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Summary. We propose a simple method of simulating chemical reactions by using a
multiset rewriting systems, the Abstract Rewriting System on Multisets (ARMS). We
simulate the Oregonator model, a mathematical model of the Belousov-Zhabotinsky and
We obtain the same behavior when the differential equations are used. We also investigate
the Oregonator with large stochastic fluctuations and confirm that they may affect its
oscillational behaviors.

We simulated the Oregonator model [2], which is a mathematical model of the
Belousov-Zhabotinsky reaction (BZ reaction) [11]. As for the mathematical model
of BZ reaction, the brusselator [7] and Oregonator are well known. In the brus-
selator, each reaction rule does not correspond to the actual chemical reactions
exhibiting the BZ reaction, while in the Oregonator each reaction rule corresponds
to actual chemical reactions exhibiting the BZ reaction. Thus, various parameters
of the BZ reaction have been obtained by chemical experiments; these parame-
ters cannot be used for simulation of the burruselator but can be used for the
Oregonator. However the Oregonator is not simple and in order to simulate it,
usually simplifications of the model by abstracting dimensions of parameters and
neglecting variants are required [10]. So, in the simulation of the simplified model,
even if we can find interesting behaviors, we cannot feed back to design chemical
experiments to confirm them.

Direct methods such as the Gillespie method [3] or the StochSim [5] allow us
to simulate the Oregonator without simplifying and transforming parameters to
dimensionless space. the Abstract Rewriting system on MultiSets (ARMS) [8], is a
direct method and a variant of P Systems, which is closely related to the Metabolic
Algorithm (MA) (for example [4]) and the Gillespie method.

The main differences between the ARMS and MA are the ARMS is a stochastic
model and the rate constants keep the same during computations, while the MA
is a deterministic model and the rate constant can change during a computation.
And [1] investigated the relationship between P systems and the Gillespie method.
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The main differences between the ARMS and Gillespie method is that; the
ARMS and Gillespie method based on the rate constants and population size of
each chemical species. The probability of one reaction occurring relative to another
is obtained by multiplying the rate constant of each reaction with the numbers of
its substrate molecules. A random number is then used to choose which reaction
will occur, based on relative probabilities. And in the Gillespie method, another
random number determines how long the step will last, while in the ARMS such a
random number is not used to determine how long the step will last and the steps
of intervals between reaction events are given by the rate constants.

1 Abstract Rewriting System on Multisets, ARMS

Formally, in the ARMS a chemical solution is a multiset of elements denoted by
symbols from a given alphabet, A = {a, b, . . . , }; these elements correspond to
chemicals.Reaction rules that act on the chemicals are specified in the ARMS by
reaction rules. Let A be an alphabet (a finite set of abstract symbols). A multiset
over a set of objects A is a mapping M : A 7→ N, where N is the set of natural
numbers, N, 0, 1, 2,. . . .

The number M(a), for a ∈ A, is the multiplicity of object a in the multiset M .
We denote by A# the set of all multisets over A, including the B (empty multiset,
∅, defined by ∅(a) = 0 for all a ∈ A). A multiset M : A 7→ N, for A = {a1, . . . , an}
is represented by the vector w = (M(a1)M(a2) . . .M(an).

The union of two multisets M1,M2 : A 7→ N is addition of vectors w1 and w2

that represent the each multisets respectively. If M1(a) ≤ M2(a) for all a ∈ A,
then we say that multiset M1 is included in multiset M2 and we write M1 ⊆ M2.
A reaction rule u → v, u, v ∈ A# is a vector r, r = −u + v. Note that u and v can
also be zero vector (empty). For example, the reaction a b → c is the vector of (-1
-1 1)=-(1 1 0) + (0 0 1).

A reaction is the addition of vectors M ∈ A# and r ∈ R,and it can be defined
only when r ⊆ M.We can define over A# a relation: (→): for M, M ′ ∈ A#, r ∈ R
we write M → M ′ iff M ′ = (M + r). As for strategy of rule application, one rule
will be applied in each step, conventionally. But we can easily realize maximal
parallel rule application.

Application of rules in the ARMS

Kinetics of bio-chemical reactions have traditionally been described by the reaction-
diffusion (RD) equations based on the mass-action law (MAL). The chemical equa-
tion of

A + B → C + D (1)

indicates that molecules A and B react together to form molecules C and D. From
this chemical equation we can obtain the rate equation. It is important to note
that most chemical reactions are assumed to follow the mass action law (MAL)
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kinetics, meaning that the reaction rate is proportional to the concentration of
the molecules. Thus the rate equation of the equation (1) is −[Ȧ] = ra= k[A][B],
where [A] represents the concentration of molecules A, ra is the reaction rate and
k is the rate constant of the reaction.

The reactions in the ARMS obey the Mass Action Law (MAL), where the
frequency of a reaction follows the concentration of chemicals and a rate constant.
In the ARMS, reaction rules are selected probabilistically, where each probability
of selecting a rule is in proportion to the total number of collisions of chemicals.
Concretely, the probability is given by the ratio of the total number of colliding
chemicals of a reaction to the sum of the total number of colliding chemicals of
every reactions in the rule; for example, there are only two reaction rules a, b

k1→
c : (r1) and c, d

k2→ a : (r2), the probabilities of selecting r1 and r2 are respectively
given by,

Pr1 ≡
k1[a][b]

k1[a][b] + k2[c][d]
, (2)

Pr2 ≡
k2[c][d]

k1[a][b] + k2[c][d]
. (3)

In this contribution, the change of concentration of chemicals are given by the
expectation value of selected a rule and its stoichiometric constants, for example,
the case when r1 is selected, the change of concentration a is given as Pr1 ×−1, b,
Pr1 ×−1, c, Pr1 × 1 and d, Pr1 × 1, respectively. In this contribution, the changes
of concentrations obey those of expectation values.

Oregonator

The Oregonator is proposed by [2] as follows;

X, Y, H
k1→ 2W : (r1), (4)

A, Y, 2H
k2→ X, W : (r2), (5)

2X
k3→ A,W,H : (r3), (6)

A,X, H
k4→ 2X, 2Z : (r4), (7)

B,Z
k5→ 0.5Y : (r5), (8)

where k1 ... k5 are obtained through chemical experiments and proposed [2];
k1 = 106M−2S−1, k2 = 2M−3S−1, k3 = 2 × 103M−1S−1, k4 = 10M−2S−1,
k5 = B× 2× 10−2S−1, where M stands for one molar, S stands for a second. And
A corresponds to the concentration of BrO3, B, CH(COOH)2, X, HBrO2, Y ,
Br, Z, C4+

e , W ,HOBr and H, H+, respectively.
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Fig. 1. Population dynamics of X,Y,Z in the Oregonator, where the vertical axis illus-
trates the number of chemicals and the horizontal axis illustrates the step

In the Oregonator, chemicals A and B are resources and assumed that they
are continuously supplied or largely existed than other chemicals. W is the final
product through these reactions and oscillations among X, Y and Z emerge.

2 Results

We confirmed that the ARMS can simulate conventional behavior of the Oregona-
tor by using the differential equations (figure 1), where reactions of generating X
(HbrO2) are trigger of oscillations and these reactions increase the concentration
of Z (C4+

e ) then high concentration of Z leads reactions of generating Y (Br),
since this reaction required Z, the concentration of Z is decreased.

The reaction mechanism of the Oregonator is illustrated by the usage of re-
action rules (figure 2). Basically, the r1 (X,Y, H → 2W ) and r5(B, Z → 0.5Y )
are used continuously. And r2 (A, Y, 2H → X, W ) is also mainly used, however
by the increase of X with r4 (A,X, H → 2X, 2Z), occasionally applications of r2

is switched by r3 (2X → A,W,H). These usages of rules fit to actual chemical
mechanism of the BZ reactions. Therefore, this result indicates not only the ARMS
exhibits the same behavior that of modeled by the differential equations but also
shows the correctness of chemical mechanism of the Oregonator.
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Fig. 2. The usage of reaction rules, the When the vertical axis illustrates r1, r2 ... r5

from the top to bottom. The horizontal axis illustrates the steps. Each dot illustrates the
usage of a rule

3 Discussion

Next, we consider the case when the system with large stochastic fluctuations. The
change of concentration by a reaction is small and it can be approximated as con-
tinuous; however, most of the chemical reactions in a living system are performed
with few molecules. In the reactions with few molecules, its developments are not
approximated as continuous but discrete, where stochastic fluctuations can not be
ignore.

In order to introduce discreteness in the developments, we define an exernal
parameter ρ(0.0 < ρ), it is multiplied by the denominator of the probability of
selecting a rule. Under the same extent of concentration change by a reaction
when the value of ρ is small, the probability of selecting a rule will be changed
easier compared to the case when ρ is large.

For example, probabilities of selecting a, b
k1→ c : (r1) and c, d

k2→ a : (r2) are
given by

Pr1 ≡
k1[a][b]

(k1[a][b] + k2[c][d])ρ
, (9)
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Fig. 3. un-stable oscillations: population dynamics of X,Y,Z in the Oregonator when ρ
is small (ρ is an external parameter), where the vertical axis illustrates the number of
chemicals and the horizontal axis illustrates the step

Pr2 ≡
k2[c][d]

(k1[a][b] + k2[c][d])ρ
, (10)

where when ρ = 1.0 the probabilities are the same as the conventional definition,
while ρ < 1.0, as the denominator is getting small, the probability becomes sensi-
tive to the slight change of the value of the numerator. So, the value of ρ is getting
smaller, probabilities are getting easier to suffer from the fluctuations, it corre-
sponds to the case when the system with few molecules. And also, as the value of
ρ is getting smaller, the change of concentration by a reaction becomes large and
discretely.

System with large fluctuations

We found that there exists three cases of behaviors according to the value of ρ. As
decreasing the value of ρ to 0.0, it shows stable oscillations, quasi-stable oscilla-
tions and un-stable oscillations, where stable oscillations means that conventional
oscillations, quasi-stable oscillations, in some trials oscillations disappear in a lapse
of steps while others show conventional oscillations, un-stable oscillations(figure 3
and 4), in every trials oscillations disappear in a lapse of steps. The usage of rules
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Fig. 4. The usage of reaction rules the case when un-stable oscillations occur (ρ is an
external parameter and this graph indicates when it is small), the vertical axis illustrates
r1, r2 ... r5 from the top to bottom. The horizontal axis illustrates the steps. Each dot
illustrates usage of a rule. From around 250,000 steps, the usage of reactions indicates a
rule between 1 and 2 are used, it means that rule 1 and 2 selected but cannot be applied,
because of the concentration of X, Y and Z become under 1.0

(figure 4) indicates that, since the concentration of X, Y and Z become under 1.0,
no rule can be applied. This result illustrates that discreteness can be induced by
low concentration of chemicals, as for this phenomena, the same mechanism has
been reported in another abstract chemical system [9].

4 Final remarks

In this contribution, we report our preliminary results on direct simulation of the
Oregonator. We confirm that when the Oregonator is affected by large stochastic
fluctuations, the oscillatory behaviors may change. More detailed investigation on
it is our future work, where in order to confirm the correctness of the investigation,
chemical experiment might be required, it is also our future work.

And also, chemical systems could give a good analogy when we consider the
complex interaction systems such as protein-protein interactions etc. We will try
to apply this method to investigate such a biological netwrok.
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