between Active Rules Elimination Algorithm and Sequential Com-
petitive Rules with 3rd optimization

6 Conclusions

This paper introduces the concept of a competitiveness relationship among active
rules. Based on this concept, a new way of parallelism has been opened towards the
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massively parallel character needed in rules application in P systems. Moreover,
the sequential version of this algorithm has a lower number of operations in its
execution than in other sequential algorithms published to date.

Both the sequential and the parallel versions of the algorithm perform a limited
number of operations, thus allowing for prior knowledge of the execution time.
This characteristic makes both versions of the proposed algorithm appropriate for
use in viable distributed architectures of implementation of P systems. This is
said because architectures require determining the distribution of the number of
membranes to be located in each processor of the architecture in order to obtain
minimal evolution step times with the use of minimal resources.
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